|
import os |
|
import json |
|
import zipfile |
|
import numpy as np |
|
import pickle |
|
import yaml |
|
|
|
def uniform_feature_sampling(features, max_len): |
|
num_clips = features.shape[0] |
|
if max_len is None or num_clips <= max_len: |
|
return features |
|
idxs = np.arange(0, max_len + 1, 1.0) / max_len * num_clips |
|
idxs = np.round(idxs).astype(np.int32) |
|
idxs[idxs > num_clips - 1] = num_clips - 1 |
|
new_features = [] |
|
for i in range(max_len): |
|
s_idx, e_idx = idxs[i], idxs[i + 1] |
|
if s_idx < e_idx: |
|
new_features.append(np.mean(features[s_idx:e_idx], axis=0)) |
|
else: |
|
new_features.append(features[s_idx]) |
|
new_features = np.asarray(new_features) |
|
return new_features |
|
|
|
|
|
def compute_overlap(pred, gt): |
|
|
|
assert isinstance(pred, list) and isinstance(gt, list) |
|
pred_is_list = isinstance(pred[0], list) |
|
gt_is_list = isinstance(gt[0], list) |
|
pred = pred if pred_is_list else [pred] |
|
gt = gt if gt_is_list else [gt] |
|
|
|
pred, gt = np.array(pred), np.array(gt) |
|
inter_left = np.maximum(pred[:, 0, None], gt[None, :, 0]) |
|
inter_right = np.minimum(pred[:, 1, None], gt[None, :, 1]) |
|
inter = np.maximum(0.0, inter_right - inter_left) |
|
union_left = np.minimum(pred[:, 0, None], gt[None, :, 0]) |
|
union_right = np.maximum(pred[:, 1, None], gt[None, :, 1]) |
|
union = np.maximum(1e-12, union_right - union_left) |
|
overlap = 1.0 * inter / union |
|
|
|
overlap = overlap if gt_is_list else overlap[:, 0] |
|
overlap = overlap if pred_is_list else overlap[0] |
|
return overlap |
|
|
|
|
|
def time_to_index(start_time, end_time, num_units, duration): |
|
s_times = np.arange(0, num_units).astype(np.float32) / float(num_units) * duration |
|
e_times = np.arange(1, num_units + 1).astype(np.float32) / float(num_units) * duration |
|
candidates = np.stack([np.repeat(s_times[:, None], repeats=num_units, axis=1), |
|
np.repeat(e_times[None, :], repeats=num_units, axis=0)], axis=2).reshape((-1, 2)) |
|
overlaps = compute_overlap(candidates.tolist(), [start_time, end_time]).reshape(num_units, num_units) |
|
start_index = np.argmax(overlaps) // num_units |
|
end_index = np.argmax(overlaps) % num_units |
|
return start_index, end_index |
|
|
|
|
|
def load_yaml(filename): |
|
try: |
|
with open(filename, 'r') as file: |
|
return yaml.safe_load(file) |
|
except yaml.YAMLError as exc: |
|
print(f"Error parsing YAML file: {exc}") |
|
return None |
|
except FileNotFoundError: |
|
print(f"File not found: {filename}") |
|
return None |
|
|
|
|
|
def load_pickle(filename): |
|
with open(filename, "rb") as f: |
|
return pickle.load(f) |
|
|
|
|
|
def save_pickle(data, filename): |
|
with open(filename, "wb") as f: |
|
pickle.dump(data, f, protocol=pickle.HIGHEST_PROTOCOL) |
|
|
|
|
|
def load_json(filename): |
|
with open(filename, "r") as f: |
|
return json.load(f) |
|
|
|
|
|
def save_json(data, filename, save_pretty=False, sort_keys=False): |
|
with open(filename, "w") as f: |
|
if save_pretty: |
|
f.write(json.dumps(data, indent=4, sort_keys=sort_keys)) |
|
else: |
|
json.dump(data, f) |
|
|
|
|
|
def load_jsonl(filename): |
|
with open(filename, "r") as f: |
|
return [json.loads(l.strip("\n")) for l in f.readlines()] |
|
|
|
|
|
def save_jsonl(data, filename): |
|
"""data is a list""" |
|
with open(filename, "w") as f: |
|
f.write("\n".join([json.dumps(e) for e in data])) |
|
|
|
|
|
def save_lines(list_of_str, filepath): |
|
with open(filepath, "w") as f: |
|
f.write("\n".join(list_of_str)) |
|
|
|
|
|
def read_lines(filepath): |
|
with open(filepath, "r") as f: |
|
return [e.strip("\n") for e in f.readlines()] |
|
|
|
|
|
def mkdirp(p): |
|
if not os.path.exists(p): |
|
os.makedirs(p) |
|
|
|
|
|
def flat_list_of_lists(l): |
|
"""flatten a list of lists [[1,2], [3,4]] to [1,2,3,4]""" |
|
return [item for sublist in l for item in sublist] |
|
|
|
|
|
def convert_to_seconds(hms_time): |
|
""" convert '00:01:12' to 72 seconds. |
|
:hms_time (str): time in comma separated string, e.g. '00:01:12' |
|
:return (int): time in seconds, e.g. 72 |
|
""" |
|
times = [float(t) for t in hms_time.split(":")] |
|
return times[0] * 3600 + times[1] * 60 + times[2] |
|
|
|
|
|
def get_video_name_from_url(url): |
|
return url.split("/")[-1][:-4] |
|
|
