Updated model with better performances
Browse files- README.md +1 -1
- a2c-PandaReachDense-v2.zip +1 -1
- a2c-PandaReachDense-v2/data +12 -12
- a2c-PandaReachDense-v2/policy.optimizer.pth +1 -1
- a2c-PandaReachDense-v2/policy.pth +1 -1
- config.json +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
- vec_normalize.pkl +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value: -
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: -0.99 +/- 0.11
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
a2c-PandaReachDense-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 108028
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:771bdd9eedea5323fae57ee3073c4d1caa7a5c85d645c014b415d674b0ed3972
|
3 |
size 108028
|
a2c-PandaReachDense-v2/data
CHANGED
@@ -4,9 +4,9 @@
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function MultiInputActorCriticPolicy.__init__ at
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
-
"_abc_impl": "<_abc._abc_data object at
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
@@ -46,19 +46,19 @@
|
|
46 |
"_num_timesteps_at_start": 0,
|
47 |
"seed": null,
|
48 |
"action_noise": null,
|
49 |
-
"start_time":
|
50 |
-
"learning_rate": 0.
|
51 |
"tensorboard_log": null,
|
52 |
"lr_schedule": {
|
53 |
":type:": "<class 'function'>",
|
54 |
-
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/
|
55 |
},
|
56 |
"_last_obs": {
|
57 |
":type:": "<class 'collections.OrderedDict'>",
|
58 |
-
":serialized:": "
|
59 |
-
"achieved_goal": "[[ 0.
|
60 |
-
"desired_goal": "[[ 0.
|
61 |
-
"observation": "[[ 0.
|
62 |
},
|
63 |
"_last_episode_starts": {
|
64 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -66,9 +66,9 @@
|
|
66 |
},
|
67 |
"_last_original_obs": {
|
68 |
":type:": "<class 'collections.OrderedDict'>",
|
69 |
-
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
70 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
-
"desired_goal": "[[-0.
|
72 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
},
|
74 |
"_episode_num": 0,
|
@@ -77,7 +77,7 @@
|
|
77 |
"_current_progress_remaining": 0.0,
|
78 |
"ep_info_buffer": {
|
79 |
":type:": "<class 'collections.deque'>",
|
80 |
-
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
81 |
},
|
82 |
"ep_success_buffer": {
|
83 |
":type:": "<class 'collections.deque'>",
|
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f73540d13a0>",
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f73540d2340>"
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
|
|
46 |
"_num_timesteps_at_start": 0,
|
47 |
"seed": null,
|
48 |
"action_noise": null,
|
49 |
+
"start_time": 1680111477003472578,
|
50 |
+
"learning_rate": 0.0001,
|
51 |
"tensorboard_log": null,
|
52 |
"lr_schedule": {
|
53 |
":type:": "<class 'function'>",
|
54 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/Gjbi6xxDLYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
55 |
},
|
56 |
"_last_obs": {
|
57 |
":type:": "<class 'collections.OrderedDict'>",
|
58 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAfrxgPhscj7o23AM/frxgPhscj7o23AM/frxgPhscj7o23AM/frxgPhscj7o23AM/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA9QNNPS29s76kRtU/GD1bv2RTsb/Sn/o+YlDQvZxXcz7/d8O/eOTQP37BiDxZxZA/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAB+vGA+GxyPujbcAz/LKxC8EGUyO/e9lDx+vGA+GxyPujbcAz/LKxC8EGUyO/e9lDx+vGA+GxyPujbcAz/LKxC8EGUyO/e9lDx+vGA+GxyPujbcAz/LKxC8EGUyO/e9lDyUaA5LBEsGhpRoEnSUUpR1Lg==",
|
59 |
+
"achieved_goal": "[[ 0.21946904 -0.00109184 0.5150789 ]\n [ 0.21946904 -0.00109184 0.5150789 ]\n [ 0.21946904 -0.00109184 0.5150789 ]\n [ 0.21946904 -0.00109184 0.5150789 ]]",
|
60 |
+
"desired_goal": "[[ 0.0500526 -0.35105267 1.6662183 ]\n [-0.85640097 -1.3853574 0.48950058]\n [-0.10171582 0.23763889 -1.5270995 ]\n [ 1.6319723 0.01669383 1.1310226 ]]",
|
61 |
+
"observation": "[[ 0.21946904 -0.00109184 0.5150789 -0.0087995 0.00272209 0.01815699]\n [ 0.21946904 -0.00109184 0.5150789 -0.0087995 0.00272209 0.01815699]\n [ 0.21946904 -0.00109184 0.5150789 -0.0087995 0.00272209 0.01815699]\n [ 0.21946904 -0.00109184 0.5150789 -0.0087995 0.00272209 0.01815699]]"
|
62 |
},
|
63 |
"_last_episode_starts": {
|
64 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
66 |
},
|
67 |
"_last_original_obs": {
|
68 |
":type:": "<class 'collections.OrderedDict'>",
|
69 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAwoz/vBCi/D3FtPw9jj21PNPD9T26dAQ9WpumPXLfBTwwxo88/l2QPbCNGL646kE+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
70 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
+
"desired_goal": "[[-0.03119505 0.12335598 0.12339167]\n [ 0.02212408 0.12000241 0.03233788]\n [ 0.081351 0.00817095 0.01755056]\n [ 0.07049178 -0.148978 0.18937194]]",
|
72 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
},
|
74 |
"_episode_num": 0,
|
|
|
77 |
"_current_progress_remaining": 0.0,
|
78 |
"ep_info_buffer": {
|
79 |
":type:": "<class 'collections.deque'>",
|
80 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIATJ07KBS+b+UhpRSlIwBbJRLMowBdJRHQKUU9i4J/od1fZQoaAZoCWgPQwjxun7Bbljzv5SGlFKUaBVLMmgWR0ClFJ3IEKVqdX2UKGgGaAloD0MIlPjcCfZf9r+UhpRSlGgVSzJoFkdApRRE/UvwmXV9lChoBmgJaA9DCIy9F1+0B/S/lIaUUpRoFUsyaBZHQKUT7qzqrzZ1fZQoaAZoCWgPQwiaP6a1aez0v5SGlFKUaBVLMmgWR0ClFfK4x1xLdX2UKGgGaAloD0MIti41Qj+T9r+UhpRSlGgVSzJoFkdApRWaIpH7QHV9lChoBmgJaA9DCGFSfHxC9vS/lIaUUpRoFUsyaBZHQKUVQVfNRm91fZQoaAZoCWgPQwiunpPeN77wv5SGlFKUaBVLMmgWR0ClFOtQbdaddX2UKGgGaAloD0MIQL/v37z487+UhpRSlGgVSzJoFkdApRbWrXDm83V9lChoBmgJaA9DCHQlAtU/CO+/lIaUUpRoFUsyaBZHQKUWfiiqQzV1fZQoaAZoCWgPQwi8s3bbhab3v5SGlFKUaBVLMmgWR0ClFiWRaHKwdX2UKGgGaAloD0MI/N8RFarb87+UhpRSlGgVSzJoFkdApRXPb48EFHV9lChoBmgJaA9DCLYsX5fh//e/lIaUUpRoFUsyaBZHQKUXucsDnvF1fZQoaAZoCWgPQwiHURA8vn30v5SGlFKUaBVLMmgWR0ClF2E12q1gdX2UKGgGaAloD0MIFQFO7+I987+UhpRSlGgVSzJoFkdApRcIeJYT03V9lChoBmgJaA9DCFq9w+3Q8PS/lIaUUpRoFUsyaBZHQKUWsjWTX8R1fZQoaAZoCWgPQwgZV1wclRvxv5SGlFKUaBVLMmgWR0ClGKqdYnv2dX2UKGgGaAloD0MIiGnf3F+98b+UhpRSlGgVSzJoFkdApRhSHO8kEHV9lChoBmgJaA9DCKpFRDF5Q/O/lIaUUpRoFUsyaBZHQKUX+VARkEt1fZQoaAZoCWgPQwjerwJ8t7nzv5SGlFKUaBVLMmgWR0ClF6MM7U5NdX2UKGgGaAloD0MIISI17WLa87+UhpRSlGgVSzJoFkdApRmU/Y8MeHV9lChoBmgJaA9DCORNfotOFvW/lIaUUpRoFUsyaBZHQKUZPIUahpR1fZQoaAZoCWgPQwhzuiwmNl/1v5SGlFKUaBVLMmgWR0ClGOOwosqbdX2UKGgGaAloD0MI8gcDz73H87+UhpRSlGgVSzJoFkdApRiNbLU1AXV9lChoBmgJaA9DCKWfcHZrmfW/lIaUUpRoFUsyaBZHQKUaf0GNaQp1fZQoaAZoCWgPQwiEmiFVFC/0v5SGlFKUaBVLMmgWR0ClGibjT8YRdX2UKGgGaAloD0MIVn4ZjBGJ8r+UhpRSlGgVSzJoFkdApRnODWbw0HV9lChoBmgJaA9DCMFyhAzk2fO/lIaUUpRoFUsyaBZHQKUZeAH3UQV1fZQoaAZoCWgPQwgdrtUe9gL0v5SGlFKUaBVLMmgWR0ClG3943WFwdX2UKGgGaAloD0MIDLCPTl158b+UhpRSlGgVSzJoFkdApRsndfsu4HV9lChoBmgJaA9DCBB39Soy+va/lIaUUpRoFUsyaBZHQKUaz2+wkgR1fZQoaAZoCWgPQwiInL6er5n1v5SGlFKUaBVLMmgWR0ClGnmqYJE6dX2UKGgGaAloD0MIvW987Zkl87+UhpRSlGgVSzJoFkdApRz6vkili3V9lChoBmgJaA9DCFn4+lqXGvi/lIaUUpRoFUsyaBZHQKUcour6tT11fZQoaAZoCWgPQwikiuJV1jb1v5SGlFKUaBVLMmgWR0ClHEq7AckudX2UKGgGaAloD0MIcsEZ/P3i9L+UhpRSlGgVSzJoFkdApRv07nxJ/XV9lChoBmgJaA9DCLxcxHdiVvK/lIaUUpRoFUsyaBZHQKUeb9XtBv91fZQoaAZoCWgPQwgBMJ5BQz/zv5SGlFKUaBVLMmgWR0ClHhfwI+nqdX2UKGgGaAloD0MI8S+Cxkwi9r+UhpRSlGgVSzJoFkdApR2/4VRDTnV9lChoBmgJaA9DCCY1tAHYwPG/lIaUUpRoFUsyaBZHQKUdahxo7FN1fZQoaAZoCWgPQwhD5sqg2mDzv5SGlFKUaBVLMmgWR0ClH+cMEzO5dX2UKGgGaAloD0MIl8gFZ/D39b+UhpRSlGgVSzJoFkdApR+Pacqe9XV9lChoBmgJaA9DCJiG4SNiSve/lIaUUpRoFUsyaBZHQKUfNzJZGKB1fZQoaAZoCWgPQwgniSXl7rP0v5SGlFKUaBVLMmgWR0ClHuIczZYgdX2UKGgGaAloD0MIOZojK79M9b+UhpRSlGgVSzJoFkdApSFjAYYR/XV9lChoBmgJaA9DCN9qnbgcr/S/lIaUUpRoFUsyaBZHQKUhCzJIUah1fZQoaAZoCWgPQwhKfy+FB43xv5SGlFKUaBVLMmgWR0ClILLux8lYdX2UKGgGaAloD0MIJA1uawuP8L+UhpRSlGgVSzJoFkdApSBdUdaMaXV9lChoBmgJaA9DCPdXj/tWK/S/lIaUUpRoFUsyaBZHQKUi2PAfuCx1fZQoaAZoCWgPQwg3VIzzN6Hyv5SGlFKUaBVLMmgWR0ClIoERJ2+xdX2UKGgGaAloD0MI8/+qI0f6+r+UhpRSlGgVSzJoFkdApSIpDmbLEHV9lChoBmgJaA9DCNWT+UffJPO/lIaUUpRoFUsyaBZHQKUh09mpVCJ1fZQoaAZoCWgPQwjylUBK7Jrxv5SGlFKUaBVLMmgWR0ClJGNke6qbdX2UKGgGaAloD0MIDqSLTSsF8r+UhpRSlGgVSzJoFkdApSQLp1RtQHV9lChoBmgJaA9DCCrkSj0LQvm/lIaUUpRoFUsyaBZHQKUjs5lvqC91fZQoaAZoCWgPQwjCwHPv4RLyv5SGlFKUaBVLMmgWR0ClI16r3j+8dX2UKGgGaAloD0MIPwEUI0tm87+UhpRSlGgVSzJoFkdApSWBp8F6iXV9lChoBmgJaA9DCBzSqMDJdvm/lIaUUpRoFUsyaBZHQKUlKU0vXbx1fZQoaAZoCWgPQwh5lEp4Qu/zv5SGlFKUaBVLMmgWR0ClJNCGnGbTdX2UKGgGaAloD0MI+N9KdmwE9L+UhpRSlGgVSzJoFkdApSR6Qq7ROXV9lChoBmgJaA9DCLK9FvTeWPO/lIaUUpRoFUsyaBZHQKUmcpxWDHx1fZQoaAZoCWgPQwg+JefEHhr2v5SGlFKUaBVLMmgWR0ClJhpG4I8hdX2UKGgGaAloD0MIUBpqFJKM+L+UhpRSlGgVSzJoFkdApSXBlQMx5HV9lChoBmgJaA9DCFDicyfYv/W/lIaUUpRoFUsyaBZHQKUla4Bmwq11fZQoaAZoCWgPQwg01ZP5R5/2v5SGlFKUaBVLMmgWR0ClJ15Gz8gqdX2UKGgGaAloD0MIkdCWcyku8r+UhpRSlGgVSzJoFkdApScFrhzeXXV9lChoBmgJaA9DCDYGnRA6qPa/lIaUUpRoFUsyaBZHQKUmrMpPRAt1fZQoaAZoCWgPQwhFgT6RJ8nzv5SGlFKUaBVLMmgWR0ClJlazE74jdX2UKGgGaAloD0MIfLWjOEed97+UhpRSlGgVSzJoFkdApShJ7gKnenV9lChoBmgJaA9DCOV620yFOPW/lIaUUpRoFUsyaBZHQKUn8Xu3MIN1fZQoaAZoCWgPQwjpnQq45/nxv5SGlFKUaBVLMmgWR0ClJ5jFId2gdX2UKGgGaAloD0MIkKSkh6FV9L+UhpRSlGgVSzJoFkdApSdCkZaV2XV9lChoBmgJaA9DCLMMcayLW/e/lIaUUpRoFUsyaBZHQKUpPVPN3W51fZQoaAZoCWgPQwhaKm9HOO36v5SGlFKUaBVLMmgWR0ClKOUZWJaadX2UKGgGaAloD0MI3jr/dtnv97+UhpRSlGgVSzJoFkdApSiMzQ/oq3V9lChoBmgJaA9DCDwTmiSWFPO/lIaUUpRoFUsyaBZHQKUoN1bqyGB1fZQoaAZoCWgPQwitw9FVurv4v5SGlFKUaBVLMmgWR0ClKi1AZ88cdX2UKGgGaAloD0MIhzO/mgOE97+UhpRSlGgVSzJoFkdApSnVGCqZMXV9lChoBmgJaA9DCBY0LbEyWvW/lIaUUpRoFUsyaBZHQKUpfEBsANp1fZQoaAZoCWgPQwit3Xahuc7yv5SGlFKUaBVLMmgWR0ClKSYBV+7UdX2UKGgGaAloD0MIz79d9uuO8r+UhpRSlGgVSzJoFkdApSs7850bLnV9lChoBmgJaA9DCL2pSIWxhfO/lIaUUpRoFUsyaBZHQKUq4+10DEF1fZQoaAZoCWgPQwhQOpFgqhnzv5SGlFKUaBVLMmgWR0ClKot+CsfadX2UKGgGaAloD0MIi6ceaXAb9r+UhpRSlGgVSzJoFkdApSo1pfx+a3V9lChoBmgJaA9DCB10CYfe4vO/lIaUUpRoFUsyaBZHQKUsP6nBLwp1fZQoaAZoCWgPQwgXghyUMBP0v5SGlFKUaBVLMmgWR0ClK+dxp+MIdX2UKGgGaAloD0MIxy+8kuQ59L+UhpRSlGgVSzJoFkdApSuO5Fw1i3V9lChoBmgJaA9DCAoUsYhhB/W/lIaUUpRoFUsyaBZHQKUrOLncL0B1fZQoaAZoCWgPQwgIzEOmfIj0v5SGlFKUaBVLMmgWR0ClLTYzSCvpdX2UKGgGaAloD0MISghW1ctv8b+UhpRSlGgVSzJoFkdApSzdv60pmXV9lChoBmgJaA9DCMN95NakW/O/lIaUUpRoFUsyaBZHQKUshRm9QGh1fZQoaAZoCWgPQwgRkC+hgsP1v5SGlFKUaBVLMmgWR0ClLC8T8HfNdX2UKGgGaAloD0MI6NztemmK87+UhpRSlGgVSzJoFkdApS4ooAn2I3V9lChoBmgJaA9DCOfj2lAxzvi/lIaUUpRoFUsyaBZHQKUt0CGvfTF1fZQoaAZoCWgPQwhNo8nFGBj1v5SGlFKUaBVLMmgWR0ClLXdOh0yQdX2UKGgGaAloD0MIF/GdmPXi9L+UhpRSlGgVSzJoFkdApS0hIre67XV9lChoBmgJaA9DCHAKKxVUFPK/lIaUUpRoFUsyaBZHQKUvMtCAtnR1fZQoaAZoCWgPQwinWguz0I70v5SGlFKUaBVLMmgWR0ClLtsvRJEqdX2UKGgGaAloD0MIhEawcf379L+UhpRSlGgVSzJoFkdApS6C9GqgiHV9lChoBmgJaA9DCC6PNSODnPK/lIaUUpRoFUsyaBZHQKUuLPj4pMJ1ZS4="
|
81 |
},
|
82 |
"ep_success_buffer": {
|
83 |
":type:": "<class 'collections.deque'>",
|
a2c-PandaReachDense-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 44734
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dafa150719cb6ea0718df31ec023379b5a05bec1cfc19490165850a9aa202b96
|
3 |
size 44734
|
a2c-PandaReachDense-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 46014
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:88eab2f09449b7f1ea69fa315ae1cedc601353cfc5510876a897ecf75d4b9ed4
|
3 |
size 46014
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fa8437645e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fa843765080>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679968873602762469, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA4S8AP2FPAbx4MiI/4S8AP2FPAbx4MiI/4S8AP2FPAbx4MiI/4S8AP2FPAbx4MiI/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAFEGVPu7Yor8591c/j8AtPogk175f2pi/lcpfP/hRNb+7AKi/iYamv5oClz74GFi+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADhLwA/YU8BvHgyIj/L8QE9WIluPIxnCz3hLwA/YU8BvHgyIj/L8QE9WIluPIxnCz3hLwA/YU8BvHgyIj/L8QE9WIluPIxnCz3hLwA/YU8BvHgyIj/L8QE9WIluPIxnCz2UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.5007306 -0.00789246 0.6335826 ]\n [ 0.5007306 -0.00789246 0.6335826 ]\n [ 0.5007306 -0.00789246 0.6335826 ]\n [ 0.5007306 -0.00789246 0.6335826 ]]", "desired_goal": "[[ 0.29151213 -1.2722452 0.84361607]\n [ 0.16967987 -0.4202006 -1.1941642 ]\n [ 0.8741849 -0.708282 -1.3125223 ]\n [-1.3009807 0.29494172 -0.21103275]]", "observation": "[[ 0.5007306 -0.00789246 0.6335826 0.03172473 0.01455911 0.0340343 ]\n [ 0.5007306 -0.00789246 0.6335826 0.03172473 0.01455911 0.0340343 ]\n [ 0.5007306 -0.00789246 0.6335826 0.03172473 0.01455911 0.0340343 ]\n [ 0.5007306 -0.00789246 0.6335826 0.03172473 0.01455911 0.0340343 ]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAB+UtvZyjrrxYpWc+SPcrPGDUwr3/tRQ+/b/tPcu5cbxbTZQ+3uQRPnM8ZT0xSoI9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.04245475 -0.02131825 0.22621667]\n [ 0.01049597 -0.09513164 0.14522551]\n [ 0.11608884 -0.01475377 0.28965268]\n [ 0.14247462 0.05596585 0.06361807]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI965BX3qrFMCUhpRSlIwBbJRLMowBdJRHQKgDupxWDHx1fZQoaAZoCWgPQwjX+bfLfi0VwJSGlFKUaBVLMmgWR0CoA4A5q/M4dX2UKGgGaAloD0MICaUvhJwfIMCUhpRSlGgVSzJoFkdAqANBtYSxq3V9lChoBmgJaA9DCBkAqrhxqxbAlIaUUpRoFUsyaBZHQKgDBRaX8fp1fZQoaAZoCWgPQwhVwD3Pn44gwJSGlFKUaBVLMmgWR0CoBQb8vVVhdX2UKGgGaAloD0MIaD9SRIYlFMCUhpRSlGgVSzJoFkdAqATLtVrAQHV9lChoBmgJaA9DCM+j4v+OKBnAlIaUUpRoFUsyaBZHQKgEi+JP69F1fZQoaAZoCWgPQwhYcD/ggZEUwJSGlFKUaBVLMmgWR0CoBE9zfaYedX2UKGgGaAloD0MI66hqgqg7KsCUhpRSlGgVSzJoFkdAqAYCzu4PPXV9lChoBmgJaA9DCMU7wJMW/hPAlIaUUpRoFUsyaBZHQKgFyF8ohIR1fZQoaAZoCWgPQwg8MIDwofQkwJSGlFKUaBVLMmgWR0CoBYiPp6hQdX2UKGgGaAloD0MIkluTbkv0FsCUhpRSlGgVSzJoFkdAqAVLcM3IdXV9lChoBmgJaA9DCPqcu10vnRjAlIaUUpRoFUsyaBZHQKgHCMa0hNd1fZQoaAZoCWgPQwizXgzlREsZwJSGlFKUaBVLMmgWR0CoBs4HHFP0dX2UKGgGaAloD0MIpS4Zx0jmEsCUhpRSlGgVSzJoFkdAqAaOOp84P3V9lChoBmgJaA9DCAiqRq8GyBjAlIaUUpRoFUsyaBZHQKgGUXJHRTl1fZQoaAZoCWgPQwgly0kofYEbwJSGlFKUaBVLMmgWR0CoCALdvbXZdX2UKGgGaAloD0MIk6ZB0TyAH8CUhpRSlGgVSzJoFkdAqAfHyZrpJXV9lChoBmgJaA9DCCNMUS6N/xzAlIaUUpRoFUsyaBZHQKgHiAyVObl1fZQoaAZoCWgPQwi5/8h06EQiwJSGlFKUaBVLMmgWR0CoB0s8HObBdX2UKGgGaAloD0MI1xael4rNFMCUhpRSlGgVSzJoFkdAqAkGAy2x6nV9lChoBmgJaA9DCDz3Hi45fhXAlIaUUpRoFUsyaBZHQKgIyyprDZV1fZQoaAZoCWgPQwjpD808uWYhwJSGlFKUaBVLMmgWR0CoCItWU8msdX2UKGgGaAloD0MI48RXO4pbJMCUhpRSlGgVSzJoFkdAqAhN+Vkc0nV9lChoBmgJaA9DCBUaiGUz1x/AlIaUUpRoFUsyaBZHQKgJ/U2kzoF1fZQoaAZoCWgPQwhqwvaTMf4qwJSGlFKUaBVLMmgWR0CoCcIu5BkadX2UKGgGaAloD0MICd0lcVa0FsCUhpRSlGgVSzJoFkdAqAmDRc/t6XV9lChoBmgJaA9DCIl5VtKKXxTAlIaUUpRoFUsyaBZHQKgJRfNRm9R1fZQoaAZoCWgPQwjw+zcvThwawJSGlFKUaBVLMmgWR0CoCwe9zwMIdX2UKGgGaAloD0MI965BX3o7H8CUhpRSlGgVSzJoFkdAqArMiKR+0HV9lChoBmgJaA9DCBYvFobIaRbAlIaUUpRoFUsyaBZHQKgKjTMqz7d1fZQoaAZoCWgPQwhqiCr8GX4VwJSGlFKUaBVLMmgWR0CoCk/Wcz68dX2UKGgGaAloD0MI+N7foL2qH8CUhpRSlGgVSzJoFkdAqAv3Ye1a4nV9lChoBmgJaA9DCBYzwtuDEBjAlIaUUpRoFUsyaBZHQKgLvD/lyR11fZQoaAZoCWgPQwg1JsRcUpUowJSGlFKUaBVLMmgWR0CoC3yr5qM4dX2UKGgGaAloD0MIrir7rgjuJsCUhpRSlGgVSzJoFkdAqAs/g9/z8XV9lChoBmgJaA9DCKK0N/jCdBnAlIaUUpRoFUsyaBZHQKgM/I4lyBF1fZQoaAZoCWgPQwgXRnpRuyclwJSGlFKUaBVLMmgWR0CoDMHHeaa1dX2UKGgGaAloD0MIGTvhJTiVHcCUhpRSlGgVSzJoFkdAqAyCx3V093V9lChoBmgJaA9DCID0TZoGhRTAlIaUUpRoFUsyaBZHQKgMRamGdqd1fZQoaAZoCWgPQwj2RUJbznUgwJSGlFKUaBVLMmgWR0CoDf6NMoMKdX2UKGgGaAloD0MI3J212y40GcCUhpRSlGgVSzJoFkdAqA3DeqJdjXV9lChoBmgJaA9DCDikUYGTvRjAlIaUUpRoFUsyaBZHQKgNg+M6zVt1fZQoaAZoCWgPQwgVxausbcoYwJSGlFKUaBVLMmgWR0CoDUa/Zdv9dX2UKGgGaAloD0MInieeswVEGMCUhpRSlGgVSzJoFkdAqA8CIi1RcnV9lChoBmgJaA9DCG5MT1jiUSHAlIaUUpRoFUsyaBZHQKgOxuCwr2B1fZQoaAZoCWgPQwielh+4ysMWwJSGlFKUaBVLMmgWR0CoDoeu/1xsdX2UKGgGaAloD0MIlba4xmdyGsCUhpRSlGgVSzJoFkdAqA5KXD3ueHV9lChoBmgJaA9DCH0lkBK7xhXAlIaUUpRoFUsyaBZHQKgP9IMBp6B1fZQoaAZoCWgPQwidZKvLKVEZwJSGlFKUaBVLMmgWR0CoD7lme18cdX2UKGgGaAloD0MIDYy8rImlHMCUhpRSlGgVSzJoFkdAqA96yhSLqHV9lChoBmgJaA9DCBLCo40jNhfAlIaUUpRoFUsyaBZHQKgPPYoRZlp1fZQoaAZoCWgPQwiD3bBtUVYdwJSGlFKUaBVLMmgWR0CoEPxVAAyVdX2UKGgGaAloD0MI6Ugu/yHdGMCUhpRSlGgVSzJoFkdAqBDBgy/KyXV9lChoBmgJaA9DCN8yp8tishfAlIaUUpRoFUsyaBZHQKgQgoDxLCh1fZQoaAZoCWgPQwjTTs3lBhMZwJSGlFKUaBVLMmgWR0CoEEUkv9LpdX2UKGgGaAloD0MIehnFckurFcCUhpRSlGgVSzJoFkdAqBIBR0lqrXV9lChoBmgJaA9DCOnxe5v+nBfAlIaUUpRoFUsyaBZHQKgRxpxm03R1fZQoaAZoCWgPQwjTvySVKS4gwJSGlFKUaBVLMmgWR0CoEYbzkIX1dX2UKGgGaAloD0MI97GC34a4FsCUhpRSlGgVSzJoFkdAqBFKDGtITXV9lChoBmgJaA9DCLlvtU5cvh7AlIaUUpRoFUsyaBZHQKgTCw8nuzB1fZQoaAZoCWgPQwjP2QJC60EcwJSGlFKUaBVLMmgWR0CoEs/Ls8gZdX2UKGgGaAloD0MIxjTTvU46H8CUhpRSlGgVSzJoFkdAqBKP+OwPiHV9lChoBmgJaA9DCG8u/rYneB/AlIaUUpRoFUsyaBZHQKgSUrKeTV51fZQoaAZoCWgPQwivPh767l4hwJSGlFKUaBVLMmgWR0CoFAM5n13/dX2UKGgGaAloD0MIEf+wpUdjFMCUhpRSlGgVSzJoFkdAqBPICnxaxHV9lChoBmgJaA9DCIV4JF6eRirAlIaUUpRoFUsyaBZHQKgTiFev6j51fZQoaAZoCWgPQwhBZJEm3kEpwJSGlFKUaBVLMmgWR0CoE0tEgGKRdX2UKGgGaAloD0MIx/FDpRGDHcCUhpRSlGgVSzJoFkdAqBUFQCSzPnV9lChoBmgJaA9DCP7Soj7JdSDAlIaUUpRoFUsyaBZHQKgUygEEC/51fZQoaAZoCWgPQwgSwTi4dAwlwJSGlFKUaBVLMmgWR0CoFIpeeFtbdX2UKGgGaAloD0MIjZyFPe1gF8CUhpRSlGgVSzJoFkdAqBRNLYf4h3V9lChoBmgJaA9DCNydtdsuRCTAlIaUUpRoFUsyaBZHQKgWAYtxuKp1fZQoaAZoCWgPQwhtxmmIKvQgwJSGlFKUaBVLMmgWR0CoFcY9HMEBdX2UKGgGaAloD0MIh9wMN+DzF8CUhpRSlGgVSzJoFkdAqBWGahHsknV9lChoBmgJaA9DCO2b+6vHTRXAlIaUUpRoFUsyaBZHQKgVSRuCPIZ1fZQoaAZoCWgPQwgzF7g81iwmwJSGlFKUaBVLMmgWR0CoFwu6mO2idX2UKGgGaAloD0MIYrt7gO47EsCUhpRSlGgVSzJoFkdAqBbRFNL13HV9lChoBmgJaA9DCGsr9pfdMxbAlIaUUpRoFUsyaBZHQKgWkdtl7MR1fZQoaAZoCWgPQwi3DaMgeBwYwJSGlFKUaBVLMmgWR0CoFlUJng5zdX2UKGgGaAloD0MIJv4o6sz9GMCUhpRSlGgVSzJoFkdAqBgACMglnnV9lChoBmgJaA9DCLIubqMBPCPAlIaUUpRoFUsyaBZHQKgXxN5dGAl1fZQoaAZoCWgPQwgNNQpJZn0lwJSGlFKUaBVLMmgWR0CoF4UKiO/+dX2UKGgGaAloD0MI3Esao3X0K8CUhpRSlGgVSzJoFkdAqBdHq5byH3V9lChoBmgJaA9DCNP02QHX9SLAlIaUUpRoFUsyaBZHQKgZVwXIlt11fZQoaAZoCWgPQwi46GSp9aYqwJSGlFKUaBVLMmgWR0CoGRyKekHldX2UKGgGaAloD0MI2AsFbAdbIMCUhpRSlGgVSzJoFkdAqBjdxhlUZXV9lChoBmgJaA9DCKt3uB0adhjAlIaUUpRoFUsyaBZHQKgYoSHM2WJ1fZQoaAZoCWgPQwhdhv90Ay0nwJSGlFKUaBVLMmgWR0CoGvMpPRAsdX2UKGgGaAloD0MIR+Umaml2JcCUhpRSlGgVSzJoFkdAqBq4fOlfq3V9lChoBmgJaA9DCHe/CvDdBhvAlIaUUpRoFUsyaBZHQKgaex1PnCB1fZQoaAZoCWgPQwinJOtwdB0iwJSGlFKUaBVLMmgWR0CoGkESVW0adX2UKGgGaAloD0MIUKvoD83MGMCUhpRSlGgVSzJoFkdAqByI1pCa7XV9lChoBmgJaA9DCImyt5TzVR/AlIaUUpRoFUsyaBZHQKgcTjSXt0F1fZQoaAZoCWgPQwiZ1xGHbLAXwJSGlFKUaBVLMmgWR0CoHA7CrLhadX2UKGgGaAloD0MIQbYsX5ehIMCUhpRSlGgVSzJoFkdAqBvR9G7SRnV9lChoBmgJaA9DCNp0BHCzaBXAlIaUUpRoFUsyaBZHQKgeMbIcR151fZQoaAZoCWgPQwhGCmXh66sbwJSGlFKUaBVLMmgWR0CoHfc+iaiLdX2UKGgGaAloD0MI9S7ej9sPJcCUhpRSlGgVSzJoFkdAqB24e5nUUnV9lChoBmgJaA9DCPkTlQ1rcibAlIaUUpRoFUsyaBZHQKgdfDlYEGJ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f73540d13a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f73540d2340>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1680111477003472578, "learning_rate": 0.0001, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/Gjbi6xxDLYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAfrxgPhscj7o23AM/frxgPhscj7o23AM/frxgPhscj7o23AM/frxgPhscj7o23AM/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA9QNNPS29s76kRtU/GD1bv2RTsb/Sn/o+YlDQvZxXcz7/d8O/eOTQP37BiDxZxZA/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAB+vGA+GxyPujbcAz/LKxC8EGUyO/e9lDx+vGA+GxyPujbcAz/LKxC8EGUyO/e9lDx+vGA+GxyPujbcAz/LKxC8EGUyO/e9lDx+vGA+GxyPujbcAz/LKxC8EGUyO/e9lDyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.21946904 -0.00109184 0.5150789 ]\n [ 0.21946904 -0.00109184 0.5150789 ]\n [ 0.21946904 -0.00109184 0.5150789 ]\n [ 0.21946904 -0.00109184 0.5150789 ]]", "desired_goal": "[[ 0.0500526 -0.35105267 1.6662183 ]\n [-0.85640097 -1.3853574 0.48950058]\n [-0.10171582 0.23763889 -1.5270995 ]\n [ 1.6319723 0.01669383 1.1310226 ]]", "observation": "[[ 0.21946904 -0.00109184 0.5150789 -0.0087995 0.00272209 0.01815699]\n [ 0.21946904 -0.00109184 0.5150789 -0.0087995 0.00272209 0.01815699]\n [ 0.21946904 -0.00109184 0.5150789 -0.0087995 0.00272209 0.01815699]\n [ 0.21946904 -0.00109184 0.5150789 -0.0087995 0.00272209 0.01815699]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAwoz/vBCi/D3FtPw9jj21PNPD9T26dAQ9WpumPXLfBTwwxo88/l2QPbCNGL646kE+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.03119505 0.12335598 0.12339167]\n [ 0.02212408 0.12000241 0.03233788]\n [ 0.081351 0.00817095 0.01755056]\n [ 0.07049178 -0.148978 0.18937194]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIATJ07KBS+b+UhpRSlIwBbJRLMowBdJRHQKUU9i4J/od1fZQoaAZoCWgPQwjxun7Bbljzv5SGlFKUaBVLMmgWR0ClFJ3IEKVqdX2UKGgGaAloD0MIlPjcCfZf9r+UhpRSlGgVSzJoFkdApRRE/UvwmXV9lChoBmgJaA9DCIy9F1+0B/S/lIaUUpRoFUsyaBZHQKUT7qzqrzZ1fZQoaAZoCWgPQwiaP6a1aez0v5SGlFKUaBVLMmgWR0ClFfK4x1xLdX2UKGgGaAloD0MIti41Qj+T9r+UhpRSlGgVSzJoFkdApRWaIpH7QHV9lChoBmgJaA9DCGFSfHxC9vS/lIaUUpRoFUsyaBZHQKUVQVfNRm91fZQoaAZoCWgPQwiunpPeN77wv5SGlFKUaBVLMmgWR0ClFOtQbdaddX2UKGgGaAloD0MIQL/v37z487+UhpRSlGgVSzJoFkdApRbWrXDm83V9lChoBmgJaA9DCHQlAtU/CO+/lIaUUpRoFUsyaBZHQKUWfiiqQzV1fZQoaAZoCWgPQwi8s3bbhab3v5SGlFKUaBVLMmgWR0ClFiWRaHKwdX2UKGgGaAloD0MI/N8RFarb87+UhpRSlGgVSzJoFkdApRXPb48EFHV9lChoBmgJaA9DCLYsX5fh//e/lIaUUpRoFUsyaBZHQKUXucsDnvF1fZQoaAZoCWgPQwiHURA8vn30v5SGlFKUaBVLMmgWR0ClF2E12q1gdX2UKGgGaAloD0MIFQFO7+I987+UhpRSlGgVSzJoFkdApRcIeJYT03V9lChoBmgJaA9DCFq9w+3Q8PS/lIaUUpRoFUsyaBZHQKUWsjWTX8R1fZQoaAZoCWgPQwgZV1wclRvxv5SGlFKUaBVLMmgWR0ClGKqdYnv2dX2UKGgGaAloD0MIiGnf3F+98b+UhpRSlGgVSzJoFkdApRhSHO8kEHV9lChoBmgJaA9DCKpFRDF5Q/O/lIaUUpRoFUsyaBZHQKUX+VARkEt1fZQoaAZoCWgPQwjerwJ8t7nzv5SGlFKUaBVLMmgWR0ClF6MM7U5NdX2UKGgGaAloD0MIISI17WLa87+UhpRSlGgVSzJoFkdApRmU/Y8MeHV9lChoBmgJaA9DCORNfotOFvW/lIaUUpRoFUsyaBZHQKUZPIUahpR1fZQoaAZoCWgPQwhzuiwmNl/1v5SGlFKUaBVLMmgWR0ClGOOwosqbdX2UKGgGaAloD0MI8gcDz73H87+UhpRSlGgVSzJoFkdApRiNbLU1AXV9lChoBmgJaA9DCKWfcHZrmfW/lIaUUpRoFUsyaBZHQKUaf0GNaQp1fZQoaAZoCWgPQwiEmiFVFC/0v5SGlFKUaBVLMmgWR0ClGibjT8YRdX2UKGgGaAloD0MIVn4ZjBGJ8r+UhpRSlGgVSzJoFkdApRnODWbw0HV9lChoBmgJaA9DCMFyhAzk2fO/lIaUUpRoFUsyaBZHQKUZeAH3UQV1fZQoaAZoCWgPQwgdrtUe9gL0v5SGlFKUaBVLMmgWR0ClG3943WFwdX2UKGgGaAloD0MIDLCPTl158b+UhpRSlGgVSzJoFkdApRsndfsu4HV9lChoBmgJaA9DCBB39Soy+va/lIaUUpRoFUsyaBZHQKUaz2+wkgR1fZQoaAZoCWgPQwiInL6er5n1v5SGlFKUaBVLMmgWR0ClGnmqYJE6dX2UKGgGaAloD0MIvW987Zkl87+UhpRSlGgVSzJoFkdApRz6vkili3V9lChoBmgJaA9DCFn4+lqXGvi/lIaUUpRoFUsyaBZHQKUcour6tT11fZQoaAZoCWgPQwikiuJV1jb1v5SGlFKUaBVLMmgWR0ClHEq7AckudX2UKGgGaAloD0MIcsEZ/P3i9L+UhpRSlGgVSzJoFkdApRv07nxJ/XV9lChoBmgJaA9DCLxcxHdiVvK/lIaUUpRoFUsyaBZHQKUeb9XtBv91fZQoaAZoCWgPQwgBMJ5BQz/zv5SGlFKUaBVLMmgWR0ClHhfwI+nqdX2UKGgGaAloD0MI8S+Cxkwi9r+UhpRSlGgVSzJoFkdApR2/4VRDTnV9lChoBmgJaA9DCCY1tAHYwPG/lIaUUpRoFUsyaBZHQKUdahxo7FN1fZQoaAZoCWgPQwhD5sqg2mDzv5SGlFKUaBVLMmgWR0ClH+cMEzO5dX2UKGgGaAloD0MIl8gFZ/D39b+UhpRSlGgVSzJoFkdApR+Pacqe9XV9lChoBmgJaA9DCJiG4SNiSve/lIaUUpRoFUsyaBZHQKUfNzJZGKB1fZQoaAZoCWgPQwgniSXl7rP0v5SGlFKUaBVLMmgWR0ClHuIczZYgdX2UKGgGaAloD0MIOZojK79M9b+UhpRSlGgVSzJoFkdApSFjAYYR/XV9lChoBmgJaA9DCN9qnbgcr/S/lIaUUpRoFUsyaBZHQKUhCzJIUah1fZQoaAZoCWgPQwhKfy+FB43xv5SGlFKUaBVLMmgWR0ClILLux8lYdX2UKGgGaAloD0MIJA1uawuP8L+UhpRSlGgVSzJoFkdApSBdUdaMaXV9lChoBmgJaA9DCPdXj/tWK/S/lIaUUpRoFUsyaBZHQKUi2PAfuCx1fZQoaAZoCWgPQwg3VIzzN6Hyv5SGlFKUaBVLMmgWR0ClIoERJ2+xdX2UKGgGaAloD0MI8/+qI0f6+r+UhpRSlGgVSzJoFkdApSIpDmbLEHV9lChoBmgJaA9DCNWT+UffJPO/lIaUUpRoFUsyaBZHQKUh09mpVCJ1fZQoaAZoCWgPQwjylUBK7Jrxv5SGlFKUaBVLMmgWR0ClJGNke6qbdX2UKGgGaAloD0MIDqSLTSsF8r+UhpRSlGgVSzJoFkdApSQLp1RtQHV9lChoBmgJaA9DCCrkSj0LQvm/lIaUUpRoFUsyaBZHQKUjs5lvqC91fZQoaAZoCWgPQwjCwHPv4RLyv5SGlFKUaBVLMmgWR0ClI16r3j+8dX2UKGgGaAloD0MIPwEUI0tm87+UhpRSlGgVSzJoFkdApSWBp8F6iXV9lChoBmgJaA9DCBzSqMDJdvm/lIaUUpRoFUsyaBZHQKUlKU0vXbx1fZQoaAZoCWgPQwh5lEp4Qu/zv5SGlFKUaBVLMmgWR0ClJNCGnGbTdX2UKGgGaAloD0MI+N9KdmwE9L+UhpRSlGgVSzJoFkdApSR6Qq7ROXV9lChoBmgJaA9DCLK9FvTeWPO/lIaUUpRoFUsyaBZHQKUmcpxWDHx1fZQoaAZoCWgPQwg+JefEHhr2v5SGlFKUaBVLMmgWR0ClJhpG4I8hdX2UKGgGaAloD0MIUBpqFJKM+L+UhpRSlGgVSzJoFkdApSXBlQMx5HV9lChoBmgJaA9DCFDicyfYv/W/lIaUUpRoFUsyaBZHQKUla4Bmwq11fZQoaAZoCWgPQwg01ZP5R5/2v5SGlFKUaBVLMmgWR0ClJ15Gz8gqdX2UKGgGaAloD0MIkdCWcyku8r+UhpRSlGgVSzJoFkdApScFrhzeXXV9lChoBmgJaA9DCDYGnRA6qPa/lIaUUpRoFUsyaBZHQKUmrMpPRAt1fZQoaAZoCWgPQwhFgT6RJ8nzv5SGlFKUaBVLMmgWR0ClJlazE74jdX2UKGgGaAloD0MIfLWjOEed97+UhpRSlGgVSzJoFkdApShJ7gKnenV9lChoBmgJaA9DCOV620yFOPW/lIaUUpRoFUsyaBZHQKUn8Xu3MIN1fZQoaAZoCWgPQwjpnQq45/nxv5SGlFKUaBVLMmgWR0ClJ5jFId2gdX2UKGgGaAloD0MIkKSkh6FV9L+UhpRSlGgVSzJoFkdApSdCkZaV2XV9lChoBmgJaA9DCLMMcayLW/e/lIaUUpRoFUsyaBZHQKUpPVPN3W51fZQoaAZoCWgPQwhaKm9HOO36v5SGlFKUaBVLMmgWR0ClKOUZWJaadX2UKGgGaAloD0MI3jr/dtnv97+UhpRSlGgVSzJoFkdApSiMzQ/oq3V9lChoBmgJaA9DCDwTmiSWFPO/lIaUUpRoFUsyaBZHQKUoN1bqyGB1fZQoaAZoCWgPQwitw9FVurv4v5SGlFKUaBVLMmgWR0ClKi1AZ88cdX2UKGgGaAloD0MIhzO/mgOE97+UhpRSlGgVSzJoFkdApSnVGCqZMXV9lChoBmgJaA9DCBY0LbEyWvW/lIaUUpRoFUsyaBZHQKUpfEBsANp1fZQoaAZoCWgPQwit3Xahuc7yv5SGlFKUaBVLMmgWR0ClKSYBV+7UdX2UKGgGaAloD0MIz79d9uuO8r+UhpRSlGgVSzJoFkdApSs7850bLnV9lChoBmgJaA9DCL2pSIWxhfO/lIaUUpRoFUsyaBZHQKUq4+10DEF1fZQoaAZoCWgPQwhQOpFgqhnzv5SGlFKUaBVLMmgWR0ClKot+CsfadX2UKGgGaAloD0MIi6ceaXAb9r+UhpRSlGgVSzJoFkdApSo1pfx+a3V9lChoBmgJaA9DCB10CYfe4vO/lIaUUpRoFUsyaBZHQKUsP6nBLwp1fZQoaAZoCWgPQwgXghyUMBP0v5SGlFKUaBVLMmgWR0ClK+dxp+MIdX2UKGgGaAloD0MIxy+8kuQ59L+UhpRSlGgVSzJoFkdApSuO5Fw1i3V9lChoBmgJaA9DCAoUsYhhB/W/lIaUUpRoFUsyaBZHQKUrOLncL0B1fZQoaAZoCWgPQwgIzEOmfIj0v5SGlFKUaBVLMmgWR0ClLTYzSCvpdX2UKGgGaAloD0MISghW1ctv8b+UhpRSlGgVSzJoFkdApSzdv60pmXV9lChoBmgJaA9DCMN95NakW/O/lIaUUpRoFUsyaBZHQKUshRm9QGh1fZQoaAZoCWgPQwgRkC+hgsP1v5SGlFKUaBVLMmgWR0ClLC8T8HfNdX2UKGgGaAloD0MI6NztemmK87+UhpRSlGgVSzJoFkdApS4ooAn2I3V9lChoBmgJaA9DCOfj2lAxzvi/lIaUUpRoFUsyaBZHQKUt0CGvfTF1fZQoaAZoCWgPQwhNo8nFGBj1v5SGlFKUaBVLMmgWR0ClLXdOh0yQdX2UKGgGaAloD0MIF/GdmPXi9L+UhpRSlGgVSzJoFkdApS0hIre67XV9lChoBmgJaA9DCHAKKxVUFPK/lIaUUpRoFUsyaBZHQKUvMtCAtnR1fZQoaAZoCWgPQwinWguz0I70v5SGlFKUaBVLMmgWR0ClLtsvRJEqdX2UKGgGaAloD0MIhEawcf379L+UhpRSlGgVSzJoFkdApS6C9GqgiHV9lChoBmgJaA9DCC6PNSODnPK/lIaUUpRoFUsyaBZHQKUuLPj4pMJ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": -
|
|
|
1 |
+
{"mean_reward": -0.9897421160596422, "std_reward": 0.10549950950461909, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-29T18:42:47.684767"}
|
vec_normalize.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 3056
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a490fed9de41df3ed9dc3df4d6e61eb0fc8296f7fb59bbdc4b619462bfd266b6
|
3 |
size 3056
|