avsolatorio
commited on
Commit
•
b3ae006
1
Parent(s):
f985c93
Add readme
Browse filesSigned-off-by: Aivin V. Solatorio <avsolatorio@gmail.com>
README.md
CHANGED
@@ -1,3 +1,2685 @@
|
|
1 |
---
|
|
|
|
|
|
|
2 |
license: mit
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
library_name: sentence-transformers
|
5 |
license: mit
|
6 |
+
pipeline_tag: sentence-similarity
|
7 |
+
tags:
|
8 |
+
- feature-extraction
|
9 |
+
- mteb
|
10 |
+
- sentence-similarity
|
11 |
+
- sentence-transformers
|
12 |
+
|
13 |
+
model-index:
|
14 |
+
- name: GIST-small-Embedding-v0
|
15 |
+
results:
|
16 |
+
- task:
|
17 |
+
type: Classification
|
18 |
+
dataset:
|
19 |
+
type: mteb/amazon_counterfactual
|
20 |
+
name: MTEB AmazonCounterfactualClassification (en)
|
21 |
+
config: en
|
22 |
+
split: test
|
23 |
+
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
|
24 |
+
metrics:
|
25 |
+
- type: accuracy
|
26 |
+
value: 73.40298507462688
|
27 |
+
- type: ap
|
28 |
+
value: 36.01661955459773
|
29 |
+
- type: f1
|
30 |
+
value: 67.35688942295793
|
31 |
+
- task:
|
32 |
+
type: Classification
|
33 |
+
dataset:
|
34 |
+
type: mteb/amazon_polarity
|
35 |
+
name: MTEB AmazonPolarityClassification
|
36 |
+
config: default
|
37 |
+
split: test
|
38 |
+
revision: e2d317d38cd51312af73b3d32a06d1a08b442046
|
39 |
+
metrics:
|
40 |
+
- type: accuracy
|
41 |
+
value: 92.71195000000002
|
42 |
+
- type: ap
|
43 |
+
value: 89.33528835459364
|
44 |
+
- type: f1
|
45 |
+
value: 92.69653287380515
|
46 |
+
- task:
|
47 |
+
type: Classification
|
48 |
+
dataset:
|
49 |
+
type: mteb/amazon_reviews_multi
|
50 |
+
name: MTEB AmazonReviewsClassification (en)
|
51 |
+
config: en
|
52 |
+
split: test
|
53 |
+
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
|
54 |
+
metrics:
|
55 |
+
- type: accuracy
|
56 |
+
value: 49.007999999999996
|
57 |
+
- type: f1
|
58 |
+
value: 48.44310279702607
|
59 |
+
- task:
|
60 |
+
type: Retrieval
|
61 |
+
dataset:
|
62 |
+
type: arguana
|
63 |
+
name: MTEB ArguAna
|
64 |
+
config: default
|
65 |
+
split: test
|
66 |
+
revision: None
|
67 |
+
metrics:
|
68 |
+
- type: map_at_1
|
69 |
+
value: 36.272999999999996
|
70 |
+
- type: map_at_10
|
71 |
+
value: 52.059999999999995
|
72 |
+
- type: map_at_100
|
73 |
+
value: 52.75300000000001
|
74 |
+
- type: map_at_1000
|
75 |
+
value: 52.756
|
76 |
+
- type: map_at_3
|
77 |
+
value: 47.57
|
78 |
+
- type: map_at_5
|
79 |
+
value: 50.236999999999995
|
80 |
+
- type: mrr_at_1
|
81 |
+
value: 36.272999999999996
|
82 |
+
- type: mrr_at_10
|
83 |
+
value: 51.942
|
84 |
+
- type: mrr_at_100
|
85 |
+
value: 52.634
|
86 |
+
- type: mrr_at_1000
|
87 |
+
value: 52.637
|
88 |
+
- type: mrr_at_3
|
89 |
+
value: 47.475
|
90 |
+
- type: mrr_at_5
|
91 |
+
value: 50.11
|
92 |
+
- type: ndcg_at_1
|
93 |
+
value: 36.272999999999996
|
94 |
+
- type: ndcg_at_10
|
95 |
+
value: 60.558
|
96 |
+
- type: ndcg_at_100
|
97 |
+
value: 63.293
|
98 |
+
- type: ndcg_at_1000
|
99 |
+
value: 63.375
|
100 |
+
- type: ndcg_at_3
|
101 |
+
value: 51.364
|
102 |
+
- type: ndcg_at_5
|
103 |
+
value: 56.154
|
104 |
+
- type: precision_at_1
|
105 |
+
value: 36.272999999999996
|
106 |
+
- type: precision_at_10
|
107 |
+
value: 8.755
|
108 |
+
- type: precision_at_100
|
109 |
+
value: 0.9900000000000001
|
110 |
+
- type: precision_at_1000
|
111 |
+
value: 0.1
|
112 |
+
- type: precision_at_3
|
113 |
+
value: 20.791999999999998
|
114 |
+
- type: precision_at_5
|
115 |
+
value: 14.793999999999999
|
116 |
+
- type: recall_at_1
|
117 |
+
value: 36.272999999999996
|
118 |
+
- type: recall_at_10
|
119 |
+
value: 87.553
|
120 |
+
- type: recall_at_100
|
121 |
+
value: 99.004
|
122 |
+
- type: recall_at_1000
|
123 |
+
value: 99.644
|
124 |
+
- type: recall_at_3
|
125 |
+
value: 62.376
|
126 |
+
- type: recall_at_5
|
127 |
+
value: 73.969
|
128 |
+
- task:
|
129 |
+
type: Clustering
|
130 |
+
dataset:
|
131 |
+
type: mteb/arxiv-clustering-p2p
|
132 |
+
name: MTEB ArxivClusteringP2P
|
133 |
+
config: default
|
134 |
+
split: test
|
135 |
+
revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
|
136 |
+
metrics:
|
137 |
+
- type: v_measure
|
138 |
+
value: 47.79137102109872
|
139 |
+
- task:
|
140 |
+
type: Clustering
|
141 |
+
dataset:
|
142 |
+
type: mteb/arxiv-clustering-s2s
|
143 |
+
name: MTEB ArxivClusteringS2S
|
144 |
+
config: default
|
145 |
+
split: test
|
146 |
+
revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
|
147 |
+
metrics:
|
148 |
+
- type: v_measure
|
149 |
+
value: 40.03049595085257
|
150 |
+
- task:
|
151 |
+
type: Reranking
|
152 |
+
dataset:
|
153 |
+
type: mteb/askubuntudupquestions-reranking
|
154 |
+
name: MTEB AskUbuntuDupQuestions
|
155 |
+
config: default
|
156 |
+
split: test
|
157 |
+
revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
|
158 |
+
metrics:
|
159 |
+
- type: map
|
160 |
+
value: 62.868157850825256
|
161 |
+
- type: mrr
|
162 |
+
value: 75.33922525612276
|
163 |
+
- task:
|
164 |
+
type: STS
|
165 |
+
dataset:
|
166 |
+
type: mteb/biosses-sts
|
167 |
+
name: MTEB BIOSSES
|
168 |
+
config: default
|
169 |
+
split: test
|
170 |
+
revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
|
171 |
+
metrics:
|
172 |
+
- type: cos_sim_pearson
|
173 |
+
value: 88.96056116438724
|
174 |
+
- type: cos_sim_spearman
|
175 |
+
value: 87.32608616965557
|
176 |
+
- type: euclidean_pearson
|
177 |
+
value: 87.40536769084146
|
178 |
+
- type: euclidean_spearman
|
179 |
+
value: 87.39235273982528
|
180 |
+
- type: manhattan_pearson
|
181 |
+
value: 87.4496043849794
|
182 |
+
- type: manhattan_spearman
|
183 |
+
value: 87.1128282983821
|
184 |
+
- task:
|
185 |
+
type: Classification
|
186 |
+
dataset:
|
187 |
+
type: mteb/banking77
|
188 |
+
name: MTEB Banking77Classification
|
189 |
+
config: default
|
190 |
+
split: test
|
191 |
+
revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
|
192 |
+
metrics:
|
193 |
+
- type: accuracy
|
194 |
+
value: 86.16883116883116
|
195 |
+
- type: f1
|
196 |
+
value: 86.1338488750026
|
197 |
+
- task:
|
198 |
+
type: Clustering
|
199 |
+
dataset:
|
200 |
+
type: mteb/biorxiv-clustering-p2p
|
201 |
+
name: MTEB BiorxivClusteringP2P
|
202 |
+
config: default
|
203 |
+
split: test
|
204 |
+
revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
|
205 |
+
metrics:
|
206 |
+
- type: v_measure
|
207 |
+
value: 38.950791675044
|
208 |
+
- task:
|
209 |
+
type: Clustering
|
210 |
+
dataset:
|
211 |
+
type: mteb/biorxiv-clustering-s2s
|
212 |
+
name: MTEB BiorxivClusteringS2S
|
213 |
+
config: default
|
214 |
+
split: test
|
215 |
+
revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
|
216 |
+
metrics:
|
217 |
+
- type: v_measure
|
218 |
+
value: 35.40686850755838
|
219 |
+
- task:
|
220 |
+
type: Retrieval
|
221 |
+
dataset:
|
222 |
+
type: BeIR/cqadupstack
|
223 |
+
name: MTEB CQADupstackAndroidRetrieval
|
224 |
+
config: default
|
225 |
+
split: test
|
226 |
+
revision: None
|
227 |
+
metrics:
|
228 |
+
- type: map_at_1
|
229 |
+
value: 30.891000000000002
|
230 |
+
- type: map_at_10
|
231 |
+
value: 42.624
|
232 |
+
- type: map_at_100
|
233 |
+
value: 44.205
|
234 |
+
- type: map_at_1000
|
235 |
+
value: 44.336999999999996
|
236 |
+
- type: map_at_3
|
237 |
+
value: 38.81
|
238 |
+
- type: map_at_5
|
239 |
+
value: 41.152
|
240 |
+
- type: mrr_at_1
|
241 |
+
value: 38.196999999999996
|
242 |
+
- type: mrr_at_10
|
243 |
+
value: 48.641
|
244 |
+
- type: mrr_at_100
|
245 |
+
value: 49.329
|
246 |
+
- type: mrr_at_1000
|
247 |
+
value: 49.376
|
248 |
+
- type: mrr_at_3
|
249 |
+
value: 45.637
|
250 |
+
- type: mrr_at_5
|
251 |
+
value: 47.611
|
252 |
+
- type: ndcg_at_1
|
253 |
+
value: 38.196999999999996
|
254 |
+
- type: ndcg_at_10
|
255 |
+
value: 49.274
|
256 |
+
- type: ndcg_at_100
|
257 |
+
value: 54.716
|
258 |
+
- type: ndcg_at_1000
|
259 |
+
value: 56.654
|
260 |
+
- type: ndcg_at_3
|
261 |
+
value: 43.787
|
262 |
+
- type: ndcg_at_5
|
263 |
+
value: 46.719
|
264 |
+
- type: precision_at_1
|
265 |
+
value: 38.196999999999996
|
266 |
+
- type: precision_at_10
|
267 |
+
value: 9.585
|
268 |
+
- type: precision_at_100
|
269 |
+
value: 1.545
|
270 |
+
- type: precision_at_1000
|
271 |
+
value: 0.20400000000000001
|
272 |
+
- type: precision_at_3
|
273 |
+
value: 21.173000000000002
|
274 |
+
- type: precision_at_5
|
275 |
+
value: 15.536
|
276 |
+
- type: recall_at_1
|
277 |
+
value: 30.891000000000002
|
278 |
+
- type: recall_at_10
|
279 |
+
value: 61.792
|
280 |
+
- type: recall_at_100
|
281 |
+
value: 84.526
|
282 |
+
- type: recall_at_1000
|
283 |
+
value: 96.717
|
284 |
+
- type: recall_at_3
|
285 |
+
value: 46.472
|
286 |
+
- type: recall_at_5
|
287 |
+
value: 54.391999999999996
|
288 |
+
- task:
|
289 |
+
type: Retrieval
|
290 |
+
dataset:
|
291 |
+
type: BeIR/cqadupstack
|
292 |
+
name: MTEB CQADupstackEnglishRetrieval
|
293 |
+
config: default
|
294 |
+
split: test
|
295 |
+
revision: None
|
296 |
+
metrics:
|
297 |
+
- type: map_at_1
|
298 |
+
value: 30.266
|
299 |
+
- type: map_at_10
|
300 |
+
value: 39.717999999999996
|
301 |
+
- type: map_at_100
|
302 |
+
value: 40.971000000000004
|
303 |
+
- type: map_at_1000
|
304 |
+
value: 41.097
|
305 |
+
- type: map_at_3
|
306 |
+
value: 36.858999999999995
|
307 |
+
- type: map_at_5
|
308 |
+
value: 38.405
|
309 |
+
- type: mrr_at_1
|
310 |
+
value: 37.452000000000005
|
311 |
+
- type: mrr_at_10
|
312 |
+
value: 45.528
|
313 |
+
- type: mrr_at_100
|
314 |
+
value: 46.178000000000004
|
315 |
+
- type: mrr_at_1000
|
316 |
+
value: 46.221000000000004
|
317 |
+
- type: mrr_at_3
|
318 |
+
value: 43.089
|
319 |
+
- type: mrr_at_5
|
320 |
+
value: 44.497
|
321 |
+
- type: ndcg_at_1
|
322 |
+
value: 37.452000000000005
|
323 |
+
- type: ndcg_at_10
|
324 |
+
value: 45.282
|
325 |
+
- type: ndcg_at_100
|
326 |
+
value: 49.742
|
327 |
+
- type: ndcg_at_1000
|
328 |
+
value: 51.754999999999995
|
329 |
+
- type: ndcg_at_3
|
330 |
+
value: 41.024
|
331 |
+
- type: ndcg_at_5
|
332 |
+
value: 42.912
|
333 |
+
- type: precision_at_1
|
334 |
+
value: 37.452000000000005
|
335 |
+
- type: precision_at_10
|
336 |
+
value: 8.516
|
337 |
+
- type: precision_at_100
|
338 |
+
value: 1.3679999999999999
|
339 |
+
- type: precision_at_1000
|
340 |
+
value: 0.184
|
341 |
+
- type: precision_at_3
|
342 |
+
value: 19.575
|
343 |
+
- type: precision_at_5
|
344 |
+
value: 13.771
|
345 |
+
- type: recall_at_1
|
346 |
+
value: 30.266
|
347 |
+
- type: recall_at_10
|
348 |
+
value: 55.086
|
349 |
+
- type: recall_at_100
|
350 |
+
value: 74.083
