pushing files to the repo from the example!
Browse files
.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
README.md
ADDED
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
library_name: sklearn
|
4 |
+
tags:
|
5 |
+
- sklearn
|
6 |
+
- skops
|
7 |
+
- tabular-regression
|
8 |
+
widget:
|
9 |
+
structuredData:
|
10 |
+
AMBIENT_TEMPERATURE:
|
11 |
+
- 21.4322062
|
12 |
+
- 27.322759933333337
|
13 |
+
- 25.56246340000001
|
14 |
+
DAILY_YIELD:
|
15 |
+
- 0.0
|
16 |
+
- 996.4285714
|
17 |
+
- 685.0
|
18 |
+
DC_POWER:
|
19 |
+
- 0.0
|
20 |
+
- 8358.285714
|
21 |
+
- 6741.285714
|
22 |
+
IRRADIATION:
|
23 |
+
- 0.0
|
24 |
+
- 0.6465474886666664
|
25 |
+
- 0.498367802
|
26 |
+
MODULE_TEMPERATURE:
|
27 |
+
- 19.826896066666663
|
28 |
+
- 45.7407144
|
29 |
+
- 38.252356133333336
|
30 |
+
TOTAL_YIELD:
|
31 |
+
- 7218223.0
|
32 |
+
- 6366043.429
|
33 |
+
- 6372656.0
|
34 |
+
---
|
35 |
+
|
36 |
+
# Model description
|
37 |
+
|
38 |
+
This is a LinearRegression model trained on Solar Power Generation Data.
|
39 |
+
|
40 |
+
## Intended uses & limitations
|
41 |
+
|
42 |
+
This model is not ready to be used in production.
|
43 |
+
|
44 |
+
## Training Procedure
|
45 |
+
|
46 |
+
### Hyperparameters
|
47 |
+
|
48 |
+
The model is trained with below hyperparameters.
|
49 |
+
|
50 |
+
<details>
|
51 |
+
<summary> Click to expand </summary>
|
52 |
+
|
53 |
+
| Hyperparameter | Value |
|
54 |
+
|------------------|------------|
|
55 |
+
| alpha | 1.0 |
|
56 |
+
| copy_X | True |
|
57 |
+
| fit_intercept | True |
|
58 |
+
| l1_ratio | 0.5 |
|
59 |
+
| max_iter | 1000 |
|
60 |
+
| normalize | deprecated |
|
61 |
+
| positive | False |
|
62 |
+
| precompute | False |
|
63 |
+
| random_state | 0 |
|
64 |
+
| selection | cyclic |
|
65 |
+
| tol | 0.0001 |
|
66 |
+
| warm_start | False |
|
67 |
+
|
68 |
+
</details>
|
69 |
+
|
70 |
+
### Model Plot
|
71 |
+
|
72 |
+
The model plot is below.
|
73 |
+
|
74 |
+
<style>#sk-a3a3b863-d5cf-4b57-9e19-e3d8f2db0a0b {color: black;background-color: white;}#sk-a3a3b863-d5cf-4b57-9e19-e3d8f2db0a0b pre{padding: 0;}#sk-a3a3b863-d5cf-4b57-9e19-e3d8f2db0a0b div.sk-toggleable {background-color: white;}#sk-a3a3b863-d5cf-4b57-9e19-e3d8f2db0a0b label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-a3a3b863-d5cf-4b57-9e19-e3d8f2db0a0b div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-a3a3b863-d5cf-4b57-9e19-e3d8f2db0a0b div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-a3a3b863-d5cf-4b57-9e19-e3d8f2db0a0b input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-a3a3b863-d5cf-4b57-9e19-e3d8f2db0a0b div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-a3a3b863-d5cf-4b57-9e19-e3d8f2db0a0b div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-a3a3b863-d5cf-4b57-9e19-e3d8f2db0a0b input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-a3a3b863-d5cf-4b57-9e19-e3d8f2db0a0b div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-a3a3b863-d5cf-4b57-9e19-e3d8f2db0a0b div.sk-estimator:hover {background-color: #d4ebff;}#sk-a3a3b863-d5cf-4b57-9e19-e3d8f2db0a0b div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-a3a3b863-d5cf-4b57-9e19-e3d8f2db0a0b div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-a3a3b863-d5cf-4b57-9e19-e3d8f2db0a0b div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-a3a3b863-d5cf-4b57-9e19-e3d8f2db0a0b div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;}#sk-a3a3b863-d5cf-4b57-9e19-e3d8f2db0a0b div.sk-item {z-index: 1;}#sk-a3a3b863-d5cf-4b57-9e19-e3d8f2db0a0b div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;}#sk-a3a3b863-d5cf-4b57-9e19-e3d8f2db0a0b div.sk-parallel::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-a3a3b863-d5cf-4b57-9e19-e3d8f2db0a0b div.sk-parallel-item {display: flex;flex-direction: column;position: relative;background-color: white;}#sk-a3a3b863-d5cf-4b57-9e19-e3d8f2db0a0b div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-a3a3b863-d5cf-4b57-9e19-e3d8f2db0a0b div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-a3a3b863-d5cf-4b57-9e19-e3d8f2db0a0b div.sk-parallel-item:only-child::after {width: 0;}#sk-a3a3b863-d5cf-4b57-9e19-e3d8f2db0a0b div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;position: relative;}#sk-a3a3b863-d5cf-4b57-9e19-e3d8f2db0a0b div.sk-label label {font-family: monospace;font-weight: bold;background-color: white;display: inline-block;line-height: 1.2em;}#sk-a3a3b863-d5cf-4b57-9e19-e3d8f2db0a0b div.sk-label-container {position: relative;z-index: 2;text-align: center;}#sk-a3a3b863-d5cf-4b57-9e19-e3d8f2db0a0b div.sk-container {display: inline-block;position: relative;}</style><div id="sk-a3a3b863-d5cf-4b57-9e19-e3d8f2db0a0b" class"sk-top-container"><div class="sk-container"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="d20384ee-8f34-4e73-b4a5-b15dfd56af7a" type="checkbox" checked><label class="sk-toggleable__label" for="d20384ee-8f34-4e73-b4a5-b15dfd56af7a">ElasticNet</label><div class="sk-toggleable__content"><pre>ElasticNet(random_state=0)</pre></div></div></div></div></div>
|
75 |
+
|
76 |
+
## Evaluation Results
|
77 |
+
|
78 |
+
You can find the details about evaluation process and the evaluation results.
|
79 |
+
|
80 |
+
|
81 |
+
|
82 |
+
| Metric | Value |
|
83 |
+
|----------|---------|
|
84 |
+
| accuracy | 99.9994 |
|
85 |
+
|
86 |
+
# How to Get Started with the Model
|
87 |
+
|
88 |
+
Use the code below to get started with the model.
|
89 |
+
|
90 |
+
<details>
|
91 |
+
<summary> Click to expand </summary>
|
92 |
+
|
93 |
+
```python
|
94 |
+
import pickle
|
95 |
+
with open(dtc_pkl_filename, 'rb') as file:
|
96 |
+
clf = pickle.load(file)
|
97 |
+
```
|
98 |
+
|
99 |
+
</details>
|
100 |
+
|
101 |
+
|
102 |
+
|
103 |
+
|
104 |
+
# Model Card Authors
|
105 |
+
|
106 |
+
This model card is written by following authors:
|
107 |
+
|
108 |
+
ayyuce demirbas
|
109 |
+
|
110 |
+
# Model Card Contact
|
111 |
+
|
112 |
+
You can contact the model card authors through following channels:
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
# Citation
|
116 |
+
|
117 |
+
Below you can find information related to citation.
|
118 |
+
|
119 |
+
**BibTeX:**
|
120 |
+
```
|
121 |
+
bibtex
|
122 |
+
@inproceedings{...,year={2022}}
|
123 |
+
```
|
config.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"sklearn": {
|
3 |
+
"columns": [
|
4 |
+
"DAILY_YIELD",
|
5 |
+
"TOTAL_YIELD",
|
6 |
+
"AMBIENT_TEMPERATURE",
|
7 |
+
"MODULE_TEMPERATURE",
|
8 |
+
"IRRADIATION",
|
9 |
+
"DC_POWER"
|
10 |
+
],
|
11 |
+
"environment": [
|
12 |
+
"scikit-learn=1.0"
|
13 |
+
],
|
14 |
+
"example_input": {
|
15 |
+
"AMBIENT_TEMPERATURE": [
|
16 |
+
21.4322062,
|
17 |
+
27.322759933333337,
|
18 |
+
25.56246340000001
|
19 |
+
],
|
20 |
+
"DAILY_YIELD": [
|
21 |
+
0.0,
|
22 |
+
996.4285714,
|
23 |
+
685.0
|
24 |
+
],
|
25 |
+
"DC_POWER": [
|
26 |
+
0.0,
|
27 |
+
8358.285714,
|
28 |
+
6741.285714
|
29 |
+
],
|
30 |
+
"IRRADIATION": [
|
31 |
+
0.0,
|
32 |
+
0.6465474886666664,
|
33 |
+
0.498367802
|
34 |
+
],
|
35 |
+
"MODULE_TEMPERATURE": [
|
36 |
+
19.826896066666663,
|
37 |
+
45.7407144,
|
38 |
+
38.252356133333336
|
39 |
+
],
|
40 |
+
"TOTAL_YIELD": [
|
41 |
+
7218223.0,
|
42 |
+
6366043.429,
|
43 |
+
6372656.0
|
44 |
+
]
|
45 |
+
},
|
46 |
+
"model": {
|
47 |
+
"file": "solar.pkl"
|
48 |
+
},
|
49 |
+
"task": "tabular-regression"
|
50 |
+
}
|
51 |
+
}
|
solar.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:435b149d9761cf5e1f4ecb85c7e9364a49f5602be18918f8377f54c03f5756d5
|
3 |
+
size 778
|