|
|
|
def merge_dicts(list_dicts): |
|
merged_dict = list_dicts[0].copy() |
|
for i in range(1, len(list_dicts)): |
|
merged_dict.update(list_dicts[i]) |
|
return merged_dict |
|
|
|
|
|
def l2_normalize_np_array(np_array, eps=1e-5): |
|
"""np_array: np.ndarray, (*, D), where the last dim will be normalized""" |
|
return np_array / (np.linalg.norm(np_array, axis=-1, keepdims=True) + eps) |
|
|
|
|
|
def make_zipfile(src_dir, save_path, enclosing_dir="", exclude_dirs=None, exclude_extensions=None, |
|
exclude_dirs_substring=None): |
|
"""make a zip file of root_dir, save it to save_path. |
|
exclude_paths will be excluded if it is a subdir of root_dir. |
|
An enclosing_dir is added is specified. |
|
""" |
|
abs_src = os.path.abspath(src_dir) |
|
with zipfile.ZipFile(save_path, "w") as zf: |
|
for dirname, subdirs, files in os.walk(src_dir): |
|
if exclude_dirs is not None: |
|
for e_p in exclude_dirs: |
|
if e_p in subdirs: |
|
subdirs.remove(e_p) |
|
if exclude_dirs_substring is not None: |
|
to_rm = [] |
|
for d in subdirs: |
|
if exclude_dirs_substring in d: |
|
to_rm.append(d) |
|
for e in to_rm: |
|
subdirs.remove(e) |
|
arcname = os.path.join(enclosing_dir, dirname[len(abs_src) + 1:]) |
|
zf.write(dirname, arcname) |
|
for filename in files: |
|
if exclude_extensions is not None: |
|
if os.path.splitext(filename)[1] in exclude_extensions: |
|
continue |
|
absname = os.path.join(dirname, filename) |
|
arcname = os.path.join(enclosing_dir, absname[len(abs_src) + 1:]) |
|
zf.write(absname, arcname) |
|
|
|
|
|
class AverageMeter(object): |
|
"""Computes and stores the average and current/max/min value""" |
|
def __init__(self): |
|
self.val = 0 |
|
self.avg = 0 |
|
self.sum = 0 |
|
self.count = 0 |
|
self.max = -1e10 |
|
self.min = 1e10 |
|
self.reset() |
|
|
|
def reset(self): |
|
self.val = 0 |
|
self.avg = 0 |
|
self.sum = 0 |
|
self.count = 0 |
|
self.max = -1e10 |
|
self.min = 1e10 |
|
|
|
def update(self, val, n=1): |
|
self.max = max(val, self.max) |
|
self.min = min(val, self.min) |
|
self.val = val |
|
self.sum += val * n |
|
self.count += n |
|
self.avg = self.sum / self.count |
|
|
|
|
|
def dissect_by_lengths(np_array, lengths, dim=0, assert_equal=True): |
|
"""Dissect an array (N, D) into a list a sub-array, |
|
np_array.shape[0] == sum(lengths), Output is a list of nd arrays, singlton dimention is kept""" |
|
if assert_equal: |
|
assert len(np_array) == sum(lengths) |
|
length_indices = [0, ] |
|
for i in range(len(lengths)): |
|
length_indices.append(length_indices[i] + lengths[i]) |
|
if dim == 0: |
|
array_list = [np_array[length_indices[i]:length_indices[i+1]] for i in range(len(lengths))] |
|
elif dim == 1: |
|
array_list = [np_array[:, length_indices[i]:length_indices[i + 1]] for i in range(len(lengths))] |
|
elif dim == 2: |
|
array_list = [np_array[:, :, length_indices[i]:length_indices[i + 1]] for i in range(len(lengths))] |
|
else: |
|
raise NotImplementedError |
|
return array_list |
|
|
|
|
|
def get_ratio_from_counter(counter_obj, threshold=200): |
|
keys = counter_obj.keys() |
|
values = counter_obj.values() |
|
filtered_values = [counter_obj[k] for k in keys if k > threshold] |
|
return float(sum(filtered_values)) / sum(values) |
|
|
|
|
|
def get_show_name(vid_name): |
|
""" |
|
get tvshow name from vid_name |
|
:param vid_name: video clip name |
|
:return: tvshow name |
|
""" |
|
show_list = ["friends", "met", "castle", "house", "grey"] |
|
vid_name_prefix = vid_name.split("_")[0] |
|
show_name = vid_name_prefix if vid_name_prefix in show_list else "bbt" |
|
return show_name |
|
|
|
|
|
import time |
|
import logging |
|
import os |
|
|
|
def get_logger(dir, tile): |
|
os.makedirs(dir, exist_ok=True) |
|
log_file = time.strftime("%Y%m%d_%H%M%S", time.localtime()) |
|
log_file = os.path.join(dir, "{}_{}.log".format(log_file, tile)) |
|
|
|
logger = logging.getLogger() |
|
logger.setLevel('DEBUG') |
|
BASIC_FORMAT = "%(levelname)s:%(message)s" |
|
|
|
formatter = logging.Formatter(BASIC_FORMAT) |
|
chlr = logging.StreamHandler() |
|
chlr.setFormatter(formatter) |
|
|
|
fhlr = logging.FileHandler(log_file) |
|
fhlr.setFormatter(formatter) |
|
fhlr.setLevel('INFO') |
|
|
|
logger.addHandler(chlr) |
|
logger.addHandler(fhlr) |
|
return logger |
|
|