|
351 |
+
- type: recall_at_1000
|
352 |
+
value: 86.722
|
353 |
+
- type: recall_at_3
|
354 |
+
value: 42.449999999999996
|
355 |
+
- type: recall_at_5
|
356 |
+
value: 47.975
|
357 |
+
- task:
|
358 |
+
type: Retrieval
|
359 |
+
dataset:
|
360 |
+
type: BeIR/cqadupstack
|
361 |
+
name: MTEB CQADupstackGamingRetrieval
|
362 |
+
config: default
|
363 |
+
split: test
|
364 |
+
revision: None
|
365 |
+
metrics:
|
366 |
+
- type: map_at_1
|
367 |
+
value: 39.217
|
368 |
+
- type: map_at_10
|
369 |
+
value: 51.466
|
370 |
+
- type: map_at_100
|
371 |
+
value: 52.531000000000006
|
372 |
+
- type: map_at_1000
|
373 |
+
value: 52.586
|
374 |
+
- type: map_at_3
|
375 |
+
value: 47.942
|
376 |
+
- type: map_at_5
|
377 |
+
value: 49.988
|
378 |
+
- type: mrr_at_1
|
379 |
+
value: 44.765
|
380 |
+
- type: mrr_at_10
|
381 |
+
value: 54.748
|
382 |
+
- type: mrr_at_100
|
383 |
+
value: 55.41199999999999
|
384 |
+
- type: mrr_at_1000
|
385 |
+
value: 55.437999999999995
|
386 |
+
- type: mrr_at_3
|
387 |
+
value: 52.017
|
388 |
+
- type: mrr_at_5
|
389 |
+
value: 53.693999999999996
|
390 |
+
- type: ndcg_at_1
|
391 |
+
value: 44.765
|
392 |
+
- type: ndcg_at_10
|
393 |
+
value: 57.397
|
394 |
+
- type: ndcg_at_100
|
395 |
+
value: 61.526
|
396 |
+
- type: ndcg_at_1000
|
397 |
+
value: 62.577000000000005
|
398 |
+
- type: ndcg_at_3
|
399 |
+
value: 51.414
|
400 |
+
- type: ndcg_at_5
|
401 |
+
value: 54.486999999999995
|
402 |
+
- type: precision_at_1
|
403 |
+
value: 44.765
|
404 |
+
- type: precision_at_10
|
405 |
+
value: 9.354
|
406 |
+
- type: precision_at_100
|
407 |
+
value: 1.2309999999999999
|
408 |
+
- type: precision_at_1000
|
409 |
+
value: 0.136
|
410 |
+
- type: precision_at_3
|
411 |
+
value: 22.820999999999998
|
412 |
+
- type: precision_at_5
|
413 |
+
value: 16.012999999999998
|
414 |
+
- type: recall_at_1
|
415 |
+
value: 39.217
|
416 |
+
- type: recall_at_10
|
417 |
+
value: 71.588
|
418 |
+
- type: recall_at_100
|
419 |
+
value: 89.473
|
420 |
+
- type: recall_at_1000
|
421 |
+
value: 96.863
|
422 |
+
- type: recall_at_3
|
423 |
+
value: 55.943
|
424 |
+
- type: recall_at_5
|
425 |
+
value: 63.14999999999999
|
426 |
+
- task:
|
427 |
+
type: Retrieval
|
428 |
+
dataset:
|
429 |
+
type: BeIR/cqadupstack
|
430 |
+
name: MTEB CQADupstackGisRetrieval
|
431 |
+
config: default
|
432 |
+
split: test
|
433 |
+
revision: None
|
434 |
+
metrics:
|
435 |
+
- type: map_at_1
|
436 |
+
value: 26.451
|
437 |
+
- type: map_at_10
|
438 |
+
value: 34.738
|
439 |
+
- type: map_at_100
|
440 |
+
value: 35.769
|
441 |
+
- type: map_at_1000
|
442 |
+
value: 35.851
|
443 |
+
- type: map_at_3
|
444 |
+
value: 32.002
|
445 |
+
- type: map_at_5
|
446 |
+
value: 33.800999999999995
|
447 |
+
- type: mrr_at_1
|
448 |
+
value: 28.814
|
449 |
+
- type: mrr_at_10
|
450 |
+
value: 36.992000000000004
|
451 |
+
- type: mrr_at_100
|
452 |
+
value: 37.901
|
453 |
+
- type: mrr_at_1000
|
454 |
+
value: 37.964
|
455 |
+
- type: mrr_at_3
|
456 |
+
value: 34.426
|
457 |
+
- type: mrr_at_5
|
458 |
+
value: 36.075
|
459 |
+
- type: ndcg_at_1
|
460 |
+
value: 28.814
|
461 |
+
- type: ndcg_at_10
|
462 |
+
value: 39.667
|
463 |
+
- type: ndcg_at_100
|
464 |
+
value: 44.741
|
465 |
+
- type: ndcg_at_1000
|
466 |
+
value: 46.763
|
467 |
+
- type: ndcg_at_3
|
468 |
+
value: 34.461999999999996
|
469 |
+
- type: ndcg_at_5
|
470 |
+
value: 37.472
|
471 |
+
- type: precision_at_1
|
472 |
+
value: 28.814
|
473 |
+
- type: precision_at_10
|
474 |
+
value: 6.045
|
475 |
+
- type: precision_at_100
|
476 |
+
value: 0.903
|
477 |
+
- type: precision_at_1000
|
478 |
+
value: 0.11199999999999999
|
479 |
+
- type: precision_at_3
|
480 |
+
value: 14.463000000000001
|
481 |
+
- type: precision_at_5
|
482 |
+
value: 10.418
|
483 |
+
- type: recall_at_1
|
484 |
+
value: 26.451
|
485 |
+
- type: recall_at_10
|
486 |
+
value: 52.751999999999995
|
487 |
+
- type: recall_at_100
|
488 |
+
value: 75.971
|
489 |
+
- type: recall_at_1000
|
490 |
+
value: 91.02
|
491 |
+
- type: recall_at_3
|
492 |
+
value: 38.896
|
493 |
+
- type: recall_at_5
|
494 |
+
value: 46.126
|
495 |
+
- task:
|
496 |
+
type: Retrieval
|
497 |
+
dataset:
|
498 |
+
type: BeIR/cqadupstack
|
499 |
+
name: MTEB CQADupstackMathematicaRetrieval
|
500 |
+
config: default
|
501 |
+
split: test
|
502 |
+
revision: None
|
503 |
+
metrics:
|
504 |
+
- type: map_at_1
|
505 |
+
value: 16.03
|
506 |
+
- type: map_at_10
|
507 |
+
value: 24.474999999999998
|
508 |
+
- type: map_at_100
|
509 |
+
value: 25.650000000000002
|
510 |
+
- type: map_at_1000
|
511 |
+
value: 25.764
|
512 |
+
- type: map_at_3
|
513 |
+
value: 21.656
|
514 |
+
- type: map_at_5
|
515 |
+
value: 23.269000000000002
|
516 |
+
- type: mrr_at_1
|
517 |
+
value: 20.025000000000002
|
518 |
+
- type: mrr_at_10
|
519 |
+
value: 29.325000000000003
|
520 |
+
- type: mrr_at_100
|
521 |
+
value: 30.264999999999997
|
522 |
+
- type: mrr_at_1000
|
523 |
+
value: 30.325000000000003
|
524 |
+
- type: mrr_at_3
|
525 |
+
value: 26.493
|
526 |
+
- type: mrr_at_5
|
527 |
+
value: 28.197
|
528 |
+
- type: ndcg_at_1
|
529 |
+
value: 20.025000000000002
|
530 |
+
- type: ndcg_at_10
|
531 |
+
value: 30.012
|
532 |
+
- type: ndcg_at_100
|
533 |
+
value: 35.760999999999996
|
534 |
+
- type: ndcg_at_1000
|
535 |
+
value: 38.53
|
536 |
+
- type: ndcg_at_3
|
537 |
+
value: 24.863
|
538 |
+
- type: ndcg_at_5
|
539 |
+
value: 27.36
|
540 |
+
- type: precision_at_1
|
541 |
+
value: 20.025000000000002
|
542 |
+
- type: precision_at_10
|
543 |
+
value: 5.721
|
544 |
+
- type: precision_at_100
|
545 |
+
value: 0.9809999999999999
|
546 |
+
- type: precision_at_1000
|
547 |
+
value: 0.136
|
548 |
+
- type: precision_at_3
|
549 |
+
value: 12.189
|
550 |
+
- type: precision_at_5
|
551 |
+
value: 9.08
|
552 |
+
- type: recall_at_1
|
553 |
+
value: 16.03
|
554 |
+
- type: recall_at_10
|
555 |
+
value: 42.263
|
556 |
+
- type: recall_at_100
|
557 |
+
value: 67.868
|
558 |
+
- type: recall_at_1000
|
559 |
+
value: 87.77000000000001
|
560 |
+
- type: recall_at_3
|
561 |
+
value: 27.932000000000002
|
562 |
+
- type: recall_at_5
|
563 |
+
value: 34.46
|
564 |
+
- task:
|
565 |
+
type: Retrieval
|
566 |
+
dataset:
|
567 |
+
type: BeIR/cqadupstack
|
568 |
+
name: MTEB CQADupstackPhysicsRetrieval
|
569 |
+
config: default
|
570 |
+
split: test
|
571 |
+
revision: None
|
572 |
+
metrics:
|
573 |
+
- type: map_at_1
|
574 |
+
value: 29.358
|
575 |
+
- type: map_at_10
|
576 |
+
value: 39.753
|
577 |
+
- type: map_at_100
|
578 |
+
value: 41.031
|
579 |
+
- type: map_at_1000
|
580 |
+
value: 41.135
|
581 |
+
- type: map_at_3
|
582 |
+
value: 36.515
|
583 |
+
- type: map_at_5
|
584 |
+
value: 38.346999999999994
|
585 |
+
- type: mrr_at_1
|
586 |
+
value: 35.9
|
587 |
+
- type: mrr_at_10
|
588 |
+
value: 45.336
|
589 |
+
- type: mrr_at_100
|
590 |
+
value: 46.087
|
591 |
+
- type: mrr_at_1000
|
592 |
+
value: 46.129999999999995
|
593 |
+
- type: mrr_at_3
|
594 |
+
value: 42.620999999999995
|
595 |
+
- type: mrr_at_5
|
596 |
+
value: 44.224000000000004
|
597 |
+
- type: ndcg_at_1
|
598 |
+
value: 35.9
|
599 |
+
- type: ndcg_at_10
|
600 |
+
value: 45.85
|
601 |
+
- type: ndcg_at_100
|
602 |
+
value: 51.186
|
603 |
+
- type: ndcg_at_1000
|
604 |
+
value: 53.154999999999994
|
605 |
+
- type: ndcg_at_3
|
606 |
+
value: 40.594
|
607 |
+
- type: ndcg_at_5
|
608 |
+
value: 43.169999999999995
|
609 |
+
- type: precision_at_1
|
610 |
+
value: 35.9
|
611 |
+
- type: precision_at_10
|
612 |
+
value: 8.402
|
613 |
+
- type: precision_at_100
|
614 |
+
value: 1.2850000000000001
|
615 |
+
- type: precision_at_1000
|
616 |
+
value: 0.164
|
617 |
+
- type: precision_at_3
|
618 |
+
value: 19.249
|
619 |
+
- type: precision_at_5
|
620 |
+
value: 13.763
|
621 |
+
- type: recall_at_1
|
622 |
+
value: 29.358
|
623 |
+
- type: recall_at_10
|
624 |
+
value: 58.257000000000005
|
625 |
+
- type: recall_at_100
|
626 |
+
value: 81.22200000000001
|
627 |
+
- type: recall_at_1000
|
628 |
+
value: 94.045
|
629 |
+
- type: recall_at_3
|
630 |
+
value: 43.599
|
631 |
+
- type: recall_at_5
|
632 |
+
value: 50.232
|
633 |
+
- task:
|
634 |
+
type: Retrieval
|
635 |
+
dataset:
|
636 |
+
type: BeIR/cqadupstack
|
637 |
+
name: MTEB CQADupstackProgrammersRetrieval
|
638 |
+
config: default
|
639 |
+
split: test
|
640 |
+
revision: None
|
641 |
+
metrics:
|
642 |
+
- type: map_at_1
|
643 |
+
value: 23.954
|
644 |
+
- type: map_at_10
|
645 |
+
value: 33.767
|
646 |
+
- type: map_at_100
|
647 |
+
value: 35.225
|
648 |
+
- type: map_at_1000
|
649 |
+
value: 35.339
|
650 |
+
- type: map_at_3
|
651 |
+
value: 30.746000000000002
|
652 |
+
- type: map_at_5
|
653 |
+
value: 32.318000000000005
|
654 |
+
- type: mrr_at_1
|
655 |
+
value: 30.137000000000004
|
656 |
+
- type: mrr_at_10
|
657 |
+
value: 39.24
|
658 |
+
- type: mrr_at_100
|
659 |
+
value: 40.235
|
660 |
+
- type: mrr_at_1000
|
661 |
+
value: 40.294999999999995
|
662 |
+
- type: mrr_at_3
|
663 |
+
value: 36.758
|
664 |
+
- type: mrr_at_5
|
665 |
+
value: 38.031
|
666 |
+
- type: ndcg_at_1
|
667 |
+
value: 30.137000000000004
|
668 |
+
- type: ndcg_at_10
|
669 |
+
value: 39.711999999999996
|
670 |
+
- type: ndcg_at_100
|
671 |
+
value: 45.795
|
672 |
+
- type: ndcg_at_1000
|
673 |
+
value: 48.178
|
674 |
+
- type: ndcg_at_3
|
675 |
+
value: 34.768
|
676 |
+
- type: ndcg_at_5
|
677 |
+
value: 36.756
|
678 |
+
- type: precision_at_1
|
679 |
+
value: 30.137000000000004
|
680 |
+
- type: precision_at_10
|
681 |
+
value: 7.443
|
682 |
+
- type: precision_at_100
|
683 |
+
value: 1.221
|
684 |
+
- type: precision_at_1000
|
685 |
+
value: 0.159
|
686 |
+
- type: precision_at_3
|
687 |
+
value: 16.933
|
688 |
+
- type: precision_at_5
|
689 |
+
value: 11.918
|
690 |
+
- type: recall_at_1
|
691 |
+
value: 23.954
|
692 |
+
- type: recall_at_10
|
693 |
+
value: 52.234
|
694 |
+
- type: recall_at_100
|
695 |
+
value: 77.75800000000001
|
696 |
+
- type: recall_at_1000
|
697 |
+
value: 94.072
|
698 |
+
- type: recall_at_3
|
699 |
+
value: 37.876
|
700 |
+
- type: recall_at_5
|
701 |
+
value: 43.494
|
702 |
+
- task:
|
703 |
+
type: Retrieval
|
704 |
+
dataset:
|
705 |
+
type: BeIR/cqadupstack
|
706 |
+
name: MTEB CQADupstackRetrieval
|
707 |
+
config: default
|
708 |
+
split: test
|
709 |
+
revision: None
|
710 |
+
metrics:
|
711 |
+
- type: map_at_1
|
712 |
+
value: 25.478416666666664
|
713 |
+
- type: map_at_10
|
714 |
+
value: 34.483999999999995
|
715 |
+
- type: map_at_100
|
716 |
+
value: 35.71641666666667
|
717 |
+
- type: map_at_1000
|
718 |
+
value: 35.8315
|
719 |
+
- type: map_at_3
|
720 |
+
value: 31.571083333333334
|
721 |
+
- type: map_at_5
|
722 |
+
value: 33.229749999999996
|
723 |
+
- type: mrr_at_1
|
724 |
+
value: 30.122416666666663
|
725 |
+
- type: mrr_at_10
|
726 |
+
value: 38.608333333333334
|
727 |
+
- type: mrr_at_100
|
728 |
+
value: 39.465500000000006
|
729 |
+
- type: mrr_at_1000
|
730 |
+
value: 39.52375
|
731 |
+
- type: mrr_at_3
|
732 |
+
value: 36.047916666666666
|
733 |
+
- type: mrr_at_5
|
734 |
+
value: 37.53833333333333
|
735 |
+
- type: ndcg_at_1
|
736 |
+
value: 30.122416666666663
|
737 |
+
- type: ndcg_at_10
|
738 |
+
value: 39.87575
|
739 |
+
- type: ndcg_at_100
|
740 |
+
value: 45.15691666666666
|
741 |
+
- type: ndcg_at_1000
|
742 |
+
value: 47.43891666666667
|
743 |
+
- type: ndcg_at_3
|
744 |
+
value: 34.88666666666666
|
745 |
+
- type: ndcg_at_5
|
746 |
+
value: 37.30966666666667
|
747 |
+
- type: precision_at_1
|
748 |
+
value: 30.122416666666663
|
749 |
+
- type: precision_at_10
|
750 |
+
value: 7.056500000000001
|
751 |
+
- type: precision_at_100
|
752 |
+
value: 1.1415000000000002
|
753 |
+
- type: precision_at_1000
|
754 |
+
value: 0.15308333333333332
|
755 |
+
- type: precision_at_3
|
756 |
+
value: 16.03525
|
757 |
+
- type: precision_at_5
|
758 |
+
value: 11.51125
|
759 |
+
- type: recall_at_1
|
760 |
+
value: 25.478416666666664
|
761 |
+
- type: recall_at_10
|
762 |
+
value: 51.72658333333333
|
763 |
+
- type: recall_at_100
|
764 |
+
value: 74.94641666666666
|
765 |
+
- type: recall_at_1000
|
766 |
+
value: 90.75300000000001
|
767 |
+
- type: recall_at_3
|
768 |
+
value: 37.93833333333333
|
769 |
+
- type: recall_at_5
|
770 |
+
value: 44.15625
|
771 |
+
- task:
|
772 |
+
type: Retrieval
|
773 |
+
dataset:
|
774 |
+
type: BeIR/cqadupstack
|
775 |
+
name: MTEB CQADupstackStatsRetrieval
|
776 |
+
config: default
|
777 |
+
split: test
|
778 |
+
revision: None
|
779 |
+
metrics:
|
780 |
+
- type: map_at_1
|
781 |
+
value: 24.697
|
782 |
+
- type: map_at_10
|
783 |
+
value: 30.919999999999998
|
784 |
+
- type: map_at_100
|
785 |
+
value: 31.889
|
786 |
+
- type: map_at_1000
|
787 |
+
value: 31.985000000000003
|
788 |
+
- type: map_at_3
|
789 |
+
value: 29.046
|
790 |
+
- type: map_at_5
|
791 |
+
value: 29.902
|
792 |
+
- type: mrr_at_1
|
793 |
+
value: 27.454
|
794 |
+
- type: mrr_at_10
|
795 |
+
value: 33.517
|
796 |
+
- type: mrr_at_100
|
797 |
+
value: 34.381
|
798 |
+
- type: mrr_at_1000
|
799 |
+
value: 34.452
|
800 |
+
- type: mrr_at_3
|
801 |
+
value: 31.747999999999998
|
802 |
+
- type: mrr_at_5
|
803 |
+
value: 32.561
|
804 |
+
- type: ndcg_at_1
|
805 |
+
value: 27.454
|
806 |
+
- type: ndcg_at_10
|
807 |
+
value: 34.687
|
808 |
+
- type: ndcg_at_100
|
809 |
+
value: 39.395
|
810 |
+
- type: ndcg_at_1000
|
811 |
+
value: 41.826
|
812 |
+
- type: ndcg_at_3
|
813 |
+
value: 31.102
|
814 |
+
- type: ndcg_at_5
|
815 |
+
value: 32.435
|
816 |
+
- type: precision_at_1
|
817 |
+
value: 27.454
|
818 |
+
- type: precision_at_10
|
819 |
+
value: 5.322
|
820 |
+
- type: precision_at_100
|
821 |
+
value: 0.83
|
822 |
+
- type: precision_at_1000
|
823 |
+
value: 0.11199999999999999
|
824 |
+
- type: precision_at_3
|
825 |
+
value: 13.088
|
826 |
+
- type: precision_at_5
|
827 |
+
value: 8.803999999999998
|
828 |
+
- type: recall_at_1
|
829 |
+
value: 24.697
|
830 |
+
- type: recall_at_10
|
831 |
+
value: 43.688
|
832 |
+
- type: recall_at_100
|
833 |
+
value: 64.893
|
834 |
+
- type: recall_at_1000
|
835 |
+
value: 82.755
|
836 |
+
- type: recall_at_3
|
837 |
+
value: 33.896
|
838 |
+
- type: recall_at_5
|
839 |
+
value: 37.174
|
840 |
+
- task:
|
841 |
+
type: Retrieval
|
842 |
+
dataset:
|
843 |
+
type: BeIR/cqadupstack
|
844 |
+
name: MTEB CQADupstackTexRetrieval
|
845 |
+
config: default
|
846 |
+
split: test
|
847 |
+
revision: None
|
848 |
+
metrics:
|
849 |
+
- type: map_at_1
|
850 |
+
value: 16.525000000000002
|
851 |
+
- type: map_at_10
|
852 |
+
value: 23.435
|
853 |
+
- type: map_at_100
|
854 |
+
value: 24.535999999999998
|
855 |
+
- type: map_at_1000
|
856 |
+
value: 24.672
|
857 |
+
- type: map_at_3
|
858 |
+
value: 21.095
|
859 |
+
- type: map_at_5
|
860 |
+
value: 22.308
|
861 |
+
- type: mrr_at_1
|
862 |
+
value: 19.993
|
863 |
+
- type: mrr_at_10
|
864 |
+
value: 27.096999999999998
|
865 |
+
- type: mrr_at_100
|
866 |
+
value: 28.036
|
867 |
+
- type: mrr_at_1000
|
868 |
+
value: 28.119
|
869 |
+
- type: mrr_at_3
|
870 |
+
value: 24.971
|
871 |
+
- type: mrr_at_5
|
872 |
+
value: 26.062
|
873 |
+
- type: ndcg_at_1
|
874 |
+
value: 19.993
|
875 |
+
- type: ndcg_at_10
|
876 |
+
value: 28.002
|
877 |
+
- type: ndcg_at_100
|
878 |
+
value: 33.288000000000004
|
879 |
+
- type: ndcg_at_1000
|
880 |
+
value: 36.416
|
881 |
+
- type: ndcg_at_3
|
882 |
+
value: 23.768
|
883 |
+
- type: ndcg_at_5
|
884 |
+
value: 25.579
|
885 |
+
- type: precision_at_1
|
886 |
+
value: 19.993
|
887 |
+
- type: precision_at_10
|
888 |
+
value: 5.196
|
889 |
+
- type: precision_at_100
|
890 |
+
value: 0.922
|
891 |
+
- type: precision_at_1000
|
892 |
+
value: 0.136
|
893 |
+
- type: precision_at_3
|
894 |
+
value: 11.241
|
895 |
+
- type: precision_at_5
|
896 |
+
value: 8.176
|
897 |
+
- type: recall_at_1
|
898 |
+
value: 16.525000000000002
|
899 |
+
- type: recall_at_10
|
900 |
+
value: 38.082
|
901 |
+
- type: recall_at_100
|
902 |
+
value: 61.866
|
903 |
+
- type: recall_at_1000
|
904 |
+
value: 84.20100000000001
|
905 |
+
- type: recall_at_3
|
906 |
+
value: 26.228
|
907 |
+
- type: recall_at_5
|
908 |
+
value: 30.86
|
909 |
+
- task:
|
910 |
+
type: Retrieval
|
911 |
+
dataset:
|
912 |
+
type: BeIR/cqadupstack
|
913 |
+
name: MTEB CQADupstackUnixRetrieval
|
914 |
+
config: default
|
915 |
+
split: test
|
916 |
+
revision: None
|
917 |
+
metrics:
|
918 |
+
- type: map_at_1
|
919 |
+
value: 25.480999999999998
|
920 |
+
- type: map_at_10
|
921 |
+
value: 34.319
|
922 |
+
- type: map_at_100
|
923 |
+
value: 35.54
|
924 |
+
- type: map_at_1000
|
925 |
+
value: 35.648
|
926 |
+
- type: map_at_3
|
927 |
+
value: 31.533
|
928 |
+
- type: map_at_5
|
929 |
+
value: 33.058
|
930 |
+
- type: mrr_at_1
|
931 |
+
value: 29.851
|
932 |
+
- type: mrr_at_10
|
933 |
+
value: 38.243
|
934 |
+
- type: mrr_at_100
|
935 |
+
value: 39.172000000000004
|
936 |
+
- type: mrr_at_1000
|
937 |
+
value: 39.235
|
938 |
+
- type: mrr_at_3
|
939 |
+
value: 35.697
|
940 |
+
- type: mrr_at_5
|
941 |
+
value: 37.147000000000006
|
942 |
+
- type: ndcg_at_1
|
943 |
+
value: 29.851
|
944 |
+
- type: ndcg_at_10
|
945 |
+
value: 39.653
|
946 |
+
- type: ndcg_at_100
|
947 |
+
value: 45.065
|
948 |
+
- type: ndcg_at_1000
|
949 |
+
value: 47.477999999999994
|
950 |
+
- type: ndcg_at_3
|
951 |
+
value: 34.481
|
952 |
+
- type: ndcg_at_5
|
953 |
+
value: 36.870999999999995
|
954 |
+
- type: precision_at_1
|
955 |
+
value: 29.851
|
956 |
+
- type: precision_at_10
|
957 |
+
value: 6.679
|
958 |
+
- type: precision_at_100
|
959 |
+
value: 1.053
|
960 |
+
- type: precision_at_1000
|
961 |
+
value: 0.13699999999999998
|
962 |
+
- type: precision_at_3
|
963 |
+
value: 15.485
|
964 |
+
- type: precision_at_5
|
965 |
+
value: 10.989
|
966 |
+
- type: recall_at_1
|
967 |
+
value: 25.480999999999998
|
968 |
+
- type: recall_at_10
|
969 |
+
value: 52.032000000000004
|
970 |
+
- type: recall_at_100
|
971 |
+
value: 75.193
|
972 |
+
- type: recall_at_1000
|
973 |
+
value: 91.958
|
974 |
+
- type: recall_at_3
|
975 |
+
value: 38.089
|
976 |
+
- type: recall_at_5
|
977 |
+
value: 43.947
|
978 |
+
- task:
|
979 |
+
type: Retrieval
|
980 |
+
dataset:
|
981 |
+
type: BeIR/cqadupstack
|
982 |
+
name: MTEB CQADupstackWebmastersRetrieval
|
983 |
+
config: default
|
984 |
+
split: test
|
985 |
+
revision: None
|
986 |
+
metrics:
|
987 |
+
- type: map_at_1
|
988 |
+
value: 25.148
|
989 |
+
- type: map_at_10
|
990 |
+
value: 33.007
|
991 |
+
- type: map_at_100
|
992 |
+
value: 34.602
|
993 |
+
- type: map_at_1000
|
994 |
+
value: 34.809
|
995 |
+
- type: map_at_3
|
996 |
+
value: 30.014000000000003
|
997 |
+
- type: map_at_5
|
998 |
+
value: 31.728
|
999 |
+
- type: mrr_at_1
|
1000 |
+
value: 29.842000000000002
|
1001 |
+
- type: mrr_at_10
|
1002 |
+
value: 37.318
|
1003 |
+
- type: mrr_at_100
|
1004 |
+
value: 38.353
|
1005 |
+
- type: mrr_at_1000
|
1006 |
+
value: 38.41
|
1007 |
+
- type: mrr_at_3
|
1008 |
+
value: 34.75
|
1009 |
+
- type: mrr_at_5
|
1010 |
+
value: 36.163000000000004
|
1011 |
+
- type: ndcg_at_1
|
1012 |
+
value: 29.842000000000002
|
1013 |
+
- type: ndcg_at_10
|
1014 |
+
value: 38.462
|
1015 |
+
- type: ndcg_at_100
|
1016 |
+
value: 44.86
|
1017 |
+
- type: ndcg_at_1000
|
1018 |
+
value: 47.375
|
1019 |
+
- type: ndcg_at_3
|
1020 |
+
value: 33.614
|
1021 |
+
- type: ndcg_at_5
|
1022 |
+
value: 36.032
|
1023 |
+
- type: precision_at_1
|
1024 |
+
value: 29.842000000000002
|
1025 |
+
- type: precision_at_10
|
1026 |
+
value: 7.332
|
1027 |
+
- type: precision_at_100
|
1028 |
+
value: 1.52
|
1029 |
+
- type: precision_at_1000
|
1030 |
+
value: 0.23900000000000002
|
1031 |
+
- type: precision_at_3
|
1032 |
+
value: 15.547
|
1033 |
+
- type: precision_at_5
|
1034 |
+
value: 11.423
|
1035 |
+
- type: recall_at_1
|
1036 |
+
value: 25.148
|
1037 |
+
- type: recall_at_10
|
1038 |
+
value: 48.894
|
1039 |
+
- type: recall_at_100
|
1040 |
+
value: 77.845
|
1041 |
+
- type: recall_at_1000
|
1042 |
+
value: 93.74900000000001
|
1043 |
+
- type: recall_at_3
|
1044 |
+
value: 35.17
|
1045 |
+
- type: recall_at_5
|
1046 |
+
value: 41.734
|
1047 |
+
- task:
|
1048 |
+
type: Retrieval
|
1049 |
+
dataset:
|
1050 |
+
type: BeIR/cqadupstack
|
1051 |
+
name: MTEB CQADupstackWordpressRetrieval
|
1052 |
+
config: default
|
1053 |
+
split: test
|
1054 |
+
revision: None
|
1055 |
+
metrics:
|
1056 |
+
- type: map_at_1
|
1057 |
+
value: 17.723
|
1058 |
+
- type: map_at_10
|
1059 |
+
value: 25.586
|
1060 |
+
- type: map_at_100
|
1061 |
+
value: 26.648
|
1062 |
+
- type: map_at_1000
|
1063 |
+
value: 26.755000000000003
|
1064 |
+
- type: map_at_3
|
1065 |
+
value: 22.634999999999998
|
1066 |
+
- type: map_at_5
|
1067 |
+
value: 24.481
|
1068 |
+
- type: mrr_at_1
|
1069 |
+
value: 19.039
|
1070 |
+
- type: mrr_at_10
|
1071 |
+
value: 27.315
|
1072 |
+
- type: mrr_at_100
|
1073 |
+
value: 28.237000000000002
|
1074 |
+
- type: mrr_at_1000
|
1075 |
+
value: 28.32
|
1076 |
+
- type: mrr_at_3
|
1077 |
+
value: 24.368000000000002
|
1078 |
+
- type: mrr_at_5
|
1079 |
+
value: 26.198
