Migrate model card from transformers-repo
Browse filesRead announcement at https://discuss.huggingface.co/t/announcement-all-model-cards-will-be-migrated-to-hf-co-model-repos/2755
Original file history: https://github.com/huggingface/transformers/commits/master/model_cards/a-ware/xlmroberta-squadv2/README.md
README.md
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
datasets:
|
3 |
+
- squad_v2
|
4 |
+
---
|
5 |
+
|
6 |
+
# XLM-ROBERTA-LARGE finetuned on SQuADv2
|
7 |
+
|
8 |
+
This is xlm-roberta-large model finetuned on SQuADv2 dataset for question answering task
|
9 |
+
|
10 |
+
## Model details
|
11 |
+
XLM-Roberta was propsed in the [paper](https://arxiv.org/pdf/1911.02116.pdf) **XLM-R: State-of-the-art cross-lingual understanding through self-supervision
|
12 |
+
|
13 |
+
## Model training
|
14 |
+
This model was trained with following parameters using simpletransformers wrapper:
|
15 |
+
```
|
16 |
+
train_args = {
|
17 |
+
'learning_rate': 1e-5,
|
18 |
+
'max_seq_length': 512,
|
19 |
+
'doc_stride': 512,
|
20 |
+
'overwrite_output_dir': True,
|
21 |
+
'reprocess_input_data': False,
|
22 |
+
'train_batch_size': 8,
|
23 |
+
'num_train_epochs': 2,
|
24 |
+
'gradient_accumulation_steps': 2,
|
25 |
+
'no_cache': True,
|
26 |
+
'use_cached_eval_features': False,
|
27 |
+
'save_model_every_epoch': False,
|
28 |
+
'output_dir': "bart-squadv2",
|
29 |
+
'eval_batch_size': 32,
|
30 |
+
'fp16_opt_level': 'O2',
|
31 |
+
}
|
32 |
+
```
|
33 |
+
|
34 |
+
## Results
|
35 |
+
```{"correct": 6961, "similar": 4359, "incorrect": 553, "eval_loss": -12.177856394381962}```
|
36 |
+
|
37 |
+
## Model in Action 🚀
|
38 |
+
```python3
|
39 |
+
from transformers import XLMRobertaTokenizer, XLMRobertaForQuestionAnswering
|
40 |
+
import torch
|
41 |
+
|
42 |
+
tokenizer = XLMRobertaTokenizer.from_pretrained('a-ware/xlmroberta-squadv2')
|
43 |
+
model = XLMRobertaForQuestionAnswering.from_pretrained('a-ware/xlmroberta-squadv2')
|
44 |
+
|
45 |
+
question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"
|
46 |
+
encoding = tokenizer(question, text, return_tensors='pt')
|
47 |
+
input_ids = encoding['input_ids']
|
48 |
+
attention_mask = encoding['attention_mask']
|
49 |
+
|
50 |
+
start_scores, end_scores = model(input_ids, attention_mask=attention_mask, output_attentions=False)[:2]
|
51 |
+
|
52 |
+
all_tokens = tokenizer.convert_ids_to_tokens(input_ids[0])
|
53 |
+
answer = ' '.join(all_tokens[torch.argmax(start_scores) : torch.argmax(end_scores)+1])
|
54 |
+
answer = tokenizer.convert_tokens_to_ids(answer.split())
|
55 |
+
answer = tokenizer.decode(answer)
|
56 |
+
#answer => 'a nice puppet'
|
57 |
+
```
|
58 |
+
|
59 |
+
> Created with ❤️ by A-ware UG [![Github icon](https://cdn0.iconfinder.com/data/icons/octicons/1024/mark-github-32.png)](https://github.com/aware-ai)
|