avuhong commited on
Commit
f57d34f
1 Parent(s): 8292eaa

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +74 -0
README.md ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - generated_from_trainer
4
+ metrics:
5
+ - accuracy
6
+ - f1
7
+ - precision
8
+ - recall
9
+ model-index:
10
+ - name: libCap_prBERTbfd_clf
11
+ results: []
12
+ ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ # libCap_prBERTbfd_clf
18
+
19
+ This model is a fine-tuned version of [Rostlab/prot_bert_bfd](https://huggingface.co/Rostlab/prot_bert_bfd) on an unknown dataset.
20
+ It achieves the following results on the evaluation set:
21
+ - Loss: 0.5197
22
+ - Accuracy: 0.7457
23
+ - F1: 0.7940
24
+ - Precision: 0.7567
25
+ - Recall: 0.8352
26
+ - Auroc: 0.7268
27
+
28
+ ## Model description
29
+
30
+ More information needed
31
+
32
+ ## Intended uses & limitations
33
+
34
+ More information needed
35
+
36
+ ## Training and evaluation data
37
+
38
+ More information needed
39
+
40
+ ## Training procedure
41
+
42
+ ### Training hyperparameters
43
+
44
+ The following hyperparameters were used during training:
45
+ - learning_rate: 5e-05
46
+ - train_batch_size: 64
47
+ - eval_batch_size: 64
48
+ - seed: 42
49
+ - gradient_accumulation_steps: 64
50
+ - total_train_batch_size: 4096
51
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
52
+ - lr_scheduler_type: linear
53
+ - num_epochs: 8
54
+
55
+ ### Training results
56
+
57
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | Auroc |
58
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|:------:|
59
+ | No log | 0.98 | 34 | 0.6393 | 0.6396 | 0.7053 | 0.6782 | 0.7345 | 0.6197 |
60
+ | No log | 1.98 | 68 | 0.5713 | 0.6962 | 0.7499 | 0.7256 | 0.7759 | 0.6795 |
61
+ | No log | 2.98 | 102 | 0.5652 | 0.7126 | 0.7388 | 0.7918 | 0.6924 | 0.7168 |
62
+ | No log | 3.98 | 136 | 0.5360 | 0.7330 | 0.7896 | 0.7345 | 0.8536 | 0.7076 |
63
+ | No log | 4.98 | 170 | 0.5223 | 0.7423 | 0.7830 | 0.7740 | 0.7921 | 0.7318 |
64
+ | No log | 5.98 | 204 | 0.5180 | 0.7454 | 0.7882 | 0.7699 | 0.8075 | 0.7323 |
65
+ | No log | 6.98 | 238 | 0.5179 | 0.7440 | 0.7934 | 0.7537 | 0.8376 | 0.7243 |
66
+ | No log | 7.98 | 272 | 0.5197 | 0.7457 | 0.7940 | 0.7567 | 0.8352 | 0.7268 |
67
+
68
+
69
+ ### Framework versions
70
+
71
+ - Transformers 4.21.1
72
+ - Pytorch 1.12.0+cu113
73
+ - Datasets 2.4.0
74
+ - Tokenizers 0.12.1