|
1080 |
+
- type: ndcg_at_1
|
1081 |
+
value: 19.039
|
1082 |
+
- type: ndcg_at_10
|
1083 |
+
value: 30.511
|
1084 |
+
- type: ndcg_at_100
|
1085 |
+
value: 35.808
|
1086 |
+
- type: ndcg_at_1000
|
1087 |
+
value: 38.56
|
1088 |
+
- type: ndcg_at_3
|
1089 |
+
value: 24.762999999999998
|
1090 |
+
- type: ndcg_at_5
|
1091 |
+
value: 27.923
|
1092 |
+
- type: precision_at_1
|
1093 |
+
value: 19.039
|
1094 |
+
- type: precision_at_10
|
1095 |
+
value: 5.083
|
1096 |
+
- type: precision_at_100
|
1097 |
+
value: 0.839
|
1098 |
+
- type: precision_at_1000
|
1099 |
+
value: 0.11800000000000001
|
1100 |
+
- type: precision_at_3
|
1101 |
+
value: 10.659
|
1102 |
+
- type: precision_at_5
|
1103 |
+
value: 8.244
|
1104 |
+
- type: recall_at_1
|
1105 |
+
value: 17.723
|
1106 |
+
- type: recall_at_10
|
1107 |
+
value: 44.051
|
1108 |
+
- type: recall_at_100
|
1109 |
+
value: 68.659
|
1110 |
+
- type: recall_at_1000
|
1111 |
+
value: 89.164
|
1112 |
+
- type: recall_at_3
|
1113 |
+
value: 28.709
|
1114 |
+
- type: recall_at_5
|
1115 |
+
value: 36.331
|
1116 |
+
- task:
|
1117 |
+
type: Retrieval
|
1118 |
+
dataset:
|
1119 |
+
type: climate-fever
|
1120 |
+
name: MTEB ClimateFEVER
|
1121 |
+
config: default
|
1122 |
+
split: test
|
1123 |
+
revision: None
|
1124 |
+
metrics:
|
1125 |
+
- type: map_at_1
|
1126 |
+
value: 13.669999999999998
|
1127 |
+
- type: map_at_10
|
1128 |
+
value: 23.46
|
1129 |
+
- type: map_at_100
|
1130 |
+
value: 25.304
|
1131 |
+
- type: map_at_1000
|
1132 |
+
value: 25.497999999999998
|
1133 |
+
- type: map_at_3
|
1134 |
+
value: 19.702
|
1135 |
+
- type: map_at_5
|
1136 |
+
value: 21.642
|
1137 |
+
- type: mrr_at_1
|
1138 |
+
value: 31.269999999999996
|
1139 |
+
- type: mrr_at_10
|
1140 |
+
value: 43.264
|
1141 |
+
- type: mrr_at_100
|
1142 |
+
value: 44.1
|
1143 |
+
- type: mrr_at_1000
|
1144 |
+
value: 44.134
|
1145 |
+
- type: mrr_at_3
|
1146 |
+
value: 40.011
|
1147 |
+
- type: mrr_at_5
|
1148 |
+
value: 42.079
|
1149 |
+
- type: ndcg_at_1
|
1150 |
+
value: 31.269999999999996
|
1151 |
+
- type: ndcg_at_10
|
1152 |
+
value: 32.385000000000005
|
1153 |
+
- type: ndcg_at_100
|
1154 |
+
value: 39.282000000000004
|
1155 |
+
- type: ndcg_at_1000
|
1156 |
+
value: 42.628
|
1157 |
+
- type: ndcg_at_3
|
1158 |
+
value: 26.942
|
1159 |
+
- type: ndcg_at_5
|
1160 |
+
value: 28.832
|
1161 |
+
- type: precision_at_1
|
1162 |
+
value: 31.269999999999996
|
1163 |
+
- type: precision_at_10
|
1164 |
+
value: 10.123999999999999
|
1165 |
+
- type: precision_at_100
|
1166 |
+
value: 1.748
|
1167 |
+
- type: precision_at_1000
|
1168 |
+
value: 0.23700000000000002
|
1169 |
+
- type: precision_at_3
|
1170 |
+
value: 20.282
|
1171 |
+
- type: precision_at_5
|
1172 |
+
value: 15.479000000000001
|
1173 |
+
- type: recall_at_1
|
1174 |
+
value: 13.669999999999998
|
1175 |
+
- type: recall_at_10
|
1176 |
+
value: 38.078
|
1177 |
+
- type: recall_at_100
|
1178 |
+
value: 61.651
|
1179 |
+
- type: recall_at_1000
|
1180 |
+
value: 80.279
|
1181 |
+
- type: recall_at_3
|
1182 |
+
value: 24.438
|
1183 |
+
- type: recall_at_5
|
1184 |
+
value: 30.244
|
1185 |
+
- task:
|
1186 |
+
type: Retrieval
|
1187 |
+
dataset:
|
1188 |
+
type: dbpedia-entity
|
1189 |
+
name: MTEB DBPedia
|
1190 |
+
config: default
|
1191 |
+
split: test
|
1192 |
+
revision: None
|
1193 |
+
metrics:
|
1194 |
+
- type: map_at_1
|
1195 |
+
value: 9.103
|
1196 |
+
- type: map_at_10
|
1197 |
+
value: 19.238
|
1198 |
+
- type: map_at_100
|
1199 |
+
value: 26.451999999999998
|
1200 |
+
- type: map_at_1000
|
1201 |
+
value: 27.987000000000002
|
1202 |
+
- type: map_at_3
|
1203 |
+
value: 14.069999999999999
|
1204 |
+
- type: map_at_5
|
1205 |
+
value: 16.434
|
1206 |
+
- type: mrr_at_1
|
1207 |
+
value: 67.5
|
1208 |
+
- type: mrr_at_10
|
1209 |
+
value: 75.64800000000001
|
1210 |
+
- type: mrr_at_100
|
1211 |
+
value: 75.847
|
1212 |
+
- type: mrr_at_1000
|
1213 |
+
value: 75.85499999999999
|
1214 |
+
- type: mrr_at_3
|
1215 |
+
value: 73.833
|
1216 |
+
- type: mrr_at_5
|
1217 |
+
value: 74.933
|
1218 |
+
- type: ndcg_at_1
|
1219 |
+
value: 55.625
|
1220 |
+
- type: ndcg_at_10
|
1221 |
+
value: 40.505
|
1222 |
+
- type: ndcg_at_100
|
1223 |
+
value: 44.505
|
1224 |
+
- type: ndcg_at_1000
|
1225 |
+
value: 52.005
|
1226 |
+
- type: ndcg_at_3
|
1227 |
+
value: 45.841
|
1228 |
+
- type: ndcg_at_5
|
1229 |
+
value: 42.945
|
1230 |
+
- type: precision_at_1
|
1231 |
+
value: 67.5
|
1232 |
+
- type: precision_at_10
|
1233 |
+
value: 31.6
|
1234 |
+
- type: precision_at_100
|
1235 |
+
value: 9.83
|
1236 |
+
- type: precision_at_1000
|
1237 |
+
value: 1.9619999999999997
|
1238 |
+
- type: precision_at_3
|
1239 |
+
value: 49.083
|
1240 |
+
- type: precision_at_5
|
1241 |
+
value: 41.15
|
1242 |
+
- type: recall_at_1
|
1243 |
+
value: 9.103
|
1244 |
+
- type: recall_at_10
|
1245 |
+
value: 24.6
|
1246 |
+
- type: recall_at_100
|
1247 |
+
value: 50.075
|
1248 |
+
- type: recall_at_1000
|
1249 |
+
value: 73.516
|
1250 |
+
- type: recall_at_3
|
1251 |
+
value: 15.35
|
1252 |
+
- type: recall_at_5
|
1253 |
+
value: 19.217000000000002
|
1254 |
+
- task:
|
1255 |
+
type: Classification
|
1256 |
+
dataset:
|
1257 |
+
type: mteb/emotion
|
1258 |
+
name: MTEB EmotionClassification
|
1259 |
+
config: default
|
1260 |
+
split: test
|
1261 |
+
revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
|
1262 |
+
metrics:
|
1263 |
+
- type: accuracy
|
1264 |
+
value: 50.595
|
1265 |
+
- type: f1
|
1266 |
+
value: 45.43005573726517
|
1267 |
+
- task:
|
1268 |
+
type: Retrieval
|
1269 |
+
dataset:
|
1270 |
+
type: fever
|
1271 |
+
name: MTEB FEVER
|
1272 |
+
config: default
|
1273 |
+
split: test
|
1274 |
+
revision: None
|
1275 |
+
metrics:
|
1276 |
+
- type: map_at_1
|
1277 |
+
value: 76.08200000000001
|
1278 |
+
- type: map_at_10
|
1279 |
+
value: 83.697
|
1280 |
+
- type: map_at_100
|
1281 |
+
value: 83.891
|
1282 |
+
- type: map_at_1000
|
1283 |
+
value: 83.905
|
1284 |
+
- type: map_at_3
|
1285 |
+
value: 82.69
|
1286 |
+
- type: map_at_5
|
1287 |
+
value: 83.35900000000001
|
1288 |
+
- type: mrr_at_1
|
1289 |
+
value: 82.148
|
1290 |
+
- type: mrr_at_10
|
1291 |
+
value: 88.727
|
1292 |
+
- type: mrr_at_100
|
1293 |
+
value: 88.787
|
1294 |
+
- type: mrr_at_1000
|
1295 |
+
value: 88.788
|
1296 |
+
- type: mrr_at_3
|
1297 |
+
value: 88.054
|
1298 |
+
- type: mrr_at_5
|
1299 |
+
value: 88.547
|
1300 |
+
- type: ndcg_at_1
|
1301 |
+
value: 82.148
|
1302 |
+
- type: ndcg_at_10
|
1303 |
+
value: 87.274
|
1304 |
+
- type: ndcg_at_100
|
1305 |
+
value: 87.957
|
1306 |
+
- type: ndcg_at_1000
|
1307 |
+
value: 88.203
|
1308 |
+
- type: ndcg_at_3
|
1309 |
+
value: 85.744
|
1310 |
+
- type: ndcg_at_5
|
1311 |
+
value: 86.664
|
1312 |
+
- type: precision_at_1
|
1313 |
+
value: 82.148
|
1314 |
+
- type: precision_at_10
|
1315 |
+
value: 10.315000000000001
|
1316 |
+
- type: precision_at_100
|
1317 |
+
value: 1.086
|
1318 |
+
- type: precision_at_1000
|
1319 |
+
value: 0.11299999999999999
|
1320 |
+
- type: precision_at_3
|
1321 |
+
value: 32.458
|
1322 |
+
- type: precision_at_5
|
1323 |
+
value: 20.09
|
1324 |
+
- type: recall_at_1
|
1325 |
+
value: 76.08200000000001
|
1326 |
+
- type: recall_at_10
|
1327 |
+
value: 93.408
|
1328 |
+
- type: recall_at_100
|
1329 |
+
value: 96.11
|
1330 |
+
- type: recall_at_1000
|
1331 |
+
value: 97.626
|
1332 |
+
- type: recall_at_3
|
1333 |
+
value: 89.172
|
1334 |
+
- type: recall_at_5
|
1335 |
+
value: 91.604
|
1336 |
+
- task:
|
1337 |
+
type: Retrieval
|
1338 |
+
dataset:
|
1339 |
+
type: fiqa
|
1340 |
+
name: MTEB FiQA2018
|
1341 |
+
config: default
|
1342 |
+
split: test
|
1343 |
+
revision: None
|
1344 |
+
metrics:
|
1345 |
+
- type: map_at_1
|
1346 |
+
value: 19.377
|
1347 |
+
- type: map_at_10
|
1348 |
+
value: 31.785000000000004
|
1349 |
+
- type: map_at_100
|
1350 |
+
value: 33.511
|
1351 |
+
- type: map_at_1000
|
1352 |
+
value: 33.713
|
1353 |
+
- type: map_at_3
|
1354 |
+
value: 27.811999999999998
|
1355 |
+
- type: map_at_5
|
1356 |
+
value: 30.148000000000003
|
1357 |
+
- type: mrr_at_1
|
1358 |
+
value: 38.426
|
1359 |
+
- type: mrr_at_10
|
1360 |
+
value: 47.233000000000004
|
1361 |
+
- type: mrr_at_100
|
1362 |
+
value: 47.980000000000004
|
1363 |
+
- type: mrr_at_1000
|
1364 |
+
value: 48.022
|
1365 |
+
- type: mrr_at_3
|
1366 |
+
value: 44.856
|
1367 |
+
- type: mrr_at_5
|
1368 |
+
value: 46.322
|
1369 |
+
- type: ndcg_at_1
|
1370 |
+
value: 38.426
|
1371 |
+
- type: ndcg_at_10
|
1372 |
+
value: 39.326
|
1373 |
+
- type: ndcg_at_100
|
1374 |
+
value: 45.769999999999996
|
1375 |
+
- type: ndcg_at_1000
|
1376 |
+
value: 49.131
|
1377 |
+
- type: ndcg_at_3
|
1378 |
+
value: 36.1
|
1379 |
+
- type: ndcg_at_5
|
1380 |
+
value: 37.271
|
1381 |
+
- type: precision_at_1
|
1382 |
+
value: 38.426
|
1383 |
+
- type: precision_at_10
|
1384 |
+
value: 11.126999999999999
|
1385 |
+
- type: precision_at_100
|
1386 |
+
value: 1.7870000000000001
|
1387 |
+
- type: precision_at_1000
|
1388 |
+
value: 0.23700000000000002
|
1389 |
+
- type: precision_at_3
|
1390 |
+
value: 24.587999999999997
|
1391 |
+
- type: precision_at_5
|
1392 |
+
value: 18.21
|
1393 |
+
- type: recall_at_1
|
1394 |
+
value: 19.377
|
1395 |
+
- type: recall_at_10
|
1396 |
+
value: 45.484
|
1397 |
+
- type: recall_at_100
|
1398 |
+
value: 69.968
|
1399 |
+
- type: recall_at_1000
|
1400 |
+
value: 90.30799999999999
|
1401 |
+
- type: recall_at_3
|
1402 |
+
value: 32.72
|
1403 |
+
- type: recall_at_5
|
1404 |
+
value: 38.856
|
1405 |
+
- task:
|
1406 |
+
type: Retrieval
|
1407 |
+
dataset:
|
1408 |
+
type: hotpotqa
|
1409 |
+
name: MTEB HotpotQA
|
1410 |
+
config: default
|
1411 |
+
split: test
|
1412 |
+
revision: None
|
1413 |
+
metrics:
|
1414 |
+
- type: map_at_1
|
1415 |
+
value: 37.475
|
1416 |
+
- type: map_at_10
|
1417 |
+
value: 58.662000000000006
|
1418 |
+
- type: map_at_100
|
1419 |
+
value: 59.561
|
1420 |
+
- type: map_at_1000
|
1421 |
+
value: 59.626999999999995
|
1422 |
+
- type: map_at_3
|
1423 |
+
value: 55.496
|
1424 |
+
- type: map_at_5
|
1425 |
+
value: 57.464000000000006
|
1426 |
+
- type: mrr_at_1
|
1427 |
+
value: 74.949
|
1428 |
+
- type: mrr_at_10
|
1429 |
+
value: 80.976
|
1430 |
+
- type: mrr_at_100
|
1431 |
+
value: 81.215
|
1432 |
+
- type: mrr_at_1000
|
1433 |
+
value: 81.22399999999999
|
1434 |
+
- type: mrr_at_3
|
1435 |
+
value: 79.892
|
1436 |
+
- type: mrr_at_5
|
1437 |
+
value: 80.57
|
1438 |
+
- type: ndcg_at_1
|
1439 |
+
value: 74.949
|
1440 |
+
- type: ndcg_at_10
