{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x79b414d59510>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x79b414d595a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x79b414d59630>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x79b414d596c0>", "_build": "<function ActorCriticPolicy._build at 0x79b414d59750>", "forward": "<function ActorCriticPolicy.forward at 0x79b414d597e0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x79b414d59870>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x79b414d59900>", "_predict": "<function ActorCriticPolicy._predict at 0x79b414d59990>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x79b414d59a20>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x79b414d59ab0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x79b414d59b40>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x79b41db1acc0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1725385230052748307, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAEA5mz0p0FK66xLaOS9hHTbwSUM41dIAuQAAgD8AAIA/08xqPj2JMb3f97051C2GuD7omL5uDAe5AACAPwAAgD9NJIY97DGUuStn1zoWdRo2qHi9O1EZAboAAIA/AACAPwBwSz1cAyS6kju3O+NeFDhGQlG7XSbTtgAAgD8AAIA/WtSAPXXNlz+A+eY9bcH+vhdLBj7MATw8AAAAAAAAAAAaCsM9N9OYP8wetj4fpg6/jREjPi5QoT0AAAAAAAAAADPnYjyuIZi6WoeyO36lPDiYpBW5BE6AugAAgD8AAIA/jVCOvbgO+7nt/fg7p/mWNq/UGjuTwZE1AACAPwAAgD+AIXO94dyDuqk/MrtfDQU4dNu5uQCf0TkAAIA/AACAP/oGND7q44Y+fcCUvuqYgb51s0293ZHkvQAAAAAAAAAAMw8CvfZoZ7py0+Q6VSW3tMuEe7v4pAO6AACAPwAAgD8zS508XBN0ulbUXbm1XlW0oK9/Og7egTgAAIA/AACAP2YbFj1In4q6oJBTu9OaI7aZmxU6LoZ1OgAAgD8AAIA/zeTDvIXz+bkPsgG5hmEZtFJ2STvwthk4AACAPwAAgD9Gk5y+E/woP93aFzsledC+ih98vr5+9z0AAAAAAAAAAACFtT2ux466AoVnOvkQoTX8iAo7XVWGuQAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVOQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGQQvDP4VRGMAWyUTegDjAF0lEdAlRxErGza9XV9lChoBkdAaD/J5mh/RWgHTegDaAhHQJUePFGXokl1fZQoaAZHQGhCSjYZl4FoB03oA2gIR0CVHkl8PWhAdX2UKGgGR0BoFLWqcVgyaAdN6ANoCEdAlR8ZAt4A0nV9lChoBkdAZzS5uqFRHmgHTegDaAhHQJUfnuUliSd1fZQoaAZHQEon66asp