avsolatorio commited on
Commit
b3ae006
1 Parent(s): f985c93

Add readme

Browse files

Signed-off-by: Aivin V. Solatorio <avsolatorio@gmail.com>

Files changed (1) hide show
  1. README.md +2682 -0
README.md CHANGED
@@ -1,3 +1,2685 @@
1
  ---
 
 
 
2
  license: mit
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ language:
3
+ - en
4
+ library_name: sentence-transformers
5
  license: mit
6
+ pipeline_tag: sentence-similarity
7
+ tags:
8
+ - feature-extraction
9
+ - mteb
10
+ - sentence-similarity
11
+ - sentence-transformers
12
+
13
+ model-index:
14
+ - name: GIST-small-Embedding-v0
15
+ results:
16
+ - task:
17
+ type: Classification
18
+ dataset:
19
+ type: mteb/amazon_counterfactual
20
+ name: MTEB AmazonCounterfactualClassification (en)
21
+ config: en
22
+ split: test
23
+ revision: e8379541af4e31359cca9fbcf4b00f2671dba205
24
+ metrics:
25
+ - type: accuracy
26
+ value: 73.40298507462688
27
+ - type: ap
28
+ value: 36.01661955459773
29
+ - type: f1
30
+ value: 67.35688942295793
31
+ - task:
32
+ type: Classification
33
+ dataset:
34
+ type: mteb/amazon_polarity
35
+ name: MTEB AmazonPolarityClassification
36
+ config: default
37
+ split: test
38
+ revision: e2d317d38cd51312af73b3d32a06d1a08b442046
39
+ metrics:
40
+ - type: accuracy
41
+ value: 92.71195000000002
42
+ - type: ap
43
+ value: 89.33528835459364
44
+ - type: f1
45
+ value: 92.69653287380515
46
+ - task:
47
+ type: Classification
48
+ dataset:
49
+ type: mteb/amazon_reviews_multi
50
+ name: MTEB AmazonReviewsClassification (en)
51
+ config: en
52
+ split: test
53
+ revision: 1399c76144fd37290681b995c656ef9b2e06e26d
54
+ metrics:
55
+ - type: accuracy
56
+ value: 49.007999999999996
57
+ - type: f1
58
+ value: 48.44310279702607
59
+ - task:
60
+ type: Retrieval
61
+ dataset:
62
+ type: arguana
63
+ name: MTEB ArguAna
64
+ config: default
65
+ split: test
66
+ revision: None
67
+ metrics:
68
+ - type: map_at_1
69
+ value: 36.272999999999996
70
+ - type: map_at_10
71
+ value: 52.059999999999995
72
+ - type: map_at_100
73
+ value: 52.75300000000001
74
+ - type: map_at_1000
75
+ value: 52.756
76
+ - type: map_at_3
77
+ value: 47.57
78
+ - type: map_at_5
79
+ value: 50.236999999999995
80
+ - type: mrr_at_1
81
+ value: 36.272999999999996
82
+ - type: mrr_at_10
83
+ value: 51.942
84
+ - type: mrr_at_100
85
+ value: 52.634
86
+ - type: mrr_at_1000
87
+ value: 52.637
88
+ - type: mrr_at_3
89
+ value: 47.475
90
+ - type: mrr_at_5
91
+ value: 50.11
92
+ - type: ndcg_at_1
93
+ value: 36.272999999999996
94
+ - type: ndcg_at_10
95
+ value: 60.558
96
+ - type: ndcg_at_100
97
+ value: 63.293
98
+ - type: ndcg_at_1000
99
+ value: 63.375
100
+ - type: ndcg_at_3
101
+ value: 51.364
102
+ - type: ndcg_at_5
103
+ value: 56.154
104
+ - type: precision_at_1
105
+ value: 36.272999999999996
106
+ - type: precision_at_10
107
+ value: 8.755
108
+ - type: precision_at_100
109
+ value: 0.9900000000000001
110
+ - type: precision_at_1000
111
+ value: 0.1
112
+ - type: precision_at_3
113
+ value: 20.791999999999998
114
+ - type: precision_at_5
115
+ value: 14.793999999999999
116
+ - type: recall_at_1
117
+ value: 36.272999999999996
118
+ - type: recall_at_10
119
+ value: 87.553
120
+ - type: recall_at_100
121
+ value: 99.004
122
+ - type: recall_at_1000
123
+ value: 99.644
124
+ - type: recall_at_3
125
+ value: 62.376
126
+ - type: recall_at_5
127
+ value: 73.969
128
+ - task:
129
+ type: Clustering
130
+ dataset:
131
+ type: mteb/arxiv-clustering-p2p
132
+ name: MTEB ArxivClusteringP2P
133
+ config: default
134
+ split: test
135
+ revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
136
+ metrics:
137
+ - type: v_measure
138
+ value: 47.79137102109872
139
+ - task:
140
+ type: Clustering
141
+ dataset:
142
+ type: mteb/arxiv-clustering-s2s
143
+ name: MTEB ArxivClusteringS2S
144
+ config: default
145
+ split: test
146
+ revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
147
+ metrics:
148
+ - type: v_measure
149
+ value: 40.03049595085257
150
+ - task:
151
+ type: Reranking
152
+ dataset:
153
+ type: mteb/askubuntudupquestions-reranking
154
+ name: MTEB AskUbuntuDupQuestions
155
+ config: default
156
+ split: test
157
+ revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
158
+ metrics:
159
+ - type: map
160
+ value: 62.868157850825256
161
+ - type: mrr
162
+ value: 75.33922525612276
163
+ - task:
164
+ type: STS
165
+ dataset:
166
+ type: mteb/biosses-sts
167
+ name: MTEB BIOSSES
168
+ config: default
169
+ split: test
170
+ revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
171
+ metrics:
172
+ - type: cos_sim_pearson
173
+ value: 88.96056116438724
174
+ - type: cos_sim_spearman
175
+ value: 87.32608616965557
176
+ - type: euclidean_pearson
177
+ value: 87.40536769084146
178
+ - type: euclidean_spearman
179
+ value: 87.39235273982528
180
+ - type: manhattan_pearson
181
+ value: 87.4496043849794
182
+ - type: manhattan_spearman
183
+ value: 87.1128282983821
184
+ - task:
185
+ type: Classification
186
+ dataset:
187
+ type: mteb/banking77
188
+ name: MTEB Banking77Classification
189
+ config: default
190
+ split: test
191
+ revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
192
+ metrics:
193
+ - type: accuracy
194
+ value: 86.16883116883116
195
+ - type: f1
196
+ value: 86.1338488750026
197
+ - task:
198
+ type: Clustering
199
+ dataset:
200
+ type: mteb/biorxiv-clustering-p2p
201
+ name: MTEB BiorxivClusteringP2P
202
+ config: default
203
+ split: test
204
+ revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
205
+ metrics:
206
+ - type: v_measure
207
+ value: 38.950791675044
208
+ - task:
209
+ type: Clustering
210
+ dataset:
211
+ type: mteb/biorxiv-clustering-s2s
212
+ name: MTEB BiorxivClusteringS2S
213
+ config: default
214
+ split: test
215
+ revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
216
+ metrics:
217
+ - type: v_measure
218
+ value: 35.40686850755838
219
+ - task:
220
+ type: Retrieval
221
+ dataset:
222
+ type: BeIR/cqadupstack
223
+ name: MTEB CQADupstackAndroidRetrieval
224
+ config: default
225
+ split: test
226
+ revision: None
227
+ metrics:
228
+ - type: map_at_1
229
+ value: 30.891000000000002
230
+ - type: map_at_10
231
+ value: 42.624
232
+ - type: map_at_100
233
+ value: 44.205
234
+ - type: map_at_1000
235
+ value: 44.336999999999996
236
+ - type: map_at_3
237
+ value: 38.81
238
+ - type: map_at_5
239
+ value: 41.152
240
+ - type: mrr_at_1
241
+ value: 38.196999999999996
242
+ - type: mrr_at_10
243
+ value: 48.641
244
+ - type: mrr_at_100
245
+ value: 49.329
246
+ - type: mrr_at_1000
247
+ value: 49.376
248
+ - type: mrr_at_3
249
+ value: 45.637
250
+ - type: mrr_at_5
251
+ value: 47.611
252
+ - type: ndcg_at_1
253
+ value: 38.196999999999996
254
+ - type: ndcg_at_10
255
+ value: 49.274
256
+ - type: ndcg_at_100
257
+ value: 54.716
258
+ - type: ndcg_at_1000
259
+ value: 56.654
260
+ - type: ndcg_at_3
261
+ value: 43.787
262
+ - type: ndcg_at_5
263
+ value: 46.719
264
+ - type: precision_at_1
265
+ value: 38.196999999999996
266
+ - type: precision_at_10
267
+ value: 9.585
268
+ - type: precision_at_100
269
+ value: 1.545
270
+ - type: precision_at_1000
271
+ value: 0.20400000000000001
272
+ - type: precision_at_3
273
+ value: 21.173000000000002
274
+ - type: precision_at_5
275
+ value: 15.536
276
+ - type: recall_at_1
277
+ value: 30.891000000000002
278
+ - type: recall_at_10
279
+ value: 61.792
280
+ - type: recall_at_100
281
+ value: 84.526
282
+ - type: recall_at_1000
283
+ value: 96.717
284
+ - type: recall_at_3
285
+ value: 46.472
286
+ - type: recall_at_5
287
+ value: 54.391999999999996
288
+ - task:
289
+ type: Retrieval
290
+ dataset:
291
+ type: BeIR/cqadupstack
292
+ name: MTEB CQADupstackEnglishRetrieval
293
+ config: default
294
+ split: test
295
+ revision: None
296
+ metrics:
297
+ - type: map_at_1
298
+ value: 30.266
299
+ - type: map_at_10
300
+ value: 39.717999999999996
301
+ - type: map_at_100
302
+ value: 40.971000000000004
303
+ - type: map_at_1000
304
+ value: 41.097
305
+ - type: map_at_3
306
+ value: 36.858999999999995
307
+ - type: map_at_5
308
+ value: 38.405
309
+ - type: mrr_at_1
310
+ value: 37.452000000000005
311
+ - type: mrr_at_10
312
+ value: 45.528
313
+ - type: mrr_at_100
314
+ value: 46.178000000000004
315
+ - type: mrr_at_1000
316
+ value: 46.221000000000004
317
+ - type: mrr_at_3
318
+ value: 43.089
319
+ - type: mrr_at_5
320
+ value: 44.497
321
+ - type: ndcg_at_1
322
+ value: 37.452000000000005
323
+ - type: ndcg_at_10
324
+ value: 45.282
325
+ - type: ndcg_at_100
326
+ value: 49.742
327
+ - type: ndcg_at_1000
328
+ value: 51.754999999999995
329
+ - type: ndcg_at_3
330
+ value: 41.024
331
+ - type: ndcg_at_5
332
+ value: 42.912
333
+ - type: precision_at_1
334
+ value: 37.452000000000005
335
+ - type: precision_at_10
336
+ value: 8.516
337
+ - type: precision_at_100
338
+ value: 1.3679999999999999
339
+ - type: precision_at_1000
340
+ value: 0.184
341
+ - type: precision_at_3
342
+ value: 19.575