|
1441 |
+
value: 66.93599999999999
|
1442 |
+
- type: ndcg_at_100
|
1443 |
+
value: 70.137
|
1444 |
+
- type: ndcg_at_1000
|
1445 |
+
value: 71.452
|
1446 |
+
- type: ndcg_at_3
|
1447 |
+
value: 62.319
|
1448 |
+
- type: ndcg_at_5
|
1449 |
+
value: 64.866
|
1450 |
+
- type: precision_at_1
|
1451 |
+
value: 74.949
|
1452 |
+
- type: precision_at_10
|
1453 |
+
value: 13.988999999999999
|
1454 |
+
- type: precision_at_100
|
1455 |
+
value: 1.6500000000000001
|
1456 |
+
- type: precision_at_1000
|
1457 |
+
value: 0.182
|
1458 |
+
- type: precision_at_3
|
1459 |
+
value: 39.806000000000004
|
1460 |
+
- type: precision_at_5
|
1461 |
+
value: 25.899
|
1462 |
+
- type: recall_at_1
|
1463 |
+
value: 37.475
|
1464 |
+
- type: recall_at_10
|
1465 |
+
value: 69.946
|
1466 |
+
- type: recall_at_100
|
1467 |
+
value: 82.478
|
1468 |
+
- type: recall_at_1000
|
1469 |
+
value: 91.202
|
1470 |
+
- type: recall_at_3
|
1471 |
+
value: 59.709999999999994
|
1472 |
+
- type: recall_at_5
|
1473 |
+
value: 64.747
|
1474 |
+
- task:
|
1475 |
+
type: Classification
|
1476 |
+
dataset:
|
1477 |
+
type: mteb/imdb
|
1478 |
+
name: MTEB ImdbClassification
|
1479 |
+
config: default
|
1480 |
+
split: test
|
1481 |
+
revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
|
1482 |
+
metrics:
|
1483 |
+
- type: accuracy
|
1484 |
+
value: 89.2272
|
1485 |
+
- type: ap
|
1486 |
+
value: 84.69017509523854
|
1487 |
+
- type: f1
|
1488 |
+
value: 89.20673182133066
|
1489 |
+
- task:
|
1490 |
+
type: Retrieval
|
1491 |
+
dataset:
|
1492 |
+
type: msmarco
|
1493 |
+
name: MTEB MSMARCO
|
1494 |
+
config: default
|
1495 |
+
split: dev
|
1496 |
+
revision: None
|
1497 |
+
metrics:
|
1498 |
+
- type: map_at_1
|
1499 |
+
value: 21.471999999999998
|
1500 |
+
- type: map_at_10
|
1501 |
+
value: 33.287
|
1502 |
+
- type: map_at_100
|
1503 |
+
value: 34.486
|
1504 |
+
- type: map_at_1000
|
1505 |
+
value: 34.536
|
1506 |
+
- type: map_at_3
|
1507 |
+
value: 29.520999999999997
|
1508 |
+
- type: map_at_5
|
1509 |
+
value: 31.647
|
1510 |
+
- type: mrr_at_1
|
1511 |
+
value: 22.076999999999998
|
1512 |
+
- type: mrr_at_10
|
1513 |
+
value: 33.902
|
1514 |
+
- type: mrr_at_100
|
1515 |
+
value: 35.037
|
1516 |
+
- type: mrr_at_1000
|
1517 |
+
value: 35.081
|
1518 |
+
- type: mrr_at_3
|
1519 |
+
value: 30.174
|
1520 |
+
- type: mrr_at_5
|
1521 |
+
value: 32.302
|
1522 |
+
- type: ndcg_at_1
|
1523 |
+
value: 22.092
|
1524 |
+
- type: ndcg_at_10
|
1525 |
+
value: 40.073
|
1526 |
+
- type: ndcg_at_100
|
1527 |
+
value: 45.82
|
1528 |
+
- type: ndcg_at_1000
|
1529 |
+
value: 47.097
|
1530 |
+
- type: ndcg_at_3
|
1531 |
+
value: 32.364
|
1532 |
+
- type: ndcg_at_5
|
1533 |
+
value: 36.179
|
1534 |
+
- type: precision_at_1
|
1535 |
+
value: 22.092
|
1536 |
+
- type: precision_at_10
|
1537 |
+
value: 6.36
|
1538 |
+
- type: precision_at_100
|
1539 |
+
value: 0.924
|
1540 |
+
- type: precision_at_1000
|
1541 |
+
value: 0.10300000000000001
|
1542 |
+
- type: precision_at_3
|
1543 |
+
value: 13.806
|
1544 |
+
- type: precision_at_5
|
1545 |
+
value: 10.223
|
1546 |
+
- type: recall_at_1
|
1547 |
+
value: 21.471999999999998
|
1548 |
+
- type: recall_at_10
|
1549 |
+
value: 60.971
|
1550 |
+
- type: recall_at_100
|
1551 |
+
value: 87.518
|
1552 |
+
- type: recall_at_1000
|
1553 |
+
value: 97.333
|
1554 |
+
- type: recall_at_3
|
1555 |
+
value: 39.961999999999996
|
1556 |
+
- type: recall_at_5
|
1557 |
+
value: 49.126
|
1558 |
+
- task:
|
1559 |
+
type: Classification
|
1560 |
+
dataset:
|
1561 |
+
type: mteb/mtop_domain
|
1562 |
+
name: MTEB MTOPDomainClassification (en)
|
1563 |
+
config: en
|
1564 |
+
split: test
|
1565 |
+
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
|
1566 |
+
metrics:
|
1567 |
+
- type: accuracy
|
1568 |
+
value: 94.44596443228454
|
1569 |
+
- type: f1
|
1570 |
+
value: 94.19326360848854
|
1571 |
+
- task:
|
1572 |
+
type: Classification
|
1573 |
+
dataset:
|
1574 |
+
type: mteb/mtop_intent
|
1575 |
+
name: MTEB MTOPIntentClassification (en)
|
1576 |
+
config: en
|
1577 |
+
split: test
|
1578 |
+
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
|
1579 |
+
metrics:
|
1580 |
+
- type: accuracy
|
1581 |
+
value: 75.7934336525308
|
1582 |
+
- type: f1
|
1583 |
+
value: 57.619082395865604
|
1584 |
+
- task:
|
1585 |
+
type: Classification
|
1586 |
+
dataset:
|
1587 |
+
type: mteb/amazon_massive_intent
|
1588 |
+
name: MTEB MassiveIntentClassification (en)
|
1589 |
+
config: en
|
1590 |
+
split: test
|
1591 |
+
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
|
1592 |
+
metrics:
|
1593 |
+
- type: accuracy
|
1594 |
+
value: 74.70410221923336
|
1595 |
+
- type: f1
|
1596 |
+
value: 72.82854233810865
|
1597 |
+
- task:
|
1598 |
+
type: Classification
|
1599 |
+
dataset:
|
1600 |
+
type: mteb/amazon_massive_scenario
|
1601 |
+
name: MTEB MassiveScenarioClassification (en)
|
1602 |
+
config: en
|
1603 |
+
split: test
|
1604 |
+
revision: 7d571f92784cd94a019292a1f45445077d0ef634
|
1605 |
+
metrics:
|
1606 |
+
- type: accuracy
|
1607 |
+
value: 78.61802286482852
|
1608 |
+
- type: f1
|
1609 |
+
value: 78.76695988384789
|
1610 |
+
- task:
|
1611 |
+
type: Clustering
|
1612 |
+
dataset:
|
1613 |
+
type: mteb/medrxiv-clustering-p2p
|
1614 |
+
name: MTEB MedrxivClusteringP2P
|
1615 |
+
config: default
|
1616 |
+
split: test
|
1617 |
+
revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
|
1618 |
+
metrics:
|
1619 |
+
- type: v_measure
|
1620 |
+
value: 34.212621347614174
|
1621 |
+
- task:
|
1622 |
+
type: Clustering
|
1623 |
+
dataset:
|
1624 |
+
type: mteb/medrxiv-clustering-s2s
|
1625 |
+
name: MTEB MedrxivClusteringS2S
|
1626 |
+
config: default
|
1627 |
+
split: test
|
1628 |
+
revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
|
1629 |
+
metrics:
|
1630 |
+
- type: v_measure
|
1631 |
+
value: 31.899728392028948
|
1632 |
+
- task:
|
1633 |
+
type: Reranking
|
1634 |
+
dataset:
|
1635 |
+
type: mteb/mind_small
|
1636 |
+
name: MTEB MindSmallReranking
|
1637 |
+
config: default
|
1638 |
+
split: test
|
1639 |
+
revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
|
1640 |
+
metrics:
|
1641 |
+
- type: map
|
1642 |
+
value: 32.190245086632466
|
1643 |
+
- type: mrr
|
1644 |
+
value: 33.424442963159876
|
1645 |
+
- task:
|
1646 |
+
type: Retrieval
|
1647 |
+
dataset:
|
1648 |
+
type: nfcorpus
|
1649 |
+
name: MTEB NFCorpus
|
1650 |
+
config: default
|
1651 |
+
split: test
|
1652 |
+
revision: None
|
1653 |
+
metrics:
|
1654 |
+
- type: map_at_1
|
1655 |
+
value: 6.141
|
1656 |
+
- type: map_at_10
|
1657 |
+
value: 13.558
|
1658 |
+
- type: map_at_100
|
1659 |
+
value: 17.238
|
1660 |
+
- type: map_at_1000
|
1661 |
+
value: 18.727
|
1662 |
+
- type: map_at_3
|
1663 |
+
value: 9.803
|
1664 |
+
- type: map_at_5
|
1665 |
+
value: 11.517
|
1666 |
+
- type: mrr_at_1
|
1667 |
+
value: 46.129999999999995
|
1668 |
+
- type: mrr_at_10
|
1669 |
+
value: 54.876999999999995
|
1670 |
+
- type: mrr_at_100
|
1671 |
+
value: 55.428999999999995
|
1672 |
+
- type: mrr_at_1000
|
1673 |
+
value: 55.47
|
1674 |
+
- type: mrr_at_3
|
1675 |
+
value: 52.993
|
1676 |
+
- type: mrr_at_5
|
1677 |
+
value: 54.107000000000006
|
1678 |
+
- type: ndcg_at_1
|
1679 |
+
value: 43.963
|
1680 |
+
- type: ndcg_at_10
|
1681 |
+
value: 35.72
|
1682 |
+
- type: ndcg_at_100
|
1683 |
+
value: 32.792
|
1684 |
+
- type: ndcg_at_1000
|
1685 |
+
value: 41.52
|
1686 |
+
- type: ndcg_at_3
|
1687 |
+
value: 40.929
|
1688 |
+
- type: ndcg_at_5
|
1689 |
+
value: 38.664
|
1690 |
+
- type: precision_at_1
|
1691 |
+
value: 45.82
|
1692 |
+
- type: precision_at_10
|
1693 |
+
value: 26.625
|
1694 |
+
- type: precision_at_100
|
1695 |
+
value: 8.387
|
1696 |
+
- type: precision_at_1000
|
1697 |
+
value: 2.131
|
1698 |
+
- type: precision_at_3
|
1699 |
+
value: 38.39
|
1700 |
+
- type: precision_at_5
|
1701 |
+
value: 33.56
|
1702 |
+
- type: recall_at_1
|
1703 |
+
value: 6.141
|
1704 |
+
- type: recall_at_10
|
1705 |
+
value: 17.598
|
1706 |
+
- type: recall_at_100
|
1707 |
+
value: 33.619
|
1708 |
+
- type: recall_at_1000
|
1709 |
+
value: 64.455
|
1710 |
+
- type: recall_at_3
|
1711 |
+
value: 10.667
|
1712 |
+
- type: recall_at_5
|
1713 |
+
value: 13.492999999999999
|
1714 |
+
- task:
|
1715 |
+
type: Retrieval
|
1716 |
+
dataset:
|
1717 |
+
type: nq
|
1718 |
+
name: MTEB NQ
|
1719 |
+
config: default
|
1720 |
+
split: test
|
1721 |
+
revision: None
|
1722 |
+
metrics:
|
1723 |
+
- type: map_at_1
|
1724 |
+
value: 26.019
|
1725 |
+
- type: map_at_10
|
1726 |
+
value: 40.644999999999996
|
1727 |
+
- type: map_at_100
|
1728 |
+
value: 41.870000000000005
|
1729 |
+
- type: map_at_1000
|
1730 |
+
value: 41.904
|
1731 |
+
- type: map_at_3
|
1732 |
+
value: 36.28
|
1733 |
+
- type: map_at_5
|
1734 |
+
value: 38.830999999999996
|
1735 |
+
- type: mrr_at_1
|
1736 |
+
value: 29.664
|
1737 |
+
- type: mrr_at_10
|
1738 |
+
value: 43.168
|
1739 |
+
- type: mrr_at_100
|
1740 |
+
value: 44.126
|
1741 |
+
- type: mrr_at_1000
|
1742 |
+
value: 44.151
|
1743 |
+
- type: mrr_at_3
|
1744 |
+
value: 39.484
|
1745 |
+
- type: mrr_at_5
|
1746 |
+
value: 41.702
|
1747 |
+
- type: ndcg_at_1
|
1748 |
+
value: 29.635
|
1749 |
+
- type: ndcg_at_10
|
1750 |
+
value: 48.284
|
1751 |
+
- type: ndcg_at_100
|
1752 |
+
value: 53.522999999999996
|
1753 |
+
- type: ndcg_at_1000
|
1754 |
+
value: 54.344
|
1755 |
+
- type: ndcg_at_3
|
1756 |
+
value: 40.048
|
1757 |
+
- type: ndcg_at_5
|
1758 |
+
value: 44.329
|
1759 |
+
- type: precision_at_1
|
1760 |
+
value: 29.635
|
1761 |
+
- type: precision_at_10
|
1762 |
+
value: 8.262
|
1763 |
+
- type: precision_at_100
|
1764 |
+
value: 1.1159999999999999
|
1765 |
+
- type: precision_at_1000
|
1766 |
+
value: 0.11900000000000001
|
1767 |
+
- type: precision_at_3
|
1768 |
+
value: 18.54
|
1769 |
+
- type: precision_at_5
|
1770 |
+
value: 13.586
|
1771 |
+
- type: recall_at_1
|
1772 |
+
value: 26.019
|
1773 |
+
- type: recall_at_10
|
1774 |
+
value: 69.049
|
1775 |
+
- type: recall_at_100
|
1776 |
+
value: 91.89399999999999
|
1777 |
+
- type: recall_at_1000
|
1778 |
+
value: 98.095
|
1779 |
+
- type: recall_at_3
|
1780 |
+
value: 47.81
|
1781 |
+
- type: recall_at_5
|
1782 |
+
value: 57.645
|
1783 |
+
- task:
|
1784 |
+
type: Retrieval
|
1785 |
+
dataset:
|
1786 |
+
type: quora
|
1787 |
+
name: MTEB QuoraRetrieval
|
1788 |
+
config: default
|
1789 |
+
split: test
|
1790 |
+
revision: None
|
1791 |
+
metrics:
|
1792 |
+
- type: map_at_1
|
1793 |
+
value: 70.952
|
1794 |
+
- type: map_at_10
|
1795 |
+
value: 84.895
|
1796 |
+
- type: map_at_100
|
1797 |
+
value: 85.51299999999999
|
1798 |
+
- type: map_at_1000
|
1799 |
+
value: 85.529
|
1800 |
+
- type: map_at_3
|
1801 |
+
value: 81.94500000000001
|
1802 |
+
- type: map_at_5
|
1803 |
+
value: 83.83500000000001
|
1804 |
+
- type: mrr_at_1
|
1805 |
+
value: 81.65
|
1806 |
+
- type: mrr_at_10
|
1807 |
+
value: 87.756
|
1808 |
+
- type: mrr_at_100
|
1809 |
+
value: 87.855
|
1810 |
+
- type: mrr_at_1000
|
1811 |
+
value: 87.856
|
1812 |
+
- type: mrr_at_3
|
1813 |
+
value: 86.822
|
1814 |
+
- type: mrr_at_5
|
1815 |
+
value: 87.473
|
1816 |
+
- type: ndcg_at_1
|
1817 |
+
value: 81.65
|
1818 |
+
- type: ndcg_at_10
|
1819 |
+
value: 88.563
|
1820 |
+
- type: ndcg_at_100
|
1821 |
+
value: 89.74499999999999
|
1822 |
+
- type: ndcg_at_1000
|
1823 |
+
value: 89.84400000000001
|
1824 |
+
- type: ndcg_at_3
|
1825 |
+
value: 85.782
|
1826 |
+
- type: ndcg_at_5
|
1827 |
+
value: 87.381
|
1828 |
+
- type: precision_at_1
|
1829 |
+
value: 81.65
|
1830 |
+
- type: precision_at_10
|
1831 |
+
value: 13.435
|
1832 |
+
- type: precision_at_100
|
1833 |
+
value: 1.529
|
1834 |
+
- type: precision_at_1000
|
1835 |
+
value: 0.157
|
1836 |
+
- type: precision_at_3
|
1837 |
+
value: 37.523
|
1838 |
+
- type: precision_at_5
|
1839 |
+
value: 24.72
|
1840 |
+
- type: recall_at_1
|
1841 |
+
value: 70.952
|
1842 |
+
- type: recall_at_10
|
1843 |
+
value: 95.521
|
1844 |
+
- type: recall_at_100
|
1845 |
+
value: 99.53699999999999
|
1846 |
+
- type: recall_at_1000
|
1847 |
+
value: 99.983
|
1848 |
+
- type: recall_at_3
|
1849 |
+
value: 87.559
|
1850 |
+
- type: recall_at_5
|
1851 |
+
value: 92.038
|
1852 |
+
- task:
|
1853 |
+
type: Clustering
|
1854 |
+
dataset:
|
1855 |
+
type: mteb/reddit-clustering
|
1856 |
+
name: MTEB RedditClustering
|
1857 |
+
config: default
|
1858 |
+
split: test
|
1859 |
+
revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
|
1860 |
+
metrics:
|
1861 |
+
- type: v_measure
|
1862 |
+
value: 54.61973943122806
|
1863 |
+
- task:
|
1864 |
+
type: Clustering
|
1865 |
+
dataset:
|
1866 |
+
type: mteb/reddit-clustering-p2p
|
1867 |
+
name: MTEB RedditClusteringP2P
|
1868 |
+
config: default
|
1869 |
+
split: test
|
1870 |
+
revision: 282350215ef01743dc01b456c7f5241fa8937f16
|
1871 |
+
metrics:
|
1872 |
+
- type: v_measure
|
1873 |
+
value: 60.92179806944469
|
1874 |
+
- task:
|
1875 |
+
type: Retrieval
|
1876 |
+
dataset:
|
1877 |
+
type: scidocs
|
1878 |
+
name: MTEB SCIDOCS
|
1879 |
+
config: default
|
1880 |
+
split: test
|
1881 |
+
revision: None
|
1882 |
+
metrics:
|
1883 |
+
- type: map_at_1
|
1884 |
+
value: 4.993
|
1885 |
+
- type: map_at_10
|
1886 |
+
value: 13.175999999999998
|
1887 |
+
- type: map_at_100
|
1888 |
+
value: 15.689
|
1889 |
+
- type: map_at_1000
|
1890 |
+
value: 16.054
|
1891 |
+
- type: map_at_3
|
1892 |
+
value: 9.325999999999999
|
1893 |
+
- type: map_at_5
|
1894 |
+
value: 11.283
|
1895 |
+
- type: mrr_at_1
|
1896 |
+
value: 24.7
|
1897 |
+
- type: mrr_at_10
|
1898 |
+
value: 36.568
|
1899 |
+
- type: mrr_at_100
|
1900 |
+
value: 37.667
|
1901 |
+
- type: mrr_at_1000
|
1902 |
+
value: 37.714
|
1903 |
+
- type: mrr_at_3
|
1904 |
+
value: 32.933
|
1905 |
+
- type: mrr_at_5
|
1906 |
+
value: 34.963
|
1907 |
+
- type: ndcg_at_1
|
1908 |
+
value: 24.7
|
1909 |
+
- type: ndcg_at_10
|
1910 |
+
value: 21.839
|
1911 |
+
- type: ndcg_at_100
|
1912 |
+
value: 31.057000000000002
|
1913 |
+
- type: ndcg_at_1000
|
1914 |
+
value: 36.962
|
1915 |
+
- type: ndcg_at_3
|
1916 |
+
value: 20.623
|
1917 |
+
- type: ndcg_at_5
|
1918 |
+
value: 18.107
|
1919 |
+
- type: precision_at_1
|
1920 |
+
value: 24.7
|
1921 |
+
- type: precision_at_10
|
1922 |
+
value: 11.360000000000001
|
1923 |
+
- type: precision_at_100
|
1924 |
+
value: 2.4619999999999997
|
1925 |
+
- type: precision_at_1000
|
1926 |
+
value: 0.388
|
1927 |
+
- type: precision_at_3
|
1928 |
+
value: 19.267
|
1929 |
+
- type: precision_at_5
|
1930 |
+
value: 15.959999999999999
|
1931 |
+
- type: recall_at_1
|
1932 |
+
value: 4.993
|
1933 |
+
- type: recall_at_10
|
1934 |
+
value: 22.982
|
1935 |
+
- type: recall_at_100
|
1936 |
+
value: 49.97
|
1937 |
+
- type: recall_at_1000
|
1938 |
+
value: 78.623
|
1939 |
+
- type: recall_at_3
|
1940 |
+
value: 11.716999999999999
|
1941 |
+
- type: recall_at_5
|
1942 |
+
value: 16.172
|
1943 |
+
- task:
|
1944 |
+
type: STS
|
1945 |
+
dataset:
|
1946 |
+
type: mteb/sickr-sts
|
1947 |
+
name: MTEB SICK-R
|
1948 |
+
config: default
|
1949 |
+
split: test
|
1950 |
+
revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
|
1951 |
+
metrics:
|
1952 |
+
- type: cos_sim_pearson
|
1953 |
+
value: 85.71899431421795
|
1954 |
+
- type: cos_sim_spearman
|
1955 |
+
value: 80.46430776062674
|
1956 |
+
- type: euclidean_pearson
|
1957 |
+
value: 83.02871101280735
|
1958 |
+
- type: euclidean_spearman
|
1959 |
+
value: 80.49525009964952
|
1960 |
+
- type: manhattan_pearson
|
1961 |
+
value: 82.96176477360466
|
1962 |
+
- type: manhattan_spearman
|
1963 |
+
value: 80.4038922852272
|
1964 |
+
- task:
|
1965 |
+
type: STS
|
1966 |
+
dataset:
|
1967 |
+
type: mteb/sts12-sts
|
1968 |
+
name: MTEB STS12
|
1969 |
+
config: default
|
1970 |
+
split: test
|
1971 |
+
revision: a0d554a64d88156834ff5ae9920b964011b16384
|
1972 |
+
metrics:
|
1973 |
+
- type: cos_sim_pearson
|
1974 |
+
value: 85.4473643076464
|
1975 |
+
- type: cos_sim_spearman
|
1976 |
+
value: 76.2648833265373
|
1977 |
+
- type: euclidean_pearson
|
1978 |
+
value: 82.5498605585181
|
1979 |
+
- type: euclidean_spearman
|
1980 |
+
value: 76.06458177068038
|
1981 |
+
- type: manhattan_pearson
|
1982 |
+
value: 82.55572570767087
|
1983 |
+
- type: manhattan_spearman
|
1984 |
+
value: 76.1267237133785
|
1985 |
+
- task:
|
1986 |
+
type: STS
|
1987 |
+
dataset:
|
1988 |
+
type: mteb/sts13-sts
|
1989 |
+
name: MTEB STS13
|
1990 |
+
config: default
|
1991 |
+
split: test
|
1992 |
+
revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
|
1993 |
+
metrics:
|
1994 |
+
- type: cos_sim_pearson
|
1995 |
+
value: 85.24858438337428
|
1996 |
+
- type: cos_sim_spearman
|
1997 |
+
value: 86.42907705680409
|
1998 |
+
- type: euclidean_pearson
|
1999 |
+
value: 85.50673274898077
|
2000 |
+
- type: euclidean_spearman
|
2001 |
+
value: 86.50066760759493
|
2002 |
+
- type: manhattan_pearson
|
2003 |
+
value: 85.38098024332331
|
2004 |
+
- type: manhattan_spearman
|
2005 |
+
value: 86.3179935859058
|
2006 |
+
- task:
|
2007 |
+
type: STS
|
2008 |
+
dataset:
|
2009 |
+
type: mteb/sts14-sts
|
2010 |
+
name: MTEB STS14
|
2011 |
+
config: default
|
2012 |
+
split: test
|
2013 |
+
revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
|
2014 |
+
metrics:
|
2015 |
+
- type: cos_sim_pearson
|
2016 |
+
value: 84.97052112858252
|
2017 |
+
- type: cos_sim_spearman
|
2018 |
+
value: 82.97007079944963
|
2019 |
+
- type: euclidean_pearson
|
2020 |
+
value: 84.49118913390151
|
2021 |
+
- type: euclidean_spearman
|
2022 |
+
value: 82.89912124589944
|
2023 |
+
- type: manhattan_pearson
|
2024 |
+
value: 84.45725470158602
|
2025 |
+
- type: manhattan_spearman
|
2026 |
+
value: 82.89422444440467
|
2027 |
+
- task:
|
2028 |
+
type: STS
|
2029 |
+
dataset:
|
2030 |
+
type: mteb/sts15-sts
|
2031 |
+
name: MTEB STS15
|
2032 |
+
config: default
|
2033 |
+
split: test
|
2034 |
+
revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
|
2035 |
+
metrics:
|
2036 |
+
- type: cos_sim_pearson
|
2037 |
+
value: 87.44702160696032
|
2038 |
+
- type: cos_sim_spearman
|
2039 |
+
value: 88.75678661413305
|
2040 |
+
- type: euclidean_pearson
|
2041 |
+
value: 88.22046240533754
|
2042 |
+
- type: euclidean_spearman
|
2043 |
+
value: 88.78103010580752
|
2044 |
+
- type: manhattan_pearson
|
2045 |
+
value: 88.15576644132916
|
2046 |
+
- type: manhattan_spearman
|
2047 |
+
value: 88.72891963379698
|
2048 |
+
- task:
|
2049 |
+
type: STS
|
2050 |
+
dataset:
|
2051 |
+
type: mteb/sts16-sts
|
2052 |
+
name: MTEB STS16
|
2053 |
+
config: default
|
2054 |
+
split: test
|
2055 |
+
revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
|
2056 |
+
metrics:
|
2057 |
+
- type: cos_sim_pearson
|
2058 |
+
value: 83.25112584874732
|
2059 |
+
- type: cos_sim_spearman
|
2060 |
+
value: 85.0642487018319
|
2061 |
+
- type: euclidean_pearson
|
2062 |
+
value: 84.37279427321502
|
2063 |
+
- type: euclidean_spearman
|
2064 |
+
value: 85.074198902509
|
2065 |
+
- type: manhattan_pearson
|
2066 |
+
value: 84.19323050597049
|
2067 |
+
- type: manhattan_spearman
|
2068 |
+
value: 84.88383717319327
|
2069 |
+
- task:
|
2070 |
+
type: STS
|
2071 |
+
dataset:
|
2072 |
+
type: mteb/sts17-crosslingual-sts
|
2073 |
+
name: MTEB STS17 (en-en)
|
2074 |
+
config: en-en
|
2075 |
+
split: test
|
2076 |
+
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
|
2077 |
+
metrics:
|
2078 |
+
- type: cos_sim_pearson
|
2079 |
+
value: 88.87357291874198
|
2080 |
+
- type: cos_sim_spearman
|
2081 |
+
value: 89.1113081854716
|
2082 |
+
- type: euclidean_pearson
|
2083 |
+
value: 89.61137598923361
|
2084 |
+
- type: euclidean_spearman
|
2085 |
+
value: 89.13391070267475
|
2086 |
+
- type: manhattan_pearson
|
2087 |
+
value: 89.62382071829829
|
2088 |
+
- type: manhattan_spearman
|
2089 |
+
value: 89.1997962715288
|
2090 |
+
- task:
|
2091 |
+
type: STS
|
2092 |
+
dataset:
|
2093 |
+
type: mteb/sts22-crosslingual-sts
|
2094 |
+
name: MTEB STS22 (en)
|
2095 |
+
config: en
|
2096 |
+
split: test
|
2097 |
+
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
|
2098 |
+
metrics:
|
2099 |
+
- type: cos_sim_pearson
|
2100 |
+
value: 67.1205707180893
|
2101 |
+
- type: cos_sim_spearman
|
2102 |
+
value: 68.16260851835224
|
2103 |
+
- type: euclidean_pearson
|
2104 |
+
value: 68.87294373141141
|
2105 |
+
- type: euclidean_spearman
|
2106 |
+
value: 67.98447223948163
|
2107 |
+
- type: manhattan_pearson
|
2108 |
+
value: 68.98950941915248
|
2109 |
+
- type: manhattan_spearman
|
2110 |
+
value: 68.29388343776796
|
2111 |
+
- task:
|
2112 |
+
type: STS
|
2113 |
+
dataset:
|
2114 |
+
type: mteb/stsbenchmark-sts
|
2115 |
+
name: MTEB STSBenchmark
|
2116 |
+
config: default
|
2117 |
+
split: test
|
2118 |
+
revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
|
2119 |
+
metrics:
|
2120 |
+
- type: cos_sim_pearson
|
2121 |
+
value: 85.9949201588004
|
2122 |
+
- type: cos_sim_spearman
|
2123 |
+
value: 87.31663820432567
|
2124 |
+
- type: euclidean_pearson
|
2125 |
+
value: 87.27979534770259
|
2126 |
+
- type: euclidean_spearman
|
2127 |
+
value: 87.31872069375427
|
2128 |
+
- type: manhattan_pearson
|
2129 |
+
value: 87.0783256942344
|
2130 |
+
- type: manhattan_spearman
|
2131 |
+
value: 87.16038562428714
|
2132 |
+
- task:
|
2133 |
+
type: Reranking
|
2134 |
+
dataset:
|
2135 |
+
type: mteb/scidocs-reranking
|
2136 |
+
name: MTEB SciDocsRR
|
2137 |
+
config: default
|
2138 |
+
split: test
|
2139 |
+
revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
|
2140 |
+
metrics:
|
2141 |
+
- type: map
|
2142 |
+
value: 86.08173708317305
|
2143 |
+
- type: mrr
|
2144 |
+
value: 95.93575179359493
|
2145 |
+
- task:
|
2146 |
+
type: Retrieval
|
2147 |
+
dataset:
|
2148 |
+
type: scifact
|
2149 |
+
name: MTEB SciFact
|
2150 |
+
config: default
|
2151 |
+
split: test
|
2152 |
+
revision: None
|
2153 |
+
metrics:
|
2154 |
+
- type: map_at_1
|
2155 |
+
value: 57.65
|
2156 |
+
- type: map_at_10
|
2157 |
+
value: 67.19000000000001
|
2158 |
+
- type: map_at_100
|
2159 |
+
value: 67.772
|
2160 |
+
- type: map_at_1000
|
2161 |
+
value: 67.805
|
2162 |
+
- type: map_at_3
|
2163 |
+
value: 64.14800000000001
|
2164 |
+
- type: map_at_5
|
2165 |
+
value: 65.745
|
2166 |
+
- type: mrr_at_1
|
2167 |
+
value: 60.333000000000006
|
2168 |
+
- type: mrr_at_10
|
2169 |
+
value: 68.158
|
2170 |
+
- type: mrr_at_100
|
2171 |
+
value: 68.583
|
2172 |
+
- type: mrr_at_1000
|
2173 |
+
value: 68.613
|
2174 |
+
- type: mrr_at_3
|
2175 |
+
value: 65.72200000000001
|
2176 |
+
- type: mrr_at_5
|
2177 |
+
value: 67.039
|
2178 |
+
- type: ndcg_at_1
|
2179 |
+
value: 60.333000000000006
|
2180 |
+
- type: ndcg_at_10
|
2181 |
+
value: 71.69200000000001
|
2182 |
+
- type: ndcg_at_100
|
2183 |
+
value: 74.064
|
2184 |
+
- type: ndcg_at_1000
|
2185 |
+
value: 74.694
|
2186 |
+
- type: ndcg_at_3
|
2187 |
+
value: 66.378
|
2188 |
+
- type: ndcg_at_5
|
2189 |
+
value: 68.73
|
2190 |
+
- type: precision_at_1
|
2191 |
+
value: 60.333000000000006
|
2192 |
+
- type: precision_at_10
|
2193 |
+
value: 9.533
|
2194 |
+
- type: precision_at_100
|
2195 |
+
value: 1.08
|
2196 |
+
- type: precision_at_1000
|
2197 |
+
value: 0.11299999999999999
|
2198 |
+
- type: precision_at_3
|
2199 |
+
value: 25.556
|
2200 |
+
- type: precision_at_5
|
2201 |
+
value: 17.0
|
2202 |
+
- type: recall_at_1
|
2203 |
+
value: 57.65
|
2204 |
+
- type: recall_at_10
|
2205 |
+
value: 84.56700000000001
|
2206 |
+
- type: recall_at_100
|
2207 |
+
value: 95.167
|
2208 |
+
- type: recall_at_1000
|
2209 |
+
value: 99.667
|
2210 |
+
- type: recall_at_3
|
2211 |
+
value: 70.272
|
2212 |
+
- type: recall_at_5
|
2213 |
+
value: 76.11099999999999
|
2214 |
+
- task:
|
2215 |
+
type: PairClassification
|
2216 |
+
dataset:
|
2217 |
+
type: mteb/sprintduplicatequestions-pairclassification
|
2218 |
+
name: MTEB SprintDuplicateQuestions
|
2219 |
+
config: default
|
2220 |
+
split: test
|
2221 |
+
revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
|
2222 |
+
metrics:
|
2223 |
+
- type: cos_sim_accuracy
|
2224 |
+
value: 99.83663366336634
|
2225 |
+
- type: cos_sim_ap
|
2226 |
+
value: 96.13854487816917
|
2227 |
+
- type: cos_sim_f1
|
2228 |
+
value: 91.77057356608479
|
2229 |
+
- type: cos_sim_precision
|
2230 |
+
value: 91.54228855721394
|
2231 |
+
- type: cos_sim_recall
|
2232 |
+
value: 92.0
|
2233 |
+
- type: dot_accuracy
|
2234 |
+
value: 99.83663366336634
|
2235 |
+
- type: dot_ap
|
2236 |
+
value: 96.29459284844314
|
2237 |
+
- type: dot_f1
|
2238 |
+
value: 91.6030534351145
|
2239 |
+
- type: dot_precision
|
2240 |
+
value: 93.26424870466322
|
2241 |
+
- type: dot_recall
|
2242 |
+
value: 90.0
|
2243 |
+
- type: euclidean_accuracy
|
2244 |
+
value: 99.83564356435643
|
2245 |
+
- type: euclidean_ap
|
2246 |
+
value: 96.09957152523418
|
2247 |
+
- type: euclidean_f1
|
2248 |
+
value: 91.7
|
2249 |
+
- type: euclidean_precision
|
2250 |
+
value: 91.7
|
2251 |
+
- type: euclidean_recall
|
2252 |
+
value: 91.7
|
2253 |
+
- type: manhattan_accuracy
|
2254 |
+
value: 99.83663366336634
|
2255 |
+
- type: manhattan_ap
|
2256 |
+
value: 96.09579952373399
|
2257 |
+
- type: manhattan_f1
|
2258 |
+
value: 91.72932330827068
|
2259 |
+
- type: manhattan_precision
|
2260 |
+
value: 91.95979899497488
|
2261 |
+
- type: manhattan_recall
|
2262 |
+
value: 91.5
|
2263 |
+
- type: max_accuracy
|
2264 |
+
value: 99.83663366336634
|
2265 |
+
- type: max_ap
|
2266 |
+
value: 96.29459284844314
|
2267 |
+
- type: max_f1
|
2268 |
+
value: 91.77057356608479
|
2269 |
+
- task:
|
2270 |
+
type: Clustering
|
2271 |
+
dataset:
|
2272 |
+
type: mteb/stackexchange-clustering
|
2273 |
+
name: MTEB StackExchangeClustering
|
2274 |
+
config: default
|
2275 |
+
split: test
|
2276 |
+
revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
|
2277 |
+
metrics:
|
2278 |
+
- type: v_measure
|
2279 |
+
value: 61.270213664772385
|
2280 |
+
- task:
|
2281 |
+
type: Clustering
|
2282 |
+
dataset:
|
2283 |
+
type: mteb/stackexchange-clustering-p2p
|
2284 |
+
name: MTEB StackExchangeClusteringP2P
|
2285 |
+
config: default
|
2286 |
+
split: test
|
2287 |
+
revision: 815ca46b2622cec33ccafc3735d572c266efdb44
|
2288 |
+
metrics:
|
2289 |
+
- type: v_measure
|
2290 |
+
value: 35.23973443659002
|
2291 |
+
- task:
|
2292 |
+
type: Reranking
|
2293 |
+
dataset:
|
2294 |
+
type: mteb/stackoverflowdupquestions-reranking
|
2295 |
+
name: MTEB StackOverflowDupQuestions
|
2296 |
+
config: default
|
2297 |
+
split: test
|
2298 |
+
revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
|
2299 |
+
metrics:
|
2300 |
+
- type: map
|
2301 |
+
value: 53.40061413824656
|
2302 |
+
- type: mrr
|
2303 |
+
value: 54.28819444444445
|
2304 |
+
- task:
|
2305 |
+
type: Summarization
|
2306 |
+
dataset:
|
2307 |
+
type: mteb/summeval
|
2308 |
+
name: MTEB SummEval
|
2309 |
+
config: default
|
2310 |
+
split: test
|
2311 |
+
revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
|
2312 |
+
metrics:
|
2313 |
+
- type: cos_sim_pearson
|
2314 |
+
value: 30.59314409717665
|
2315 |
+
- type: cos_sim_spearman
|
2316 |
+
value: 30.573109955748677
|
2317 |
+
- type: dot_pearson
|
2318 |
+
value: 30.884662900409722
|
2319 |
+
- type: dot_spearman
|
2320 |
+
value: 30.778591618272262
|
2321 |
+
- task:
|
2322 |
+
type: Retrieval
|
2323 |
+
dataset:
|
2324 |
+
type: trec-covid
|
2325 |
+
name: MTEB TRECCOVID
|
2326 |
+
config: default
|
2327 |
+
split: test
|
2328 |
+
revision: None
|
2329 |
+
metrics:
|
2330 |
+
- type: map_at_1
|
2331 |
+
value: 0.20400000000000001
|
2332 |
+
- type: map_at_10
|
2333 |
+
value: 1.7229999999999999
|
2334 |
+
- type: map_at_100
|
2335 |
+
value: 9.185
|
2336 |
+
- type: map_at_1000
|
2337 |
+
value: 23.019000000000002
|
2338 |
+
- type: map_at_3
|
2339 |
+
value: 0.596
|
2340 |
+
- type: map_at_5
|
2341 |
+
value: 0.9339999999999999
|
2342 |
+
- type: mrr_at_1
|
2343 |
+
value: 78.0
|
2344 |
+
- type: mrr_at_10
|
2345 |
+
value: 85.5
|
2346 |
+
- type: mrr_at_100
|
2347 |
+
value: 85.682
|
2348 |
+
- type: mrr_at_1000
|
2349 |
+
value: 85.682
|
2350 |
+
- type: mrr_at_3
|
2351 |
+
value: 84.0
|
2352 |
+
- type: mrr_at_5
|
2353 |
+
value: 85.5
|
2354 |
+
- type: ndcg_at_1
|
2355 |
+
value: 73.0
|
2356 |
+
- type: ndcg_at_10
|
2357 |
+
value: 68.28
|
2358 |
+
- type: ndcg_at_100
|
2359 |
+
value: 52.239000000000004
|
2360 |
+
- type: ndcg_at_1000
|
2361 |
+
value: 48.217
|
2362 |
+
- type: ndcg_at_3
|
2363 |
+
value: 72.603
|
2364 |
+
- type: ndcg_at_5
|
2365 |
+
value: 70.64099999999999
|
2366 |
+
- type: precision_at_1
|
2367 |
+
value: 78.0
|
2368 |
+
- type: precision_at_10
|
2369 |
+
value: 72.39999999999999
|
2370 |
+
- type: precision_at_100
|
2371 |
+
value: 53.459999999999994
|
2372 |
+
- type: precision_at_1000
|
2373 |
+
value: 21.254
|
2374 |
+
- type: precision_at_3
|
2375 |
+
value: 78.0
|
2376 |
+
- type: precision_at_5
|
2377 |
+
value: 74.8
|
2378 |
+
- type: recall_at_1
|
2379 |
+
value: 0.20400000000000001
|
2380 |
+
- type: recall_at_10
|
2381 |
+
value: 1.939
|
2382 |
+
- type: recall_at_100
|
2383 |
+
value: 12.831000000000001
|
2384 |
+
- type: recall_at_1000
|
2385 |
+
value: 45.572
|
2386 |
+
- type: recall_at_3
|
2387 |
+
value: 0.628
|
2388 |
+
- type: recall_at_5
|
2389 |
+
value: 1.004
|
2390 |
+
- task:
|
2391 |
+
type: Retrieval
|
2392 |
+
dataset:
|
2393 |
+
type: webis-touche2020
|
2394 |
+
name: MTEB Touche2020
|
2395 |
+
config: default
|
2396 |
+
split: test
|
2397 |
+
revision: None
|
2398 |
+
metrics:
|
2399 |
+
- type: map_at_1
|
2400 |
+
value: 1.693
|
2401 |
+
- type: map_at_10
|
2402 |
+
value: 7.7410000000000005
|
2403 |
+
- type: map_at_100
|
2404 |
+
value: 13.778000000000002
|
2405 |
+
- type: map_at_1000
|
2406 |
+
value: 15.328
|
2407 |
+
- type: map_at_3
|
2408 |
+
value: 4.361000000000001
|
2409 |
+
- type: map_at_5
|
2410 |
+
value: 5.534
|
2411 |
+
- type: mrr_at_1
|
2412 |
+
value: 20.408
|
2413 |
+
- type: mrr_at_10
|
2414 |
+
value: 37.008
|
2415 |
+
- type: mrr_at_100
|
2416 |
+
value: 38.198
|
2417 |
+
- type: mrr_at_1000
|
2418 |
+
value: 38.216
|
2419 |
+
- type: mrr_at_3
|
2420 |
+
value: 32.993
|
2421 |
+
- type: mrr_at_5
|
2422 |
+
value: 34.83
|
2423 |
+
- type: ndcg_at_1
|
2424 |
+
value: 18.367
|
2425 |
+
- type: ndcg_at_10
|
2426 |
+
value: 19.676
|
2427 |
+
- type: ndcg_at_100
|
2428 |
+
value: 33.421
|
2429 |
+
- type: ndcg_at_1000
|
2430 |
+
value: 45.123999999999995
|
2431 |
+
- type: ndcg_at_3
|
2432 |
+
value: 22.109
|
2433 |
+
- type: ndcg_at_5
|
2434 |
+
value: 20.166999999999998
|
2435 |
+
- type: precision_at_1
|
2436 |
+
value: 20.408
|
2437 |
+
- type: precision_at_10
|
2438 |
+
value: 17.551
|
2439 |
+
- type: precision_at_100
|
2440 |
+
value: 7.286
|
2441 |
+
- type: precision_at_1000
|
2442 |
+
value: 1.516
|
2443 |
+
- type: precision_at_3
|
2444 |
+
value: 23.810000000000002
|
2445 |
+
- type: precision_at_5
|
2446 |
+
value: 20.408
|
2447 |
+
- type: recall_at_1
|
2448 |
+
value: 1.693
|
2449 |
+
- type: recall_at_10
|
2450 |
+
value: 13.485
|
2451 |
+
- type: recall_at_100
|
2452 |
+
value: 46.361000000000004
|
2453 |
+
- type: recall_at_1000
|
2454 |
+
value: 81.997
|
2455 |
+
- type: recall_at_3
|
2456 |
+
value: 5.432
|
2457 |
+
- type: recall_at_5
|
2458 |
+
value: 7.797
|
2459 |
+
- task:
|
2460 |
+
type: Classification
|
2461 |
+
dataset:
|
2462 |
+
type: mteb/toxic_conversations_50k
|
2463 |
+
name: MTEB ToxicConversationsClassification
|
2464 |
+
config: default
|
2465 |
+
split: test
|
2466 |
+
revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
|
2467 |
+
metrics:
|
2468 |
+
- type: accuracy
|
2469 |
+
value: 70.6774
|
2470 |
+
- type: ap
|
2471 |
+
value: 14.243691983984998
|
2472 |
+
- type: f1
|
2473 |
+
value: 54.45105895755751
|
2474 |
+
- task:
|
2475 |
+
type: Classification
|
2476 |
+
dataset:
|
2477 |
+
type: mteb/tweet_sentiment_extraction
|
2478 |
+
name: MTEB TweetSentimentExtractionClassification
|
2479 |
+
config: default
|
2480 |
+
split: test
|
2481 |
+
revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
|
2482 |
+
metrics:
|
2483 |
+
- type: accuracy
|
2484 |
+
value: 60.0509337860781
|
2485 |
+
- type: f1
|
2486 |
+
value: 60.424197644605236
|
2487 |
+
- task:
|
2488 |
+
type: Clustering
|
2489 |
+
dataset:
|
2490 |
+
type: mteb/twentynewsgroups-clustering
|
2491 |
+
name: MTEB TwentyNewsgroupsClustering
|
2492 |
+
config: default
|
2493 |
+
split: test
|
2494 |
+
revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
|
2495 |
+
metrics:
|
2496 |
+
- type: v_measure
|
2497 |
+
value: 49.94452711339773
|
2498 |
+
- task:
|
2499 |
+
type: PairClassification
|
2500 |
+
dataset:
|
2501 |
+
type: mteb/twittersemeval2015-pairclassification
|
2502 |
+
name: MTEB TwitterSemEval2015
|
2503 |
+
config: default
|
2504 |
+
split: test
|
2505 |
+
revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
|
2506 |
+
metrics:
|
2507 |
+
- type: cos_sim_accuracy
|
2508 |
+
value: 85.75430649102938
|
2509 |
+
- type: cos_sim_ap
|
2510 |
+
value: 73.38576407567363
|
2511 |
+
- type: cos_sim_f1
|
2512 |
+
value: 67.47549019607844
|
2513 |
+
- type: cos_sim_precision
|
2514 |
+
value: 62.99771167048055
|
2515 |
+
- type: cos_sim_recall
|
2516 |
+
value: 72.63852242744063
|
2517 |
+
- type: dot_accuracy
|
2518 |
+
value: 85.67681945520653
|
2519 |
+
- type: dot_ap
|
2520 |
+
value: 73.37650773516077
|
2521 |
+
- type: dot_f1
|
2522 |
+
value: 67.56520653937352
|
2523 |
+
- type: dot_precision
|
2524 |
+
value: 64.1013497513616
|
2525 |
+
- type: dot_recall
|
2526 |
+
value: 71.42480211081794
|
2527 |
+
- type: euclidean_accuracy
|
2528 |
+
value: 85.76622757346367
|
2529 |
+
- type: euclidean_ap
|
2530 |
+
value: 73.31834510956003
|
2531 |
+
- type: euclidean_f1
|
2532 |
+
value: 67.40331491712708
|
2533 |
+
- type: euclidean_precision
|
2534 |
+
value: 60.780156879372484
|
2535 |
+
- type: euclidean_recall
|
2536 |
+
value: 75.64643799472296
|
2537 |
+
- type: manhattan_accuracy
|
2538 |
+
value: 85.73046432616081
|
2539 |
+
- type: manhattan_ap
|
2540 |
+
value: 73.10120518588954
|
2541 |
+
- type: manhattan_f1
|
2542 |
+
value: 67.34183545886471
|
2543 |
+
- type: manhattan_precision
|
2544 |
+
value: 63.997148288973385
|
2545 |
+
- type: manhattan_recall
|
2546 |
+
value: 71.05540897097626
|
2547 |
+
- type: max_accuracy
|
2548 |
+
value: 85.76622757346367
|
2549 |
+
- type: max_ap
|
2550 |
+
value: 73.38576407567363
|
2551 |
+
- type: max_f1
|
2552 |
+
value: 67.56520653937352
|
2553 |
+
- task:
|
2554 |
+
type: PairClassification
|
2555 |
+
dataset:
|
2556 |
+
type: mteb/twitterurlcorpus-pairclassification
|
2557 |
+
name: MTEB TwitterURLCorpus
|
2558 |
+
config: default
|
2559 |
+
split: test
|
2560 |
+
revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
|
2561 |
+
metrics:
|
2562 |
+
- type: cos_sim_accuracy
|
2563 |
+
value: 88.71424690495596
|
2564 |
+
- type: cos_sim_ap
|
2565 |
+
value: 85.42819672981983
|
2566 |
+
- type: cos_sim_f1
|
2567 |
+
value: 77.76150014649868
|
2568 |
+
- type: cos_sim_precision
|
2569 |
+
value: 74.15479184129646
|
2570 |
+
- type: cos_sim_recall
|
2571 |
+
value: 81.73698798891284
|
2572 |
+
- type: dot_accuracy
|
2573 |
+
value: 88.45810532852097
|
2574 |
+
- type: dot_ap
|
2575 |
+
value: 84.78667227857513
|
2576 |
+
- type: dot_f1
|
2577 |
+
value: 77.29539996305192
|
2578 |
+
- type: dot_precision
|
2579 |
+
value: 74.30560488740498
|
2580 |
+
- type: dot_recall
|
2581 |
+
value: 80.53587927317524
|
2582 |
+
- type: euclidean_accuracy
|
2583 |
+
value: 88.73171110334924
|
2584 |
+
- type: euclidean_ap
|
2585 |
+
value: 85.46052151213301
|
2586 |
+
- type: euclidean_f1
|
2587 |
+
value: 77.79939075861563
|
2588 |
+
- type: euclidean_precision
|
2589 |
+
value: 74.33200084157374
|
2590 |
+
- type: euclidean_recall
|
2591 |
+
value: 81.60609793655682
|
2592 |
+
- type: manhattan_accuracy
|
2593 |
+
value: 88.75111576823068
|
2594 |
+
- type: manhattan_ap
|
2595 |
+
value: 85.4412901701619
|
2596 |
+
- type: manhattan_f1
|
2597 |
+
value: 77.72423325488437
|
2598 |
+
- type: manhattan_precision
|
2599 |
+
value: 75.48799071184965
|
2600 |
+
- type: manhattan_recall
|
2601 |
+
value: 80.09701262704034
|
2602 |
+
- type: max_accuracy
|
2603 |
+
value: 88.75111576823068
|
2604 |
+
- type: max_ap
|
2605 |
+
value: 85.46052151213301
|
2606 |
+
- type: max_f1
|
2607 |
+
value: 77.79939075861563
|
2608 |
---
|
2609 |
+
<h1 align="center">GIST small Embedding v0</h1>
|
2610 |
+
|
2611 |
+
*GIST Embedding: Guided In-sample Selection of Training Negatives for Text Embedding*
|
2612 |
+
|
2613 |
+
The model is fine-tuned on top of the [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) using the [MEDI dataset](https://github.com/xlang-ai/instructor-embedding.git) augmented with mined triplets from the [MTEB Classification](https://huggingface.co/mteb) training dataset (excluding data from the Amazon Polarity Classification task).
|
2614 |
+
|
2615 |
+
The model does not require any instruction for generating embeddings. This means that queries for retrieval tasks can be directly encoded without crafting instructions.
|
2616 |
+
|
2617 |
+
Technical details of the model will be published shortly.
|
2618 |
+
|
2619 |
+
# Data
|
2620 |
+
|
2621 |
+
The dataset used is a compilation of the MEDI dataset and the MTEB Classification training dataset. Third-party datasets may be subject to additional terms and conditions under their associated licenses. A HuggingFace Dataset version of the compiled dataset, and the specific revision used to train the model, is available:
|
2622 |
+
|
2623 |
+
- Dataset: [avsolatorio/medi-data-mteb_avs_triplets](https://huggingface.co/datasets/avsolatorio/medi-data-mteb_avs_triplets)
|
2624 |
+
- Revision: 238a0499b6e6b690cc64ea56fde8461daa8341bb
|
2625 |
+
|
2626 |
+
The dataset contains a `task_type` key which can be used to select only the mteb classification tasks (prefixed with `mteb_`).
|
2627 |
+
|
2628 |
+
The **MEDI Dataset** is published in the following paper: [One Embedder, Any Task: Instruction-Finetuned Text Embeddings](https://arxiv.org/abs/2212.09741).
|
2629 |
+
|
2630 |
+
The MTEB Benchmark results of the GIST embedding model, compared with the base model, suggest that the fine-tuning dataset has perturbed the model considerably, which resulted in significant improvements in certain tasks while adversely degrading performance in some.
|
2631 |
+
|
2632 |
+
The retrieval performance for the TRECCOVID task is of note. The fine-tuning dataset does not contain significant knowledge about COVID, which could have caused the observed performance degradation. Further work is currently being undertaken to validate this hypothesis.
|
2633 |
+
|
2634 |
+
# Usage
|
2635 |
+
|
2636 |
+
The model can be easily loaded using the Sentence Transformers library.
|
2637 |
+
|
2638 |
+
```Python
|
2639 |
+
import torch.nn.functional as F
|
2640 |
+
from sentence_transformers import SentenceTransformer
|
2641 |
+
|
2642 |
+
revision = None # Replace with the specific revision to ensure reproducibility in case the model is updated.
|
2643 |
+
|
2644 |
+
model = SentenceTransformer("avsolatorio/GIST-small-Embedding-v0", revision=revision)
|
2645 |
+
|
2646 |
+
texts = [
|
2647 |
+
"Illustration of the REaLTabFormer model. The left block shows the non-relational tabular data model using GPT-2 with a causal LM head. In contrast, the right block shows how a relational dataset's child table is modeled using a sequence-to-sequence (Seq2Seq) model. The Seq2Seq model uses the observations in the parent table to condition the generation of the observations in the child table. The trained GPT-2 model on the parent table, with weights frozen, is also used as the encoder in the Seq2Seq model.",
|
2648 |
+
"Predicting human mobility holds significant practical value, with applications ranging from enhancing disaster risk planning to simulating epidemic spread. In this paper, we present the GeoFormer, a decoder-only transformer model adapted from the GPT architecture to forecast human mobility.",
|
2649 |
+
"As the economies of Southeast Asia continue adopting digital technologies, policy makers increasingly ask how to prepare the workforce for emerging labor demands. However, little is known about the skills that workers need to adapt to these changes"
|
2650 |
+
]
|
2651 |
+
|
2652 |
+
# Compute embeddings
|
2653 |
+
embeddings = model.encode(texts, convert_to_tensor=True)
|
2654 |
+
|
2655 |
+
# Compute cosine-similarity for each pair of sentences
|
2656 |
+
scores = F.cosine_similarity(embeddings.unsqueeze(1), embeddings.unsqueeze(0), dim=-1)
|
2657 |
+
|
2658 |
+
print(scores.cpu().numpy())
|
2659 |
+
```
|
2660 |
+
|
2661 |
+
# Training Parameters
|
2662 |
+
|
2663 |
+
Below are the training parameters used to fine-tune the model:
|
2664 |
+
|
2665 |
+
```
|
2666 |
+
Epochs = 40
|
2667 |
+
Warmup ratio = 0.1
|
2668 |
+
Learning rate = 5e-6
|
2669 |
+
Batch size = 16
|
2670 |
+
Checkpoint step = 102000
|
2671 |
+
Contrastive loss temperature = 0.01
|
2672 |
+
```
|
2673 |
+
|
2674 |
+
Specific training details and strategies will be published shortly.
|
2675 |
+
|
2676 |
+
# Evaluation
|
2677 |
+
|
2678 |
+
The model was evaluated using the [MTEB Evaluation](https://huggingface.co/mteb) suite.
|
2679 |
+
|
2680 |
+
|
2681 |
+
# Acknowledgements
|
2682 |
+
|
2683 |
+
This work is supported by the "KCP IV - Exploring Data Use in the Development Economics Literature using Large Language Models (AI and LLMs)" project funded by the [Knowledge for Change Program (KCP)](https://www.worldbank.org/en/programs/knowledge-for-change) of the World Bank - RA-P503405-RESE-TF0C3444.
|
2684 |
+
|
2685 |
+
The findings, interpretations, and conclusions expressed in this material are entirely those of the authors. They do not necessarily represent the views of the International Bank for Reconstruction and Development/World Bank and its affiliated organizations, or those of the Executive Directors of the World Bank or the governments they represent.
|