5NoB0u2aAhHQJUiHiFTNt91fZQoaAZHQGVAfGEPDpFoB03oA2gIR0CVJMPOY6XCdX2UKGgGR0BwqsY64lQeaAdNWQJoCEdAlSTbNwBHTnV9lChoBkdAQyCuMdcSoWgHS8NoCEdAlSc0elsP8XV9lChoBkdAYleeDFqBVmgHTegDaAhHQJUrepsGgSR1fZQoaAZHQGTLg3cYZVJoB03oA2gIR0CVQl9YOlO5dX2UKGgGR0BLC7ROUMXraAdLrGgIR0CVQzQ5WBBidX2UKGgGR0BhWhg/keZHaAdN6ANoCEdAlUVCdJ8OTnV9lChoBkdAZ4tp5/smfGgHTegDaAhHQJVKXAk9lmR1fZQoaAZHQGeu45ksjFBoB03oA2gIR0CVVTMpw0fpdX2UKGgGR0Bf+QC4jKPoaAdN6ANoCEdAlVY4ao/A03V9lChoBkdAYqSCo0hvBWgHTegDaAhHQJVZx85S3sp1fZQoaAZHQGcVkRBeHBVoB03oA2gIR0CVXOKJVKf4dX2UKGgGR0BjqyVpsXSCaAdN6ANoCEdAlWBMZxaPjnV9lChoBkdAZrUpkPMB62gHTegDaAhHQJVi7UAksz51fZQoaAZHQGWKLeQ+2VpoB03oA2gIR0CVYv5MDfWMdX2UKGgGR0BlpIKrq+rVaAdN6ANoCEdAlWTk9ZA6dXV9lChoBkdAaBI/NZ/0/WgHTegDaAhHQJVn2uzQeFN1fZQoaAZHQGXHq28Zk09oB03oA2gIR0CVakNVBD5TdX2UKGgGR0BlJJm29crzaAdN6ANoCEdAlWpYXj2i+XV9lChoBkdAZvhIClrM1WgHTegDaAhHQJVwFcjZ+QV1fZQoaAZHQGeMfbj94u9oB03oA2gIR0CVhM7voePrdX2UKGgGR0Bkka5CngpCaAdN6ANoCEdAlYWm5MDfWXV9lChoBkdAY5HXU6PsA2gHTegDaAhHQJWHrSb6P811fZQoaAZHQGJ77ILgGbFoB03oA2gIR0CVjK/2kBS2dX2UKGgGR0BFbtcfNiYtaAdLvGgIR0CVkVPy08eTdX2UKGgGR0Bl7CYLLIPtaAdN6ANoCEdAlZqVdkauOnV9lChoBkdAVFnViF0xM2gHS9RoCEdAlZqcl1KXfXV9lChoBkdAZ/LjFQ2uPmgHTegDaAhHQJWbrVjI7vJ1fZQoaAZHQHCwgrH2h7FoB03LA2gIR0CVnbkc0cfedX2UKGgGR0Bk1m2AoXsPaAdN6ANoCEdAlaHLcGkeqHV9lChoBkdAYtth1DBuXWgHTegDaAhHQJWkcMNMGot1fZQoaAZHQGCCdSuQp4NoB03oA2gIR0CVpqLncL0BdX2UKGgGR0Bli21MM7U5aAdN6ANoCEdAlaawwoLG73V9lChoBkdAYcHoh6jWTWgHTegDaAhHQJWoTyFwkxB1fZQoaAZHQGcROTJQtSRoB03oA2gIR0CVq1fhMrVfdX2UKGgGR0BmDMrmQr+YaAdN6ANoCEdAla6xtgrpaHV9lChoBkdAYx+zEaVD8mgHTegDaAhHQJWuzoV2zOZ1fZQoaAZHQGKMOEug6EJoB03oA2gIR0CVtfrBCUosdX2UKGgGR0BmxQyIpH7QaAdN6ANoCEdAlc4kcGTs6nV9lChoBkdAZj9mV7hNumgHTegDaAhHQJXPG/IsAed1fZQoaAZHQGO9QlByCFtoB03oA2gIR0CV29R8MNMHdX2UKGgGR0Bhm70g8r7PaAdN6ANoCEdAleOS8OCoTHV9lChoBkdAYvmFUQ04zmgHTegDaAhHQJXjlfD1oQF1fZQoaAZHQGQ3v1UVBUtoB03oA2gIR0CV5KLdN34cdX2UKGgGR0BiSrjJdSl4aAdN6ANoCEdAlebmIfr8i3V9lChoBkdAYqmtOmBOHmgHTegDaAhHQJXrSISDh991fZQoaAZHQEWfqO938oBoB0vBaAhHQJXtl0MgEEF1fZQoaAZHQAcxYaHbh3toB0vDaAhHQJXtsTwlSjx1fZQoaAZHQGQnsYVIqb1oB03oA2gIR0CV7gfDUExJdX2UKGgGR0Bb3SsKb8WLaAdN6ANoCEdAlfAYSQHRkXV9lChoBkdAaMsWpIczZmgHTegDaAhHQJXwJXEIgNh1fZQoaAZHQGbpCSRr8BNoB03oA2gIR0CV8YmQr+YMdX2UKGgGR0Bjz/MOf/WEaAdN6ANoCEdAlfQmY4Qz13V9lChoBkdAYlYWpIczZmgHTegDaAhHQJX3RlNDc/N1fZQoaAZHQGIlQZ4wAVBoB03oA2gIR0CV92XnQpnZdX2UKGgGR0BIieOn2qT9aAdL1GgIR0CV93S6lLvkdX2UKGgGR0BhrWsFMZgpaAdN6ANoCEdAlf9Jbt7a7HV9lChoBkdAYGgr6tT1kGgHTegDaAhHQJYUpqwhW5p1fZQoaAZHQGOTwyRB/qhoB03oA2gIR0CWFY3Zf2K3dX2UKGgGR0BlCgow22ofaAdN6ANoCEdAliFcPatcOnV9lChoBkdAZcI6aLGaQWgHTegDaAhHQJYpq8Fpwjt1fZQoaAZHQGQHCNjslcBoB03oA2gIR0CWLNLU1AJLdX2UKGgGR0BjssEidJ8OaAdN6ANoCEdAljLqR+z+m3V9lChoBkdAYD3QXyiEhGgHTegDaAhHQJY12lnAZbZ1fZQoaAZHQGILmTC+De1oB03oA2gIR0CWNjb/wRXfdX2UKGgGR0BjYoBikO7QaAdN6ANoCEdAljhmbgCOm3V9lChoBkdAY/KsySFGomgHTegDaAhHQJY4dUEPlMh1fZQoaAZHQEKDmuDBdldoB0u4aAhHQJY4eEUTL4h1fZQoaAZHQGQ/gYP5HmRoB03oA2gIR0CWOdplBhQWdX2UKGgGR0BkUwEhaC+UaAdN6ANoCEdAljxS57PY4HV9lChoBkdAZTQ371qWT2gHTegDaAhHQJY/D+0gKWt1fZQoaAZHQF/Qgam4y45oB03oA2gIR0CWPyZha1TjdX2UKGgGR0BlVAu7HyVfaAdN6ANoCEdAlj8xKcurZXV9lChoBkdAOM6XjU/fO2gHS9JoCEdAlj90nCwbEXV9lChoBkdAZJiHIIWxhWgHTegDaAhHQJZEwd0aIep1fZQoaAZHQGSZAqNIbwVoB03oA2gIR0CWSIG8274BdX2UKGgGR0BnVd6w+t8vaAdN6ANoCEdAlkl5fdAPd3V9lChoBkdAZ4YUA1ejVWgHTegDaAhHQJZs4aVD8cd1fZQoaAZHQGXQVARkEs9oB03oA2gIR0CWdiJzkp7UdX2UKGgGR0BihtmYjSogaAdN6ANoCEdAln3CU1Q663V9lChoBkdAaega3qiXY2gHTegDaAhHQJaAm6MBIWh1fZQoaAZHQGJhjVx0dR1oB03oA2gIR0CWg3QpnYg8dX2UKGgGR0BiNF8PWhAXaAdN6ANoCEdAloODyauwHXV9lChoBkdAYz/Nucc2i2gHTegDaAhHQJaDhoYekpJ1fZQoaAZHQGTDnhS9/SZoB03oA2gIR0CWhQWYWtU5dX2UKGgGR0ByqOOFQEZBaAdNpANoCEdAlod98ma6SXV9lChoBkdAaNSdsBQvYmgHTegDaAhHQJaHzM1TBIp1fZQoaAZHQGAzTmwJPZZoB03oA2gIR0CWipbc45tFdX2UKGgGR0Bkd0ORT0g9aAdN6ANoCEdAloqjyJ9Ao3V9lChoBkdAYw7gn+hoNGgHTegDaAhHQJaK7Io3Jgd1fZQoaAZHQGXGh+vyLAJoB03oA2gIR0CWkVKfFrEcdX2UKGgGR0AxINB4Uvf1aAdLtmgIR0CWlJOy3Td+dX2UKGgGR0BjGPJRwZO0aAdN6ANoCEdAlpaNvn8sMHV9lChoBkdAYt8VPepGWmgHTegDaAhHQJaX4L+glGB1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.4.0+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |