ayoubkirouane commited on
Commit
ecac962
1 Parent(s): 3af2c61

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +44 -0
README.md ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ ## Description
3
+ The **BERT-Emotions-Classifier** is a fine-tuned **BERT-based** model designed for multi-label emotion classification. It has been trained on the sem_eval_2018_task_1 dataset, which includes text samples labeled with a variety of emotions, including anger, anticipation, disgust, fear, joy, love, optimism, pessimism, sadness, surprise, and trust. The model is capable of classifying text inputs into one or more of these emotion categories.
4
+
5
+ ## Overview
6
+ + **Model Name**: BERT-Emotions-Classifier
7
+ + **Task**: Multi-label emotion classification
8
+ + **Dataset**: sem_eval_2018_task_1
9
+ + **Labels**: ['anger', 'anticipation', 'disgust', 'fear', 'joy', 'love', 'optimism', 'pessimism', 'sadness', 'surprise', 'trust']
10
+ + **Base Model**: BERT (Bidirectional Encoder Representations from Transformers)
11
+
12
+ ### Input Format
13
+
14
+ The model expects text input in the form of a string.
15
+
16
+ ### Output Format
17
+ + The model provides a list of labels and associated scores, indicating the predicted emotions and their confidence scores.
18
+
19
+ ### Example Applications
20
+ + Emotion analysis in social media posts
21
+ + Sentiment analysis in customer reviews
22
+ + Content recommendation based on emotional context
23
+
24
+ ## Ethical Considerations
25
+ When using this model, it's essential to consider the ethical implications of emotion analysis. Ensure that the use of emotional data respects privacy and consent, and avoid making decisions that could have adverse effects based solely on emotion analysis.
26
+
27
+ ## Inference
28
+
29
+
30
+ ```python
31
+ from transformers import pipeline
32
+
33
+ # Load the BERT-Emotions-Classifier
34
+ classifier = pipeline("text-classification", model="ayoubkirouane/BERT-Emotions-Classifier")
35
+
36
+ # Input text
37
+ text = "Your input text here"
38
+
39
+ # Perform emotion classification
40
+ results = classifier(text)
41
+
42
+ # Display the classification results
43
+ print(results)
44
+ ```