343
+ - type: precision_at_5
344
+ value: 13.771
345
+ - type: recall_at_1
346
+ value: 30.266
347
+ - type: recall_at_10
348
+ value: 55.086
349
+ - type: recall_at_100
350
+ value: 74.083
351
+ - type: recall_at_1000
352
+ value: 86.722
353
+ - type: recall_at_3
354
+ value: 42.449999999999996
355
+ - type: recall_at_5
356
+ value: 47.975
357
+ - task:
358
+ type: Retrieval
359
+ dataset:
360
+ type: BeIR/cqadupstack
361
+ name: MTEB CQADupstackGamingRetrieval
362
+ config: default
363
+ split: test
364
+ revision: None
365
+ metrics:
366
+ - type: map_at_1
367
+ value: 39.217
368
+ - type: map_at_10
369
+ value: 51.466
370
+ - type: map_at_100
371
+ value: 52.531000000000006
372
+ - type: map_at_1000
373
+ value: 52.586
374
+ - type: map_at_3
375
+ value: 47.942
376
+ - type: map_at_5
377
+ value: 49.988
378
+ - type: mrr_at_1
379
+ value: 44.765
380
+ - type: mrr_at_10
381
+ value: 54.748
382
+ - type: mrr_at_100
383
+ value: 55.41199999999999
384
+ - type: mrr_at_1000
385
+ value: 55.437999999999995
386
+ - type: mrr_at_3
387
+ value: 52.017
388
+ - type: mrr_at_5
389
+ value: 53.693999999999996
390
+ - type: ndcg_at_1
391
+ value: 44.765
392
+ - type: ndcg_at_10
393
+ value: 57.397
394
+ - type: ndcg_at_100
395
+ value: 61.526
396
+ - type: ndcg_at_1000
397
+ value: 62.577000000000005
398
+ - type: ndcg_at_3
399
+ value: 51.414
400
+ - type: ndcg_at_5
401
+ value: 54.486999999999995
402
+ - type: precision_at_1
403
+ value: 44.765
404
+ - type: precision_at_10
405
+ value: 9.354
406
+ - type: precision_at_100
407
+ value: 1.2309999999999999
408
+ - type: precision_at_1000
409
+ value: 0.136
410
+ - type: precision_at_3
411
+ value: 22.820999999999998
412
+ - type: precision_at_5
413
+ value: 16.012999999999998
414
+ - type: recall_at_1
415
+ value: 39.217
416
+ - type: recall_at_10
417
+ value: 71.588
418
+ - type: recall_at_100
419
+ value: 89.473
420
+ - type: recall_at_1000
421
+ value: 96.863
422
+ - type: recall_at_3
423
+ value: 55.943
424
+ - type: recall_at_5
425
+ value: 63.14999999999999
426
+ - task:
427
+ type: Retrieval
428
+ dataset:
429
+ type: BeIR/cqadupstack
430
+ name: MTEB CQADupstackGisRetrieval
431
+ config: default
432
+ split: test
433
+ revision: None
434
+ metrics:
435
+ - type: map_at_1
436
+ value: 26.451
437
+ - type: map_at_10
438
+ value: 34.738
439
+ - type: map_at_100
440
+ value: 35.769
441
+ - type: map_at_1000
442
+ value: 35.851
443
+ - type: map_at_3
444
+ value: 32.002
445
+ - type: map_at_5
446
+ value: 33.800999999999995
447
+ - type: mrr_at_1
448
+ value: 28.814
449
+ - type: mrr_at_10
450
+ value: 36.992000000000004
451
+ - type: mrr_at_100
452
+ value: 37.901
453
+ - type: mrr_at_1000
454
+ value: 37.964
455
+ - type: mrr_at_3
456
+ value: 34.426
457
+ - type: mrr_at_5
458
+ value: 36.075
459
+ - type: ndcg_at_1
460
+ value: 28.814
461
+ - type: ndcg_at_10
462
+ value: 39.667
463
+ - type: ndcg_at_100
464
+ value: 44.741
465
+ - type: ndcg_at_1000
466
+ value: 46.763
467
+ - type: ndcg_at_3
468
+ value: 34.461999999999996
469
+ - type: ndcg_at_5
470
+ value: 37.472
471
+ - type: precision_at_1
472
+ value: 28.814
473
+ - type: precision_at_10
474
+ value: 6.045
475
+ - type: precision_at_100
476
+ value: 0.903
477
+ - type: precision_at_1000
478
+ value: 0.11199999999999999
479
+ - type: precision_at_3
480
+ value: 14.463000000000001
481
+ - type: precision_at_5
482
+ value: 10.418
483
+ - type: recall_at_1
484
+ value: 26.451
485
+ - type: recall_at_10
486
+ value: 52.751999999999995
487
+ - type: recall_at_100
488
+ value: 75.971
489
+ - type: recall_at_1000
490
+ value: 91.02
491
+ - type: recall_at_3
492
+ value: 38.896
493
+ - type: recall_at_5
494
+ value: 46.126
495
+ - task:
496
+ type: Retrieval
497
+ dataset:
498
+ type: BeIR/cqadupstack
499
+ name: MTEB CQADupstackMathematicaRetrieval
500
+ config: default
501
+ split: test
502
+ revision: None
503
+ metrics:
504
+ - type: map_at_1
505
+ value: 16.03
506
+ - type: map_at_10
507
+ value: 24.474999999999998
508
+ - type: map_at_100
509
+ value: 25.650000000000002
510
+ - type: map_at_1000
511
+ value: 25.764
512
+ - type: map_at_3
513
+ value: 21.656
514
+ - type: map_at_5
515
+ value: 23.269000000000002
516
+ - type: mrr_at_1
517
+ value: 20.025000000000002
518
+ - type: mrr_at_10
519
+ value: 29.325000000000003
520
+ - type: mrr_at_100
521
+ value: 30.264999999999997
522
+ - type: mrr_at_1000
523
+ value: 30.325000000000003
524
+ - type: mrr_at_3
525
+ value: 26.493
526
+ - type: mrr_at_5
527
+ value: 28.197
528
+ - type: ndcg_at_1
529
+ value: 20.025000000000002
530
+ - type: ndcg_at_10
531
+ value: 30.012
532
+ - type: ndcg_at_100
533
+ value: 35.760999999999996
534
+ - type: ndcg_at_1000
535
+ value: 38.53
536
+ - type: ndcg_at_3
537
+ value: 24.863
538
+ - type: ndcg_at_5
539
+ value: 27.36
540
+ - type: precision_at_1
541
+ value: 20.025000000000002
542
+ - type: precision_at_10
543
+ value: 5.721
544
+ - type: precision_at_100
545
+ value: 0.9809999999999999
546
+ - type: precision_at_1000
547
+ value: 0.136
548
+ - type: precision_at_3
549
+ value: 12.189
550
+ - type: precision_at_5
551
+ value: 9.08
552
+ - type: recall_at_1
553
+ value: 16.03
554
+ - type: recall_at_10
555
+ value: 42.263
556
+ - type: recall_at_100
557
+ value: 67.868
558
+ - type: recall_at_1000
559
+ value: 87.77000000000001
560
+ - type: recall_at_3
561
+ value: 27.932000000000002
562
+ - type: recall_at_5
563
+ value: 34.46
564
+ - task:
565
+ type: Retrieval
566
+ dataset:
567
+ type: BeIR/cqadupstack
568
+ name: MTEB CQADupstackPhysicsRetrieval
569
+ config: default
570
+ split: test
571
+ revision: None
572
+ metrics:
573
+ - type: map_at_1
574
+ value: 29.358
575
+ - type: map_at_10
576
+ value: 39.753
577
+ - type: map_at_100
578
+ value: 41.031
579
+ - type: map_at_1000
580
+ value: 41.135
581
+ - type: map_at_3
582
+ value: 36.515
583
+ - type: map_at_5
584
+ value: 38.346999999999994
585
+ - type: mrr_at_1
586
+ value: 35.9
587
+ - type: mrr_at_10
588
+ value: 45.336
589
+ - type: mrr_at_100
590
+ value: 46.087
591
+ - type: mrr_at_1000
592
+ value: 46.129999999999995
593
+ - type: mrr_at_3
594
+ value: 42.620999999999995
595
+ - type: mrr_at_5
596
+ value: 44.224000000000004
597
+ - type: ndcg_at_1
598
+ value: 35.9
599
+ - type: ndcg_at_10
600
+ value: 45.85
601
+ - type: ndcg_at_100
602
+ value: 51.186
603
+ - type: ndcg_at_1000
604
+ value: 53.154999999999994
605
+ - type: ndcg_at_3
606
+ value: 40.594
607
+ - type: ndcg_at_5
608
+ value: 43.169999999999995
609
+ - type: precision_at_1
610
+ value: 35.9
611
+ - type: precision_at_10
612
+ value: 8.402
613
+ - type: precision_at_100
614
+ value: 1.2850000000000001
615
+ - type: precision_at_1000
616
+ value: 0.164
617
+ - type: precision_at_3
618
+ value: 19.249
619
+ - type: precision_at_5
620
+ value: 13.763
621
+ - type: recall_at_1
622
+ value: 29.358
623
+ - type: recall_at_10
624
+ value: 58.257000000000005
625
+ - type: recall_at_100
626
+ value: 81.22200000000001
627
+ - type: recall_at_1000
628
+ value: 94.045
629
+ - type: recall_at_3
630
+ value: 43.599
631
+ - type: recall_at_5
632
+ value: 50.232
633
+ - task:
634
+ type: Retrieval
635
+ dataset:
636
+ type: BeIR/cqadupstack
637
+ name: MTEB CQADupstackProgrammersRetrieval
638
+ config: default
639
+ split: test
640
+ revision: None
641
+ metrics:
642
+ - type: map_at_1
643
+ value: 23.954
644
+ - type: map_at_10
645
+ value: 33.767
646
+ - type: map_at_100
647
+ value: 35.225
648
+ - type: map_at_1000
649
+ value: 35.339
650
+ - type: map_at_3
651
+ value: 30.746000000000002
652
+ - type: map_at_5
653
+ value: 32.318000000000005
654
+ - type: mrr_at_1
655
+ value: 30.137000000000004
656
+ - type: mrr_at_10
657
+ value: 39.24
658
+ - type: mrr_at_100
659
+ value: 40.235
660
+ - type: mrr_at_1000
661
+ value: 40.294999999999995
662
+ - type: mrr_at_3
663
+ value: 36.758
664
+ - type: mrr_at_5
665
+ value: 38.031
666
+ - type: ndcg_at_1
667
+ value: 30.137000000000004
668
+ - type: ndcg_at_10
669
+ value: 39.711999999999996
670
+ - type: ndcg_at_100
671
+ value: 45.795
672
+ - type: ndcg_at_1000
673
+ value: 48.178
674
+ - type: ndcg_at_3
675
+ value: 34.768
676
+ - type: ndcg_at_5
677
+ value: 36.756
678
+ - type: precision_at_1
679
+ value: 30.137000000000004
680
+ - type: precision_at_10
681
+ value: 7.443
682
+ - type: precision_at_100
683
+ value: 1.221
684
+ - type: precision_at_1000
685
+ value: 0.159
686
+ - type: precision_at_3
687
+ value: 16.933
688
+ - type: precision_at_5
689
+ value: 11.918
690
+ - type: recall_at_1
691
+ value: 23.954
692
+ - type: recall_at_10
693
+ value: 52.234
694
+ - type: recall_at_100
695
+ value: 77.75800000000001
696
+ - type: recall_at_1000
697
+ value: 94.072
698
+ - type: recall_at_3
699
+ value: 37.876
700
+ - type: recall_at_5
701
+ value: 43.494
702
+ - task:
703
+ type: Retrieval
704
+ dataset:
705
+ type: BeIR/cqadupstack
706
+ name: MTEB CQADupstackRetrieval
707
+ config: default
708
+ split: test
709
+ revision: None
710
+ metrics:
711
+ - type: map_at_1
712
+ value: 25.478416666666664
713
+ - type: map_at_10
714
+ value: 34.483999999999995
715
+ - type: map_at_100
716
+ value: 35.71641666666667
717
+ - type: map_at_1000
718
+ value: 35.8315
719
+ - type: map_at_3
720
+ value: 31.571083333333334
721
+ - type: map_at_5
722
+ value: 33.229749999999996
723
+ - type: mrr_at_1
724
+ value: 30.122416666666663
725
+ - type: mrr_at_10
726
+ value: 38.608333333333334
727
+ - type: mrr_at_100
728
+ value: 39.465500000000006
729
+ - type: mrr_at_1000
730
+ value: 39.52375
731
+ - type: mrr_at_3
732
+ value: 36.047916666666666
733
+ - type: mrr_at_5
734
+ value: 37.53833333333333
735
+ - type: ndcg_at_1
736
+ value: 30.122416666666663
737
+ - type: ndcg_at_10
738
+ value: 39.87575
739
+ - type: ndcg_at_100
740
+ value: 45.15691666666666
741
+ - type: ndcg_at_1000
742
+ value: 47.43891666666667
743
+ - type: ndcg_at_3
744
+ value: 34.88666666666666
745
+ - type: ndcg_at_5
746
+ value: 37.30966666666667
747
+ - type: precision_at_1
748
+ value: 30.122416666666663
749
+ - type: precision_at_10
750
+ value: 7.056500000000001
751
+ - type: precision_at_100
752
+ value: 1.1415000000000002
753
+ - type: precision_at_1000
754
+ value: 0.15308333333333332
755
+ - type: precision_at_3
756
+ value: 16.03525
757
+ - type: precision_at_5
758
+ value: 11.51125
759
+ - type: recall_at_1
760
+ value: 25.478416666666664
761
+ - type: recall_at_10
762
+ value: 51.72658333333333
763
+ - type: recall_at_100
764
+ value: 74.94641666666666
765
+ - type: recall_at_1000
766
+ value: 90.75300000000001
767
+ - type: recall_at_3
768
+ value: 37.93833333333333
769
+ - type: recall_at_5
770
+ value: 44.15625
771
+ - task:
772
+ type: Retrieval
773
+ dataset:
774
+ type: BeIR/cqadupstack
775
+ name: MTEB CQADupstackStatsRetrieval
776
+ config: default
777
+ split: test
778
+ revision: None
779
+ metrics:
780
+ - type: map_at_1
781
+ value: 24.697
782
+ - type: map_at_10
783
+ value: 30.919999999999998
784
+ - type: map_at_100
785
+ value: 31.889
786
+ - type: map_at_1000
787
+ value: 31.985000000000003
788
+ - type: map_at_3
789
+ value: 29.046
790
+ - type: map_at_5
791
+ value: 29.902
792
+ - type: mrr_at_1
793
+ value: 27.454
794
+ - type: mrr_at_10
795
+ value: 33.517
796
+ - type: mrr_at_100
797
+ value: 34.381
798
+ - type: mrr_at_1000
799
+ value: 34.452
800
+ - type: mrr_at_3
801
+ value: 31.747999999999998
802
+ - type: mrr_at_5
803
+ value: 32.561
804
+ - type: ndcg_at_1
805
+ value: 27.454
806
+ - type: ndcg_at_10
807
+ value: 34.687
808
+ - type: ndcg_at_100
809
+ value: 39.395
810
+ - type: ndcg_at_1000
811
+ value: 41.826
812
+ - type: ndcg_at_3
813
+ value: 31.102
814
+ - type: ndcg_at_5
815
+ value: 32.435
816
+ - type: precision_at_1
817
+ value: 27.454
818
+ - type: precision_at_10
819
+ value: 5.322
820
+ - type: precision_at_100
821
+ value: 0.83
822
+ - type: precision_at_1000
823
+ value: 0.11199999999999999
824
+ - type: precision_at_3
825
+ value: 13.088
826
+ - type: precision_at_5
827
+ value: 8.803999999999998
828
+ - type: recall_at_1
829
+ value: 24.697
830
+ - type: recall_at_10
831
+ value: 43.688
832
+ - type: recall_at_100
833
+ value: 64.893
834
+ - type: recall_at_1000
835
+ value: 82.755
836
+ - type: recall_at_3
837
+ value: 33.896
838
+ - type: recall_at_5
839
+ value: 37.174
840
+ - task:
841
+ type: Retrieval
842
+ dataset:
843
+ type: BeIR/cqadupstack
844
+ name: MTEB CQADupstackTexRetrieval
845
+ config: default
846
+ split: test
847
+ revision: None
848
+ metrics:
849
+ - type: map_at_1
850
+ value: 16.525000000000002
851
+ - type: map_at_10
852
+ value: 23.435
853
+ - type: map_at_100
854
+ value: 24.535999999999998
855
+ - type: map_at_1000
856
+ value: 24.672
857
+ - type: map_at_3
858
+ value: 21.095
859
+ - type: map_at_5
860
+ value: 22.308
861
+ - type: mrr_at_1
862
+ value: 19.993
863
+ - type: mrr_at_10
864
+ value: 27.096999999999998
865
+ - type: mrr_at_100
866
+ value: 28.036
867
+ - type: mrr_at_1000
868
+ value: 28.119
869
+ - type: mrr_at_3
870
+ value: 24.971
871
+ - type: mrr_at_5
872
+ value: 26.062
873
+ - type: ndcg_at_1
874
+ value: 19.993
875
+ - type: ndcg_at_10
876
+ value: 28.002
877
+ - type: ndcg_at_100
878
+ value: 33.288000000000004
879
+ - type: ndcg_at_1000
880
+ value: 36.416
881
+ - type: ndcg_at_3
882
+ value: 23.768
883
+ - type: ndcg_at_5
884
+ value: 25.579
885
+ - type: precision_at_1
886
+ value: 19.993
887
+ - type: precision_at_10
888
+ value: 5.196
889
+ - type: precision_at_100
890
+ value: 0.922
891
+ - type: precision_at_1000
892
+ value: 0.136
893
+ - type: precision_at_3
894
+ value: 11.241
895
+ - type: precision_at_5
896
+ value: 8.176
897
+ - type: recall_at_1
898
+ value: 16.525000000000002
899
+ - type: recall_at_10
900
+ value: 38.082
901
+ - type: recall_at_100
902
+ value: 61.866
903
+ - type: recall_at_1000
904
+ value: 84.20100000000001
905
+ - type: recall_at_3
906
+ value: 26.228
907
+ - type: recall_at_5
908
+ value: 30.86
909
+ - task:
910
+ type: Retrieval
911
+ dataset:
912
+ type: BeIR/cqadupstack
913
+ name: MTEB CQADupstackUnixRetrieval
914
+ config: default
915
+ split: test
916
+ revision: None
917
+ metrics:
918
+ - type: map_at_1
919
+ value: 25.480999999999998
920
+ - type: map_at_10
921
+ value: 34.319
922
+ - type: map_at_100
923
+ value: 35.54
924
+ - type: map_at_1000
925
+ value: 35.648
926
+ - type: map_at_3
927
+ value: 31.533
928
+ - type: map_at_5
929
+ value: 33.058
930
+ - type: mrr_at_1
931
+ value: 29.851
932
+ - type: mrr_at_10
933
+ value: 38.243
934
+ - type: mrr_at_100
935
+ value: 39.172000000000004
936
+ - type: mrr_at_1000
937
+ value: 39.235
938
+ - type: mrr_at_3
939
+ value: 35.697
940
+ - type: mrr_at_5
941
+ value: 37.147000000000006
942
+ - type: ndcg_at_1
943
+ value: 29.851
944
+ - type: ndcg_at_10
945
+ value: 39.653
946
+ - type: ndcg_at_100
947
+ value: 45.065
948
+ - type: ndcg_at_1000
949
+ value: 47.477999999999994
950
+ - type: ndcg_at_3
951
+ value: 34.481
952
+ - type: ndcg_at_5
953
+ value: 36.870999999999995
954
+ - type: precision_at_1
955
+ value: 29.851
956
+ - type: precision_at_10
957
+ value: 6.679
958
+ - type: precision_at_100
959
+ value: 1.053
960
+ - type: precision_at_1000
961
+ value: 0.13699999999999998
962
+ - type: precision_at_3
963
+ value: 15.485
964
+ - type: precision_at_5
965
+ value: 10.989
966
+ - type: recall_at_1
967
+ value: 25.480999999999998
968
+ - type: recall_at_10
969
+ value: 52.032000000000004
970
+ - type: recall_at_100
971
+ value: 75.193
972
+ - type: recall_at_1000
973
+ value: 91.958
974
+ - type: recall_at_3
975
+ value: 38.089
976
+ - type: recall_at_5
977
+ value: 43.947
978
+ - task:
979
+ type: Retrieval
980
+ dataset:
981
+ type: BeIR/cqadupstack
982
+ name: MTEB CQADupstackWebmastersRetrieval
983
+ config: default
984
+ split: test
985
+ revision: None
986
+ metrics:
987
+ - type: map_at_1
988
+ value: 25.148
989
+ - type: map_at_10
990
+ value: 33.007
991
+ - type: map_at_100
992
+ value: 34.602
993
+ - type: map_at_1000
994
+ value: 34.809
995
+ - type: map_at_3
996
+ value: 30.014000000000003
997
+ - type: map_at_5
998
+ value: 31.728
999
+ - type: mrr_at_1
1000
+ value: 29.842000000000002
1001
+ - type: mrr_at_10
1002
+ value: 37.318
1003
+ - type: mrr_at_100
1004
+ value: 38.353
1005
+ - type: mrr_at_1000
1006
+ value: 38.41
1007
+ - type: mrr_at_3
1008
+ value: 34.75
1009
+ - type: mrr_at_5
1010
+ value: 36.163000000000004
1011
+ - type: ndcg_at_1
1012
+ value: 29.842000000000002
1013
+ - type: ndcg_at_10
1014
+ value: 38.462
1015
+ - type: ndcg_at_100
1016
+ value: 44.86
1017
+ - type: ndcg_at_1000
1018
+ value: 47.375
1019
+ - type: ndcg_at_3
1020
+ value: 33.614
1021
+ - type: ndcg_at_5
1022
+ value: 36.032
1023
+ - type: precision_at_1
1024
+ value: 29.842000000000002
1025
+ - type: precision_at_10
1026
+ value: 7.332
1027
+ - type: precision_at_100
1028
+ value: 1.52
1029
+ - type: precision_at_1000
1030
+ value: 0.23900000000000002
1031
+ - type: precision_at_3
1032
+ value: 15.547
1033
+ - type: precision_at_5
1034
+ value: 11.423
1035
+ - type: recall_at_1
1036
+ value: 25.148
1037
+ - type: recall_at_10
1038
+ value: 48.894
1039
+ - type: recall_at_100
1040
+ value: 77.845
1041
+ - type: recall_at_1000
1042
+ value: 93.74900000000001
1043
+ - type: recall_at_3
1044
+ value: 35.17
1045
+ - type: recall_at_5
1046
+ value: 41.734
1047
+ - task:
1048
+ type: Retrieval
1049
+ dataset:
1050
+ type: BeIR/cqadupstack
1051
+ name: MTEB CQADupstackWordpressRetrieval
1052
+ config: default
1053
+ split: test
1054
+ revision: None
1055
+ metrics:
1056
+ - type: map_at_1
1057
+ value: 17.723
1058
+ - type: map_at_10
1059
+ value: 25.586
1060
+ - type: map_at_100
1061
+ value: 26.648
1062
+ - type: map_at_1000
1063
+ value: 26.755000000000003
1064
+ - type: map_at_3
1065
+ value: 22.634999999999998
1066
+ - type: map_at_5
1067
+ value: 24.481
1068
+ - type: mrr_at_1
1069
+ value: 19.039
1070
+ - type: mrr_at_10
1071
+ value: 27.315
1072
+ - type: mrr_at_100
1073
+ value: 28.237000000000002
1074
+ - type: mrr_at_1000
1075
+ value: 28.32
1076
+ - type: mrr_at_3
1077
+ value: 24.368000000000002
1078
+ - type: mrr_at_5
1079
+ value: 26.198
1080
+ - type: ndcg_at_1
1081
+ value: 19.039
1082
+ - type: ndcg_at_10
1083
+ value: 30.511
1084
+ - type: ndcg_at_100
1085
+ value: 35.808
1086
+ - type: ndcg_at_1000
1087
+ value: 38.56
1088
+ - type: ndcg_at_3
1089
+ value: 24.762999999999998
1090
+ - type: ndcg_at_5
1091
+ value: 27.923
1092
+ - type: precision_at_1
1093
+ value: 19.039
1094
+ - type: precision_at_10
1095
+ value: 5.083
1096
+ - type: precision_at_100
1097
+ value: 0.839
1098
+ - type: precision_at_1000
1099
+ value: 0.11800000000000001
1100
+ - type: precision_at_3
1101
+ value: 10.659
1102
+ - type: precision_at_5
1103
+ value: 8.244
1104
+ - type: recall_at_1
1105
+ value: 17.723
1106
+ - type: recall_at_10
1107
+ value: 44.051
1108
+ - type: recall_at_100
1109
+ value: 68.659
1110
+ - type: recall_at_1000
1111
+ value: 89.164
1112
+ - type: recall_at_3
1113
+ value: 28.709
1114
+ - type: recall_at_5
1115
+ value: 36.331
1116
+ - task:
1117
+ type: Retrieval
1118
+ dataset:
1119
+ type: climate-fever
1120
+ name: MTEB ClimateFEVER
1121
+ config: default
1122
+ split: test
1123
+ revision: None
1124
+ metrics:
1125
+ - type: map_at_1
1126
+ value: 13.669999999999998
1127
+ - type: map_at_10
1128
+ value: 23.46
1129
+ - type: map_at_100
1130
+ value: 25.304
1131
+ - type: map_at_1000
1132
+ value: 25.497999999999998
1133
+ - type: map_at_3
1134
+ value: 19.702
1135
+ - type: map_at_5
1136
+ value: 21.642
1137
+ - type: mrr_at_1
1138
+ value: 31.269999999999996
1139
+ - type: mrr_at_10
1140
+ value: 43.264
1141
+ - type: mrr_at_100
1142
+ value: 44.1
1143
+ - type: mrr_at_1000
1144
+ value: 44.134
1145
+ - type: mrr_at_3
1146
+ value: 40.011
1147
+ - type: mrr_at_5
1148
+ value: 42.079
1149
+ - type: ndcg_at_1
1150
+ value: 31.269999999999996
1151
+ - type: ndcg_at_10
1152
+ value: 32.385000000000005
1153
+ - type: ndcg_at_100
1154
+ value: 39.282000000000004
1155
+ - type: ndcg_at_1000
1156
+ value: 42.628
1157
+ - type: ndcg_at_3
1158
+ value: 26.942
1159
+ - type: ndcg_at_5
1160
+ value: 28.832
1161
+ - type: precision_at_1
1162
+ value: 31.269999999999996
1163
+ - type: precision_at_10
1164
+ value: 10.123999999999999
1165
+ - type: precision_at_100
1166
+ value: 1.748
1167
+ - type: precision_at_1000
1168
+ value: 0.23700000000000002
1169
+ - type: precision_at_3
1170
+ value: 20.282
1171
+ - type: precision_at_5
1172
+ value: 15.479000000000001
1173
+ - type: recall_at_1
1174
+ value: 13.669999999999998
1175
+ - type: recall_at_10
1176
+ value: 38.078
1177
+ - type: recall_at_100
1178
+ value: 61.651
1179
+ - type: recall_at_1000
1180
+ value: 80.279
1181
+ - type: recall_at_3
1182
+ value: 24.438
1183
+ - type: recall_at_5
1184
+ value: 30.244
1185
+ - task:
1186
+ type: Retrieval
1187
+ dataset:
1188
+ type: dbpedia-entity
1189
+ name: MTEB DBPedia
1190
+ config: default
1191
+ split: test
1192
+ revision: None
1193
+ metrics:
1194
+ - type: map_at_1
1195
+ value: 9.103
1196
+ - type: map_at_10
1197
+ value: 19.238
1198
+ - type: map_at_100
1199
+ value: 26.451999999999998
1200
+ - type: map_at_1000
1201
+ value: 27.987000000000002
1202
+ - type: map_at_3
1203
+ value: 14.069999999999999
1204
+ - type: map_at_5
1205
+ value: 16.434
1206
+ - type: mrr_at_1
1207
+ value: 67.5
1208
+ - type: mrr_at_10
1209
+ value: 75.64800000000001
1210
+ - type: mrr_at_100
1211
+ value: 75.847
1212
+ - type: mrr_at_1000
1213
+ value: 75.85499999999999
1214
+ - type: mrr_at_3
1215
+ value: 73.833
1216
+ - type: mrr_at_5
1217
+ value: 74.933
1218
+ - type: ndcg_at_1
1219
+ value: 55.625
1220
+ - type: ndcg_at_10
1221
+ value: 40.505
1222
+ - type: ndcg_at_100
1223
+ value: 44.505
1224
+ - type: ndcg_at_1000
1225
+ value: 52.005
1226
+ - type: ndcg_at_3
1227
+ value: 45.841
1228
+ - type: ndcg_at_5
1229
+ value: 42.945
1230
+ - type: precision_at_1
1231
+ value: 67.5
1232
+ - type: precision_at_10
1233
+ value: 31.6
1234
+ - type: precision_at_100
1235
+ value: 9.83
1236
+ - type: precision_at_1000
1237
+ value: 1.9619999999999997
1238
+ - type: precision_at_3
1239
+ value: 49.083
1240
+ - type: precision_at_5
1241
+ value: 41.15
1242
+ - type: recall_at_1
1243
+ value: 9.103
1244
+ - type: recall_at_10
1245
+ value: 24.6
1246
+ - type: recall_at_100
1247
+ value: 50.075
1248
+ - type: recall_at_1000
1249
+ value: 73.516
1250
+ - type: recall_at_3
1251
+ value: 15.35
1252
+ - type: recall_at_5
1253
+ value: 19.217000000000002
1254
+ - task:
1255
+ type: Classification
1256
+ dataset:
1257
+ type: mteb/emotion
1258
+ name: MTEB EmotionClassification
1259
+ config: default
1260
+ split: test
1261
+ revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
1262
+ metrics:
1263
+ - type: accuracy
1264
+ value: 50.595
1265
+ - type: f1
1266
+ value: 45.43005573726517
1267
+ - task:
1268
+ type: Retrieval
1269
+ dataset:
1270
+ type: fever
1271
+ name: MTEB FEVER
1272
+ config: default
1273
+ split: test
1274
+ revision: None
1275
+ metrics:
1276
+ - type: map_at_1
1277
+ value: 76.08200000000001
1278
+ - type: map_at_10
1279
+ value: 83.697
1280
+ - type: map_at_100
1281
+ value: 83.891
1282
+ - type: map_at_1000
1283
+ value: 83.905
1284
+ - type: map_at_3
1285
+ value: 82.69
1286
+ - type: map_at_5
1287
+ value: 83.35900000000001
1288
+ - type: mrr_at_1
1289
+ value: 82.148
1290
+ - type: mrr_at_10
1291
+ value: 88.727
1292
+ - type: mrr_at_100
1293
+ value: 88.787
1294
+ - type: mrr_at_1000
1295
+ value: 88.788
1296
+ - type: mrr_at_3
1297
+ value: 88.054
1298
+ - type: mrr_at_5
1299
+ value: 88.547
1300
+ - type: ndcg_at_1
1301
+ value: 82.148
1302
+ - type: ndcg_at_10
1303
+ value: 87.274
1304
+ - type: ndcg_at_100
1305
+ value: 87.957
1306
+ - type: ndcg_at_1000
1307
+ value: 88.203
1308
+ - type: ndcg_at_3
1309
+ value: 85.744
1310
+ - type: ndcg_at_5
1311
+ value: 86.664
1312
+ - type: precision_at_1
1313
+ value: 82.148
1314
+ - type: precision_at_10
1315
+ value: 10.315000000000001
1316
+ - type: precision_at_100
1317
+ value: 1.086
1318
+ - type: precision_at_1000
1319
+ value: 0.11299999999999999
1320
+ - type: precision_at_3
1321
+ value: 32.458
1322
+ - type: precision_at_5
1323
+ value: 20.09
1324
+ - type: recall_at_1
1325
+ value: 76.08200000000001
1326
+ - type: recall_at_10
1327
+ value: 93.408
1328
+ - type: recall_at_100
1329
+ value: 96.11
1330
+ - type: recall_at_1000
1331
+ value: 97.626
1332
+ - type: recall_at_3
1333
+ value: 89.172
1334
+ - type: recall_at_5
1335
+ value: 91.604
1336
+ - task:
1337
+ type: Retrieval
1338
+ dataset:
1339
+ type: fiqa
1340
+ name: MTEB FiQA2018
1341
+ config: default
1342
+ split: test
1343
+ revision: None
1344
+ metrics:
1345
+ - type: map_at_1
1346
+ value: 19.377
1347
+ - type: map_at_10
1348
+ value: 31.785000000000004
1349
+ - type: map_at_100
1350
+ value: 33.511
1351
+ - type: map_at_1000
1352
+ value: 33.713
1353
+ - type: map_at_3
1354
+ value: 27.811999999999998
1355
+ - type: map_at_5
1356
+ value: 30.148000000000003
1357
+ - type: mrr_at_1
1358
+ value: 38.426
1359
+ - type: mrr_at_10
1360
+ value: 47.233000000000004
1361
+ - type: mrr_at_100
1362
+ value: 47.980000000000004
1363
+ - type: mrr_at_1000
1364
+ value: 48.022
1365
+ - type: mrr_at_3
1366
+ value: 44.856
1367
+ - type: mrr_at_5
1368
+ value: 46.322
1369
+ - type: ndcg_at_1
1370
+ value: 38.426
1371
+ - type: ndcg_at_10
1372
+ value: 39.326
1373
+ - type: ndcg_at_100
1374
+ value: 45.769999999999996
1375
+ - type: ndcg_at_1000
1376
+ value: 49.131
1377
+ - type: ndcg_at_3
1378
+ value: 36.1
1379
+ - type: ndcg_at_5
1380
+ value: 37.271
1381
+ - type: precision_at_1
1382
+ value: 38.426
1383
+ - type: precision_at_10
1384
+ value: 11.126999999999999
1385
+ - type: precision_at_100
1386
+ value: 1.7870000000000001
1387
+ - type: precision_at_1000
1388
+ value: 0.23700000000000002
1389
+ - type: precision_at_3
1390
+ value: 24.587999999999997
1391
+ - type: precision_at_5
1392
+ value: 18.21
1393
+ - type: recall_at_1
1394
+ value: 19.377
1395
+ - type: recall_at_10
1396
+ value: 45.484
1397
+ - type: recall_at_100
1398
+ value: 69.968
1399
+ - type: recall_at_1000
1400
+ value: 90.30799999999999
1401
+ - type: recall_at_3
1402
+ value: 32.72
1403
+ - type: recall_at_5
1404
+ value: 38.856
1405
+ - task:
1406
+ type: Retrieval
1407
+ dataset:
1408
+ type: hotpotqa
1409
+ name: MTEB HotpotQA
1410
+ config: default
1411
+ split: test
1412
+ revision: None
1413
+ metrics:
1414
+ - type: map_at_1
1415
+ value: 37.475
1416
+ - type: map_at_10
1417
+ value: 58.662000000000006
1418
+ - type: map_at_100
1419
+ value: 59.561
1420
+ - type: map_at_1000
1421
+ value: 59.626999999999995
1422
+ - type: map_at_3
1423
+ value: 55.496
1424
+ - type: map_at_5
1425
+ value: 57.464000000000006
1426
+ - type: mrr_at_1
1427
+ value: 74.949
1428
+ - type: mrr_at_10
1429
+ value: 80.976
1430
+ - type: mrr_at_100
1431
+ value: 81.215
1432
+ - type: mrr_at_1000
1433
+ value: 81.22399999999999
1434
+ - type: mrr_at_3
1435
+ value: 79.892
1436
+ - type: mrr_at_5
1437
+ value: 80.57
1438
+ - type: ndcg_at_1
1439
+ value: 74.949
1440
+ - type: ndcg_at_10
1441
+ value: 66.93599999999999
1442
+ - type: ndcg_at_100
1443
+ value: 70.137
1444
+ - type: ndcg_at_1000
1445
+ value: 71.452
1446
+ - type: ndcg_at_3
1447
+ value: 62.319
1448
+ - type: ndcg_at_5
1449
+ value: 64.866
1450
+ - type: precision_at_1
1451
+ value: 74.949
1452
+ - type: precision_at_10
1453
+ value: 13.988999999999999
1454
+ - type: precision_at_100
1455
+ value: 1.6500000000000001
1456
+ - type: precision_at_1000
1457
+ value: 0.182
1458
+ - type: precision_at_3
1459
+ value: 39.806000000000004
1460
+ - type: precision_at_5
1461
+ value: 25.899
1462
+ - type: recall_at_1
1463
+ value: 37.475
1464
+ - type: recall_at_10
1465
+ value: 69.946
1466
+ - type: recall_at_100
1467
+ value: 82.478
1468
+ - type: recall_at_1000
1469
+ value: 91.202
1470
+ - type: recall_at_3
1471
+ value: 59.709999999999994
1472
+ - type: recall_at_5
1473
+ value: 64.747
1474
+ - task:
1475
+ type: Classification
1476
+ dataset:
1477
+ type: mteb/imdb
1478
+ name: MTEB ImdbClassification
1479
+ config: default
1480
+ split: test
1481
+ revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
1482
+ metrics:
1483
+ - type: accuracy
1484
+ value: 89.2272
1485
+ - type: ap
1486
+ value: 84.69017509523854
1487
+ - type: f1
1488
+ value: 89.20673182133066
1489
+ - task:
1490
+ type: Retrieval
1491
+ dataset:
1492
+ type: msmarco
1493
+ name: MTEB MSMARCO
1494
+ config: default
1495
+ split: dev
1496
+ revision: None
1497
+ metrics:
1498
+ - type: map_at_1
1499
+ value: 21.471999999999998
1500
+ - type: map_at_10
1501
+ value: 33.287
1502
+ - type: map_at_100
1503
+ value: 34.486
1504
+ - type: map_at_1000
1505
+ value: 34.536
1506
+ - type: map_at_3
1507
+ value: 29.520999999999997
1508
+ - type: map_at_5
1509
+ value: 31.647
1510
+ - type: mrr_at_1
1511
+ value: 22.076999999999998
1512
+ - type: mrr_at_10
1513
+ value: 33.902
1514
+ - type: mrr_at_100
1515
+ value: 35.037
1516
+ - type: mrr_at_1000
1517
+ value: 35.081
1518
+ - type: mrr_at_3
1519
+ value: 30.174
1520
+ - type: mrr_at_5
1521
+ value: 32.302
1522
+ - type: ndcg_at_1
1523
+ value: 22.092
1524
+ - type: ndcg_at_10
1525
+ value: 40.073
1526
+ - type: ndcg_at_100
1527
+ value: 45.82
1528
+ - type: ndcg_at_1000
1529
+ value: 47.097
1530
+ - type: ndcg_at_3
1531
+ value: 32.364
1532
+ - type: ndcg_at_5
1533
+ value: 36.179
1534
+ - type: precision_at_1
1535
+ value: 22.092
1536
+ - type: precision_at_10
1537
+ value: 6.36
1538
+ - type: precision_at_100
1539
+ value: 0.924
1540
+ - type: precision_at_1000
1541
+ value: 0.10300000000000001
1542
+ - type: precision_at_3
1543
+ value: 13.806
1544
+ - type: precision_at_5
1545
+ value: 10.223
1546
+ - type: recall_at_1
1547
+ value: 21.471999999999998
1548
+ - type: recall_at_10
1549
+ value: 60.971
1550
+ - type: recall_at_100
1551
+ value: 87.518
1552
+ - type: recall_at_1000
1553
+ value: 97.333
1554
+ - type: recall_at_3
1555
+ value: 39.961999999999996
1556
+ - type: recall_at_5
1557
+ value: 49.126
1558
+ - task:
1559
+ type: Classification
1560
+ dataset:
1561
+ type: mteb/mtop_domain
1562
+ name: MTEB MTOPDomainClassification (en)
1563
+ config: en
1564
+ split: test
1565
+ revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
1566
+ metrics:
1567
+ - type: accuracy
1568
+ value: 94.44596443228454
1569
+ - type: f1
1570
+ value: 94.19326360848854
1571
+ - task:
1572
+ type: Classification
1573
+ dataset:
1574
+ type: mteb/mtop_intent
1575
+ name: MTEB MTOPIntentClassification (en)
1576
+ config: en
1577
+ split: test
1578
+ revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
1579
+ metrics:
1580
+ - type: accuracy
1581
+ value: 75.7934336525308
1582
+ - type: f1
1583
+ value: 57.619082395865604
1584
+ - task:
1585
+ type: Classification
1586
+ dataset:
1587
+ type: mteb/amazon_massive_intent
1588
+ name: MTEB MassiveIntentClassification (en)
1589
+ config: en
1590
+ split: test
1591
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
1592
+ metrics:
1593
+ - type: accuracy
1594
+ value: 74.70410221923336
1595
+ - type: f1
1596
+ value: 72.82854233810865
1597
+ - task:
1598
+ type: Classification
1599
+ dataset:
1600
+ type: mteb/amazon_massive_scenario
1601
+ name: MTEB MassiveScenarioClassification (en)
1602
+ config: en
1603
+ split: test
1604
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
1605
+ metrics:
1606
+ - type: accuracy
1607
+ value: 78.61802286482852
1608
+ - type: f1
1609
+ value: 78.76695988384789
1610
+ - task:
1611
+ type: Clustering
1612
+ dataset:
1613
+ type: mteb/medrxiv-clustering-p2p
1614
+ name: MTEB MedrxivClusteringP2P
1615
+ config: default
1616
+ split: test
1617
+ revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
1618
+ metrics:
1619
+ - type: v_measure
1620
+ value: 34.212621347614174
1621
+ - task:
1622
+ type: Clustering
1623
+ dataset:
1624
+ type: mteb/medrxiv-clustering-s2s
1625
+ name: MTEB MedrxivClusteringS2S
1626
+ config: default
1627
+ split: test
1628
+ revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
1629
+ metrics:
1630
+ - type: v_measure
1631
+ value: 31.899728392028948
1632
+ - task:
1633
+ type: Reranking
1634
+ dataset:
1635
+ type: mteb/mind_small
1636
+ name: MTEB MindSmallReranking
1637
+ config: default
1638
+ split: test
1639
+ revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
1640
+ metrics:
1641
+ - type: map
1642
+ value: 32.190245086632466
1643
+ - type: mrr
1644
+ value: 33.424442963159876
1645
+ - task:
1646
+ type: Retrieval
1647
+ dataset:
1648
+ type: nfcorpus
1649
+ name: MTEB NFCorpus
1650
+ config: default
1651
+ split: test
1652
+ revision: None
1653
+ metrics:
1654
+ - type: map_at_1
1655
+ value: 6.141
1656
+ - type: map_at_10
1657
+ value: 13.558
1658
+ - type: map_at_100
1659
+ value: 17.238
1660
+ - type: map_at_1000
1661
+ value: 18.727
1662
+ - type: map_at_3
1663
+ value: 9.803
1664
+ - type: map_at_5
1665
+ value: 11.517
1666
+ - type: mrr_at_1
1667
+ value: 46.129999999999995
1668
+ - type: mrr_at_10
1669
+ value: 54.876999999999995
1670
+ - type: mrr_at_100
1671
+ value: 55.428999999999995
1672
+ - type: mrr_at_1000
1673
+ value: 55.47
1674
+ - type: mrr_at_3
1675
+ value: 52.993
1676
+ - type: mrr_at_5
1677
+ value: 54.107000000000006
1678
+ - type: ndcg_at_1
1679
+ value: 43.963
1680
+ - type: ndcg_at_10
1681
+ value: 35.72
1682
+ - type: ndcg_at_100
1683
+ value: 32.792
1684
+ - type: ndcg_at_1000
1685
+ value: 41.52
1686
+ - type: ndcg_at_3
1687
+ value: 40.929
1688
+ - type: ndcg_at_5
1689
+ value: 38.664
1690
+ - type: precision_at_1
1691
+ value: 45.82
1692
+ - type: precision_at_10
1693
+ value: 26.625
1694
+ - type: precision_at_100
1695
+ value: 8.387
1696
+ - type: precision_at_1000
1697
+ value: 2.131
1698
+ - type: precision_at_3
1699
+ value: 38.39
1700
+ - type: precision_at_5
1701
+ value: 33.56
1702
+ - type: recall_at_1
1703
+ value: 6.141
1704
+ - type: recall_at_10
1705
+ value: 17.598
1706
+ - type: recall_at_100
1707
+ value: 33.619
1708
+ - type: recall_at_1000
1709
+ value: 64.455
1710
+ - type: recall_at_3
1711
+ value: 10.667
1712
+ - type: recall_at_5
1713
+ value: 13.492999999999999
1714
+ - task:
1715
+ type: Retrieval
1716
+ dataset:
1717
+ type: nq
1718
+ name: MTEB NQ
1719
+ config: default
1720
+ split: test
1721
+ revision: None
1722
+ metrics:
1723
+ - type: map_at_1
1724
+ value: 26.019
1725
+ - type: map_at_10
1726
+ value: 40.644999999999996
1727
+ - type: map_at_100
1728
+ value: 41.870000000000005
1729
+ - type: map_at_1000
1730
+ value: 41.904
1731
+ - type: map_at_3
1732
+ value: 36.28
1733
+ - type: map_at_5
1734
+ value: 38.830999999999996
1735
+ - type: mrr_at_1
1736
+ value: 29.664
1737
+ - type: mrr_at_10
1738
+ value: 43.168
1739
+ - type: mrr_at_100
1740
+ value: 44.126
1741
+ - type: mrr_at_1000
1742
+ value: 44.151
1743
+ - type: mrr_at_3
1744
+ value: 39.484
1745
+ - type: mrr_at_5
1746
+ value: 41.702
1747
+ - type: ndcg_at_1
1748
+ value: 29.635
1749
+ - type: ndcg_at_10
1750
+ value: 48.284
1751
+ - type: ndcg_at_100
1752
+ value: 53.522999999999996
1753
+ - type: ndcg_at_1000
1754
+ value: 54.344
1755
+ - type: ndcg_at_3
1756
+ value: 40.048
1757
+ - type: ndcg_at_5
1758
+ value: 44.329
1759
+ - type: precision_at_1
1760
+ value: 29.635
1761
+ - type: precision_at_10
1762
+ value: 8.262
1763
+ - type: precision_at_100
1764
+ value: 1.1159999999999999
1765
+ - type: precision_at_1000
1766
+ value: 0.11900000000000001
1767
+ - type: precision_at_3
1768
+ value: 18.54
1769
+ - type: precision_at_5
1770
+ value: 13.586
1771
+ - type: recall_at_1
1772
+ value: 26.019
1773
+ - type: recall_at_10
1774
+ value: 69.049
1775
+ - type: recall_at_100
1776
+ value: 91.89399999999999
1777
+ - type: recall_at_1000
1778
+ value: 98.095
1779
+ - type: recall_at_3
1780
+ value: 47.81
1781
+ - type: recall_at_5
1782
+ value: 57.645
1783
+ - task:
1784
+ type: Retrieval
1785
+ dataset:
1786
+ type: quora
1787
+ name: MTEB QuoraRetrieval
1788
+ config: default
1789
+ split: test
1790
+ revision: None
1791
+ metrics:
1792
+ - type: map_at_1
1793
+ value: 70.952
1794
+ - type: map_at_10
1795
+ value: 84.895
1796
+ - type: map_at_100
1797
+ value: 85.51299999999999
1798
+ - type: map_at_1000
1799
+ value: 85.529
1800
+ - type: map_at_3
1801
+ value: 81.94500000000001
1802
+ - type: map_at_5
1803
+ value: 83.83500000000001
1804
+ - type: mrr_at_1
1805
+ value: 81.65
1806
+ - type: mrr_at_10
1807
+ value: 87.756
1808
+ - type: mrr_at_100
1809
+ value: 87.855
1810
+ - type: mrr_at_1000
1811
+ value: 87.856
1812
+ - type: mrr_at_3
1813
+ value: 86.822
1814
+ - type: mrr_at_5
1815
+ value: 87.473
1816
+ - type: ndcg_at_1
1817
+ value: 81.65
1818
+ - type: ndcg_at_10
1819
+ value: 88.563
1820
+ - type: ndcg_at_100
1821
+ value: 89.74499999999999
1822
+ - type: ndcg_at_1000
1823
+ value: 89.84400000000001
1824
+ - type: ndcg_at_3
1825
+ value: 85.782
1826
+ - type: ndcg_at_5
1827
+ value: 87.381
1828
+ - type: precision_at_1
1829
+ value: 81.65
1830
+ - type: precision_at_10
1831
+ value: 13.435
1832
+ - type: precision_at_100
1833
+ value: 1.529
1834
+ - type: precision_at_1000
1835
+ value: 0.157
1836
+ - type: precision_at_3
1837
+ value: 37.523
1838
+ - type: precision_at_5
1839
+ value: 24.72
1840
+ - type: recall_at_1
1841
+ value: 70.952
1842
+ - type: recall_at_10
1843
+ value: 95.521
1844
+ - type: recall_at_100
1845
+ value: 99.53699999999999
1846
+ - type: recall_at_1000
1847
+ value: 99.983
1848
+ - type: recall_at_3
1849
+ value: 87.559
1850
+ - type: recall_at_5
1851
+ value: 92.038
1852
+ - task:
1853
+ type: Clustering
1854
+ dataset:
1855
+ type: mteb/reddit-clustering
1856
+ name: MTEB RedditClustering
1857
+ config: default
1858
+ split: test
1859
+ revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
1860
+ metrics:
1861
+ - type: v_measure
1862
+ value: 54.61973943122806
1863
+ - task:
1864
+ type: Clustering
1865
+ dataset:
1866
+ type: mteb/reddit-clustering-p2p
1867
+ name: MTEB RedditClusteringP2P
1868
+ config: default
1869
+ split: test
1870
+ revision: 282350215ef01743dc01b456c7f5241fa8937f16
1871
+ metrics:
1872
+ - type: v_measure
1873
+ value: 60.92179806944469
1874
+ - task:
1875
+ type: Retrieval
1876
+ dataset:
1877
+ type: scidocs
1878
+ name: MTEB SCIDOCS
1879
+ config: default
1880
+ split: test
1881
+ revision: None
1882
+ metrics:
1883
+ - type: map_at_1
1884
+ value: 4.993
1885
+ - type: map_at_10
1886
+ value: 13.175999999999998
1887
+ - type: map_at_100
1888
+ value: 15.689
1889
+ - type: map_at_1000
1890
+ value: 16.054
1891
+ - type: map_at_3
1892
+ value: 9.325999999999999
1893
+ - type: map_at_5
1894
+ value: 11.283
1895
+ - type: mrr_at_1
1896
+ value: 24.7
1897
+ - type: mrr_at_10
1898
+ value: 36.568
1899
+ - type: mrr_at_100
1900
+ value: 37.667
1901
+ - type: mrr_at_1000
1902
+ value: 37.714
1903
+ - type: mrr_at_3
1904
+ value: 32.933
1905
+ - type: mrr_at_5
1906
+ value: 34.963
1907
+ - type: ndcg_at_1
1908
+ value: 24.7
1909
+ - type: ndcg_at_10
1910
+ value: 21.839
1911
+ - type: ndcg_at_100
1912
+ value: 31.057000000000002
1913
+ - type: ndcg_at_1000
1914
+ value: 36.962
1915
+ - type: ndcg_at_3
1916
+ value: 20.623
1917
+ - type: ndcg_at_5
1918
+ value: 18.107
1919
+ - type: precision_at_1
1920
+ value: 24.7
1921
+ - type: precision_at_10
1922
+ value: 11.360000000000001
1923
+ - type: precision_at_100
1924
+ value: 2.4619999999999997
1925
+ - type: precision_at_1000
1926
+ value: 0.388
1927
+ - type: precision_at_3
1928
+ value: 19.267
1929
+ - type: precision_at_5
1930
+ value: 15.959999999999999
1931
+ - type: recall_at_1
1932
+ value: 4.993
1933
+ - type: recall_at_10
1934
+ value: 22.982
1935
+ - type: recall_at_100
1936
+ value: 49.97
1937
+ - type: recall_at_1000
1938
+ value: 78.623
1939
+ - type: recall_at_3
1940
+ value: 11.716999999999999
1941
+ - type: recall_at_5
1942
+ value: 16.172
1943
+ - task:
1944
+ type: STS
1945
+ dataset:
1946
+ type: mteb/sickr-sts
1947
+ name: MTEB SICK-R
1948
+ config: default
1949
+ split: test
1950
+ revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
1951
+ metrics:
1952
+ - type: cos_sim_pearson
1953
+ value: 85.71899431421795
1954
+ - type: cos_sim_spearman
1955
+ value: 80.46430776062674
1956
+ - type: euclidean_pearson
1957
+ value: 83.02871101280735
1958
+ - type: euclidean_spearman
1959
+ value: 80.49525009964952
1960
+ - type: manhattan_pearson
1961
+ value: 82.96176477360466
1962
+ - type: manhattan_spearman
1963
+ value: 80.4038922852272
1964
+ - task:
1965
+ type: STS
1966
+ dataset:
1967
+ type: mteb/sts12-sts
1968
+ name: MTEB STS12
1969
+ config: default
1970
+ split: test
1971
+ revision: a0d554a64d88156834ff5ae9920b964011b16384
1972
+ metrics:
1973
+ - type: cos_sim_pearson
1974
+ value: 85.4473643076464
1975
+ - type: cos_sim_spearman
1976
+ value: 76.2648833265373
1977
+ - type: euclidean_pearson
1978
+ value: 82.5498605585181
1979
+ - type: euclidean_spearman
1980
+ value: 76.06458177068038
1981
+ - type: manhattan_pearson
1982
+ value: 82.55572570767087
1983
+ - type: manhattan_spearman
1984
+ value: 76.1267237133785
1985
+ - task:
1986
+ type: STS
1987
+ dataset:
1988
+ type: mteb/sts13-sts
1989
+ name: MTEB STS13
1990
+ config: default
1991
+ split: test
1992
+ revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
1993
+ metrics:
1994
+ - type: cos_sim_pearson
1995
+ value: 85.24858438337428
1996
+ - type: cos_sim_spearman
1997
+ value: 86.42907705680409
1998
+ - type: euclidean_pearson
1999
+ value: 85.50673274898077
2000
+ - type: euclidean_spearman
2001
+ value: 86.50066760759493
2002
+ - type: manhattan_pearson
2003
+ value: 85.38098024332331
2004
+ - type: manhattan_spearman
2005
+ value: 86.3179935859058
2006
+ - task:
2007
+ type: STS
2008
+ dataset:
2009
+ type: mteb/sts14-sts
2010
+ name: MTEB STS14
2011
+ config: default
2012
+ split: test
2013
+ revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
2014
+ metrics:
2015
+ - type: cos_sim_pearson
2016
+ value: 84.97052112858252
2017
+ - type: cos_sim_spearman
2018
+ value: 82.97007079944963
2019
+ - type: euclidean_pearson
2020
+ value: 84.49118913390151
2021
+ - type: euclidean_spearman
2022
+ value: 82.89912124589944
2023
+ - type: manhattan_pearson
2024
+ value: 84.45725470158602
2025
+ - type: manhattan_spearman
2026
+ value: 82.89422444440467
2027
+ - task:
2028
+ type: STS
2029
+ dataset:
2030
+ type: mteb/sts15-sts
2031
+ name: MTEB STS15
2032
+ config: default
2033
+ split: test
2034
+ revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
2035
+ metrics:
2036
+ - type: cos_sim_pearson
2037
+ value: 87.44702160696032
2038
+ - type: cos_sim_spearman
2039
+ value: 88.75678661413305
2040
+ - type: euclidean_pearson
2041
+ value: 88.22046240533754
2042
+ - type: euclidean_spearman
2043
+ value: 88.78103010580752
2044
+ - type: manhattan_pearson
2045
+ value: 88.15576644132916
2046
+ - type: manhattan_spearman
2047
+ value: 88.72891963379698
2048
+ - task:
2049
+ type: STS
2050
+ dataset:
2051
+ type: mteb/sts16-sts
2052
+ name: MTEB STS16
2053
+ config: default
2054
+ split: test
2055
+ revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
2056
+ metrics:
2057
+ - type: cos_sim_pearson
2058
+ value: 83.25112584874732
2059
+ - type: cos_sim_spearman
2060
+ value: 85.0642487018319
2061
+ - type: euclidean_pearson
2062
+ value: 84.37279427321502
2063
+ - type: euclidean_spearman
2064
+ value: 85.074198902509
2065
+ - type: manhattan_pearson
2066
+ value: 84.19323050597049
2067
+ - type: manhattan_spearman
2068
+ value: 84.88383717319327
2069
+ - task:
2070
+ type: STS
2071
+ dataset:
2072
+ type: mteb/sts17-crosslingual-sts
2073
+ name: MTEB STS17 (en-en)
2074
+ config: en-en
2075
+ split: test
2076
+ revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
2077
+ metrics:
2078
+ - type: cos_sim_pearson
2079
+ value: 88.87357291874198
2080
+ - type: cos_sim_spearman
2081
+ value: 89.1113081854716
2082
+ - type: euclidean_pearson
2083
+ value: 89.61137598923361
2084
+ - type: euclidean_spearman
2085
+ value: 89.13391070267475
2086
+ - type: manhattan_pearson
2087
+ value: 89.62382071829829
2088
+ - type: manhattan_spearman
2089
+ value: 89.1997962715288
2090
+ - task:
2091
+ type: STS
2092
+ dataset:
2093
+ type: mteb/sts22-crosslingual-sts
2094
+ name: MTEB STS22 (en)
2095
+ config: en
2096
+ split: test
2097
+ revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
2098
+ metrics:
2099
+ - type: cos_sim_pearson
2100
+ value: 67.1205707180893
2101
+ - type: cos_sim_spearman
2102
+ value: 68.16260851835224
2103
+ - type: euclidean_pearson
2104
+ value: 68.87294373141141
2105
+ - type: euclidean_spearman
2106
+ value: 67.98447223948163
2107
+ - type: manhattan_pearson
2108
+ value: 68.98950941915248
2109
+ - type: manhattan_spearman
2110
+ value: 68.29388343776796
2111
+ - task:
2112
+ type: STS
2113
+ dataset:
2114
+ type: mteb/stsbenchmark-sts
2115
+ name: MTEB STSBenchmark
2116
+ config: default
2117
+ split: test
2118
+ revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
2119
+ metrics:
2120
+ - type: cos_sim_pearson
2121
+ value: 85.9949201588004
2122
+ - type: cos_sim_spearman
2123
+ value: 87.31663820432567
2124
+ - type: euclidean_pearson
2125
+ value: 87.27979534770259
2126
+ - type: euclidean_spearman
2127
+ value: 87.31872069375427
2128
+ - type: manhattan_pearson
2129
+ value: 87.0783256942344
2130
+ - type: manhattan_spearman
2131
+ value: 87.16038562428714
2132
+ - task:
2133
+ type: Reranking
2134
+ dataset:
2135
+ type: mteb/scidocs-reranking
2136
+ name: MTEB SciDocsRR
2137
+ config: default
2138
+ split: test
2139
+ revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
2140
+ metrics:
2141
+ - type: map
2142
+ value: 86.08173708317305
2143
+ - type: mrr
2144
+ value: 95.93575179359493
2145
+ - task:
2146
+ type: Retrieval
2147
+ dataset:
2148
+ type: scifact
2149
+ name: MTEB SciFact
2150
+ config: default
2151
+ split: test
2152
+ revision: None
2153
+ metrics:
2154
+ - type: map_at_1
2155
+ value: 57.65
2156
+ - type: map_at_10
2157
+ value: 67.19000000000001
2158
+ - type: map_at_100
2159
+ value: 67.772
2160
+ - type: map_at_1000
2161
+ value: 67.805
2162
+ - type: map_at_3
2163
+ value: 64.14800000000001
2164
+ - type: map_at_5
2165
+ value: 65.745
2166
+ - type: mrr_at_1
2167
+ value: 60.333000000000006
2168
+ - type: mrr_at_10
2169
+ value: 68.158
2170
+ - type: mrr_at_100
2171
+ value: 68.583
2172
+ - type: mrr_at_1000
2173
+ value: 68.613
2174
+ - type: mrr_at_3
2175
+ value: 65.72200000000001
2176
+ - type: mrr_at_5
2177
+ value: 67.039
2178
+ - type: ndcg_at_1
2179
+ value: 60.333000000000006
2180
+ - type: ndcg_at_10
2181
+ value: 71.69200000000001
2182
+ - type: ndcg_at_100
2183
+ value: 74.064
2184
+ - type: ndcg_at_1000
2185
+ value: 74.694
2186
+ - type: ndcg_at_3
2187
+ value: 66.378
2188
+ - type: ndcg_at_5
2189
+ value: 68.73
2190
+ - type: precision_at_1
2191
+ value: 60.333000000000006
2192
+ - type: precision_at_10
2193
+ value: 9.533
2194
+ - type: precision_at_100
2195
+ value: 1.08
2196
+ - type: precision_at_1000
2197
+ value: 0.11299999999999999
2198
+ - type: precision_at_3
2199
+ value: 25.556
2200
+ - type: precision_at_5
2201
+ value: 17.0
2202
+ - type: recall_at_1
2203
+ value: 57.65
2204
+ - type: recall_at_10
2205
+ value: 84.56700000000001
2206
+ - type: recall_at_100
2207
+ value: 95.167
2208
+ - type: recall_at_1000
2209
+ value: 99.667
2210
+ - type: recall_at_3
2211
+ value: 70.272
2212
+ - type: recall_at_5
2213
+ value: 76.11099999999999
2214
+ - task:
2215
+ type: PairClassification
2216
+ dataset:
2217
+ type: mteb/sprintduplicatequestions-pairclassification
2218
+ name: MTEB SprintDuplicateQuestions
2219
+ config: default
2220
+ split: test
2221
+ revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
2222
+ metrics:
2223
+ - type: cos_sim_accuracy
2224
+ value: 99.83663366336634
2225
+ - type: cos_sim_ap
2226
+ value: 96.13854487816917
2227
+ - type: cos_sim_f1
2228
+ value: 91.77057356608479
2229
+ - type: cos_sim_precision
2230
+ value: 91.54228855721394
2231
+ - type: cos_sim_recall
2232
+ value: 92.0
2233
+ - type: dot_accuracy
2234
+ value: 99.83663366336634
2235
+ - type: dot_ap
2236
+ value: 96.29459284844314
2237
+ - type: dot_f1
2238
+ value: 91.6030534351145
2239
+ - type: dot_precision
2240
+ value: 93.26424870466322
2241
+ - type: dot_recall
2242
+ value: 90.0
2243
+ - type: euclidean_accuracy
2244
+ value: 99.83564356435643
2245
+ - type: euclidean_ap
2246
+ value: 96.09957152523418
2247
+ - type: euclidean_f1
2248
+ value: 91.7
2249
+ - type: euclidean_precision
2250
+ value: 91.7
2251
+ - type: euclidean_recall
2252
+ value: 91.7
2253
+ - type: manhattan_accuracy
2254
+ value: 99.83663366336634
2255
+ - type: manhattan_ap
2256
+ value: 96.09579952373399
2257
+ - type: manhattan_f1
2258
+ value: 91.72932330827068
2259
+ - type: manhattan_precision
2260
+ value: 91.95979899497488
2261
+ - type: manhattan_recall
2262
+ value: 91.5
2263
+ - type: max_accuracy
2264
+ value: 99.83663366336634
2265
+ - type: max_ap
2266
+ value: 96.29459284844314
2267
+ - type: max_f1
2268
+ value: 91.77057356608479
2269
+ - task:
2270
+ type: Clustering
2271
+ dataset:
2272
+ type: mteb/stackexchange-clustering
2273
+ name: MTEB StackExchangeClustering
2274
+ config: default
2275
+ split: test
2276
+ revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
2277
+ metrics:
2278
+ - type: v_measure
2279
+ value: 61.270213664772385
2280
+ - task:
2281
+ type: Clustering
2282
+ dataset:
2283
+ type: mteb/stackexchange-clustering-p2p
2284
+ name: MTEB StackExchangeClusteringP2P
2285
+ config: default
2286
+ split: test
2287
+ revision: 815ca46b2622cec33ccafc3735d572c266efdb44
2288
+ metrics:
2289
+ - type: v_measure
2290
+ value: 35.23973443659002
2291
+ - task:
2292
+ type: Reranking
2293
+ dataset:
2294
+ type: mteb/stackoverflowdupquestions-reranking
2295
+ name: MTEB StackOverflowDupQuestions
2296
+ config: default
2297
+ split: test
2298
+ revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
2299
+ metrics:
2300
+ - type: map
2301
+ value: 53.40061413824656
2302
+ - type: mrr
2303
+ value: 54.28819444444445
2304
+ - task:
2305
+ type: Summarization
2306
+ dataset:
2307
+ type: mteb/summeval
2308
+ name: MTEB SummEval
2309
+ config: default
2310
+ split: test
2311
+ revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
2312
+ metrics:
2313
+ - type: cos_sim_pearson
2314
+ value: 30.59314409717665
2315
+ - type: cos_sim_spearman
2316
+ value: 30.573109955748677
2317
+ - type: dot_pearson
2318
+ value: 30.884662900409722
2319
+ - type: dot_spearman
2320
+ value: 30.778591618272262
2321
+ - task:
2322
+ type: Retrieval
2323
+ dataset:
2324
+ type: trec-covid
2325
+ name: MTEB TRECCOVID
2326
+ config: default
2327
+ split: test
2328
+ revision: None
2329
+ metrics:
2330
+ - type: map_at_1
2331
+ value: 0.20400000000000001
2332
+ - type: map_at_10
2333
+ value: 1.7229999999999999
2334
+ - type: map_at_100
2335
+ value: 9.185
2336
+ - type: map_at_1000
2337
+ value: 23.019000000000002
2338
+ - type: map_at_3
2339
+ value: 0.596
2340
+ - type: map_at_5
2341
+ value: 0.9339999999999999
2342
+ - type: mrr_at_1
2343
+ value: 78.0
2344
+ - type: mrr_at_10
2345
+ value: 85.5
2346
+ - type: mrr_at_100
2347
+ value: 85.682
2348
+ - type: mrr_at_1000
2349
+ value: 85.682
2350
+ - type: mrr_at_3
2351
+ value: 84.0
2352
+ - type: mrr_at_5
2353
+ value: 85.5
2354
+ - type: ndcg_at_1
2355
+ value: 73.0
2356
+ - type: ndcg_at_10
2357
+ value: 68.28
2358
+ - type: ndcg_at_100
2359
+ value: 52.239000000000004
2360
+ - type: ndcg_at_1000
2361
+ value: 48.217
2362
+ - type: ndcg_at_3
2363
+ value: 72.603
2364
+ - type: ndcg_at_5
2365
+ value: 70.64099999999999
2366
+ - type: precision_at_1
2367
+ value: 78.0
2368
+ - type: precision_at_10
2369
+ value: 72.39999999999999
2370
+ - type: precision_at_100
2371
+ value: 53.459999999999994
2372
+ - type: precision_at_1000
2373
+ value: 21.254
2374
+ - type: precision_at_3
2375
+ value: 78.0
2376
+ - type: precision_at_5
2377
+ value: 74.8
2378
+ - type: recall_at_1
2379
+ value: 0.20400000000000001
2380
+ - type: recall_at_10
2381
+ value: 1.939
2382
+ - type: recall_at_100
2383
+ value: 12.831000000000001
2384
+ - type: recall_at_1000
2385
+ value: 45.572
2386
+ - type: recall_at_3
2387
+ value: 0.628
2388
+ - type: recall_at_5
2389
+ value: 1.004
2390
+ - task:
2391
+ type: Retrieval
2392
+ dataset:
2393
+ type: webis-touche2020
2394
+ name: MTEB Touche2020
2395
+ config: default
2396
+ split: test
2397
+ revision: None
2398
+ metrics:
2399
+ - type: map_at_1
2400
+ value: 1.693
2401
+ - type: map_at_10
2402
+ value: 7.7410000000000005
2403
+ - type: map_at_100
2404
+ value: 13.778000000000002
2405
+ - type: map_at_1000
2406
+ value: 15.328
2407
+ - type: map_at_3
2408
+ value: 4.361000000000001
2409
+ - type: map_at_5
2410
+ value: 5.534
2411
+ - type: mrr_at_1
2412
+ value: 20.408
2413
+ - type: mrr_at_10
2414
+ value: 37.008
2415
+ - type: mrr_at_100
2416
+ value: 38.198
2417
+ - type: mrr_at_1000
2418
+ value: 38.216
2419
+ - type: mrr_at_3
2420
+ value: 32.993
2421
+ - type: mrr_at_5
2422
+ value: 34.83
2423
+ - type: ndcg_at_1
2424
+ value: 18.367
2425
+ - type: ndcg_at_10
2426
+ value: 19.676
2427
+ - type: ndcg_at_100
2428
+ value: 33.421
2429
+ - type: ndcg_at_1000
2430
+ value: 45.123999999999995
2431
+ - type: ndcg_at_3
2432
+ value: 22.109
2433
+ - type: ndcg_at_5
2434
+ value: 20.166999999999998
2435
+ - type: precision_at_1
2436
+ value: 20.408
2437
+ - type: precision_at_10
2438
+ value: 17.551
2439
+ - type: precision_at_100
2440
+ value: 7.286
2441
+ - type: precision_at_1000
2442
+ value: 1.516
2443
+ - type: precision_at_3
2444
+ value: 23.810000000000002
2445
+ - type: precision_at_5
2446
+ value: 20.408
2447
+ - type: recall_at_1
2448
+ value: 1.693
2449
+ - type: recall_at_10
2450
+ value: 13.485
2451
+ - type: recall_at_100
2452
+ value: 46.361000000000004
2453
+ - type: recall_at_1000
2454
+ value: 81.997
2455
+ - type: recall_at_3
2456
+ value: 5.432
2457
+ - type: recall_at_5
2458
+ value: 7.797
2459
+ - task:
2460
+ type: Classification
2461
+ dataset:
2462
+ type: mteb/toxic_conversations_50k
2463
+ name: MTEB ToxicConversationsClassification
2464
+ config: default
2465
+ split: test
2466
+ revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
2467
+ metrics:
2468
+ - type: accuracy
2469
+ value: 70.6774
2470
+ - type: ap
2471
+ value: 14.243691983984998
2472
+ - type: f1
2473
+ value: 54.45105895755751
2474
+ - task:
2475
+ type: Classification
2476
+ dataset:
2477
+ type: mteb/tweet_sentiment_extraction
2478
+ name: MTEB TweetSentimentExtractionClassification
2479
+ config: default
2480
+ split: test
2481
+ revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
2482
+ metrics:
2483
+ - type: accuracy
2484
+ value: 60.0509337860781
2485
+ - type: f1
2486
+ value: 60.424197644605236
2487
+ - task:
2488
+ type: Clustering
2489
+ dataset:
2490
+ type: mteb/twentynewsgroups-clustering
2491
+ name: MTEB TwentyNewsgroupsClustering
2492
+ config: default
2493
+ split: test
2494
+ revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
2495
+ metrics:
2496
+ - type: v_measure
2497
+ value: 49.94452711339773
2498
+ - task:
2499
+ type: PairClassification
2500
+ dataset:
2501
+ type: mteb/twittersemeval2015-pairclassification
2502
+ name: MTEB TwitterSemEval2015
2503
+ config: default
2504
+ split: test
2505
+ revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
2506
+ metrics:
2507
+ - type: cos_sim_accuracy
2508
+ value: 85.75430649102938
2509
+ - type: cos_sim_ap
2510
+ value: 73.38576407567363
2511
+ - type: cos_sim_f1
2512
+ value: 67.47549019607844
2513
+ - type: cos_sim_precision
2514
+ value: 62.99771167048055
2515
+ - type: cos_sim_recall
2516
+ value: 72.63852242744063
2517
+ - type: dot_accuracy
2518
+ value: 85.67681945520653
2519
+ - type: dot_ap
2520
+ value: 73.37650773516077
2521
+ - type: dot_f1
2522
+ value: 67.56520653937352
2523
+ - type: dot_precision
2524
+ value: 64.1013497513616
2525
+ - type: dot_recall
2526
+ value: 71.42480211081794
2527
+ - type: euclidean_accuracy
2528
+ value: 85.76622757346367
2529
+ - type: euclidean_ap
2530
+ value: 73.31834510956003
2531
+ - type: euclidean_f1
2532
+ value: 67.40331491712708
2533
+ - type: euclidean_precision
2534
+ value: 60.780156879372484
2535
+ - type: euclidean_recall
2536
+ value: 75.64643799472296
2537
+ - type: manhattan_accuracy
2538
+ value: 85.73046432616081
2539
+ - type: manhattan_ap
2540
+ value: 73.10120518588954
2541
+ - type: manhattan_f1
2542
+ value: 67.34183545886471
2543
+ - type: manhattan_precision
2544
+ value: 63.997148288973385
2545
+ - type: manhattan_recall
2546
+ value: 71.05540897097626
2547
+ - type: max_accuracy
2548
+ value: 85.76622757346367
2549
+ - type: max_ap
2550
+ value: 73.38576407567363
2551
+ - type: max_f1
2552
+ value: 67.56520653937352
2553
+ - task:
2554
+ type: PairClassification
2555
+ dataset:
2556
+ type: mteb/twitterurlcorpus-pairclassification
2557
+ name: MTEB TwitterURLCorpus
2558
+ config: default
2559
+ split: test
2560
+ revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
2561
+ metrics:
2562
+ - type: cos_sim_accuracy
2563
+ value: 88.71424690495596
2564
+ - type: cos_sim_ap
2565
+ value: 85.42819672981983
2566
+ - type: cos_sim_f1
2567
+ value: 77.76150014649868
2568
+ - type: cos_sim_precision
2569
+ value: 74.15479184129646
2570
+ - type: cos_sim_recall
2571
+ value: 81.73698798891284
2572
+ - type: dot_accuracy
2573
+ value: 88.45810532852097
2574
+ - type: dot_ap
2575
+ value: 84.78667227857513
2576
+ - type: dot_f1
2577
+ value: 77.29539996305192
2578
+ - type: dot_precision
2579
+ value: 74.30560488740498
2580
+ - type: dot_recall
2581
+ value: 80.53587927317524
2582
+ - type: euclidean_accuracy
2583
+ value: 88.73171110334924
2584
+ - type: euclidean_ap
2585
+ value: 85.46052151213301
2586
+ - type: euclidean_f1
2587
+ value: 77.79939075861563
2588
+ - type: euclidean_precision
2589
+ value: 74.33200084157374
2590
+ - type: euclidean_recall
2591
+ value: 81.60609793655682
2592
+ - type: manhattan_accuracy
2593
+ value: 88.75111576823068
2594
+ - type: manhattan_ap
2595
+ value: 85.4412901701619
2596
+ - type: manhattan_f1
2597
+ value: 77.72423325488437
2598
+ - type: manhattan_precision
2599
+ value: 75.48799071184965
2600
+ - type: manhattan_recall
2601
+ value: 80.09701262704034
2602
+ - type: max_accuracy
2603
+ value: 88.75111576823068
2604
+ - type: max_ap
2605
+ value: 85.46052151213301
2606
+ - type: max_f1
2607
+ value: 77.79939075861563
2608
  ---
2609
+ <h1 align="center">GIST small Embedding v0</h1>
2610
+
2611
+ *GIST Embedding: Guided In-sample Selection of Training Negatives for Text Embedding*
2612
+
2613
+ The model is fine-tuned on top of the [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) using the [MEDI dataset](https://github.com/xlang-ai/instructor-embedding.git) augmented with mined triplets from the [MTEB Classification](https://huggingface.co/mteb) training dataset (excluding data from the Amazon Polarity Classification task).
2614
+
2615
+ The model does not require any instruction for generating embeddings. This means that queries for retrieval tasks can be directly encoded without crafting instructions.
2616
+
2617
+ Technical details of the model will be published shortly.
2618
+
2619
+ # Data
2620
+
2621
+ The dataset used is a compilation of the MEDI dataset and the MTEB Classification training dataset. Third-party datasets may be subject to additional terms and conditions under their associated licenses. A HuggingFace Dataset version of the compiled dataset, and the specific revision used to train the model, is available:
2622
+
2623
+ - Dataset: [avsolatorio/medi-data-mteb_avs_triplets](https://huggingface.co/datasets/avsolatorio/medi-data-mteb_avs_triplets)
2624
+ - Revision: 238a0499b6e6b690cc64ea56fde8461daa8341bb
2625
+
2626
+ The dataset contains a `task_type` key which can be used to select only the mteb classification tasks (prefixed with `mteb_`).
2627
+
2628
+ The **MEDI Dataset** is published in the following paper: [One Embedder, Any Task: Instruction-Finetuned Text Embeddings](https://arxiv.org/abs/2212.09741).
2629
+
2630
+ The MTEB Benchmark results of the GIST embedding model, compared with the base model, suggest that the fine-tuning dataset has perturbed the model considerably, which resulted in significant improvements in certain tasks while adversely degrading performance in some.
2631
+
2632
+ The retrieval performance for the TRECCOVID task is of note. The fine-tuning dataset does not contain significant knowledge about COVID, which could have caused the observed performance degradation. Further work is currently being undertaken to validate this hypothesis.
2633
+
2634
+ # Usage
2635
+
2636
+ The model can be easily loaded using the Sentence Transformers library.
2637
+
2638
+ ```Python
2639
+ import torch.nn.functional as F
2640
+ from sentence_transformers import SentenceTransformer
2641
+
2642
+ revision = None # Replace with the specific revision to ensure reproducibility in case the model is updated.
2643
+
2644
+ model = SentenceTransformer("avsolatorio/GIST-small-Embedding-v0", revision=revision)
2645
+
2646
+ texts = [
2647
+ "Illustration of the REaLTabFormer model. The left block shows the non-relational tabular data model using GPT-2 with a causal LM head. In contrast, the right block shows how a relational dataset's child table is modeled using a sequence-to-sequence (Seq2Seq) model. The Seq2Seq model uses the observations in the parent table to condition the generation of the observations in the child table. The trained GPT-2 model on the parent table, with weights frozen, is also used as the encoder in the Seq2Seq model.",
2648
+ "Predicting human mobility holds significant practical value, with applications ranging from enhancing disaster risk planning to simulating epidemic spread. In this paper, we present the GeoFormer, a decoder-only transformer model adapted from the GPT architecture to forecast human mobility.",
2649
+ "As the economies of Southeast Asia continue adopting digital technologies, policy makers increasingly ask how to prepare the workforce for emerging labor demands. However, little is known about the skills that workers need to adapt to these changes"
2650
+ ]
2651
+
2652
+ # Compute embeddings
2653
+ embeddings = model.encode(texts, convert_to_tensor=True)
2654
+
2655
+ # Compute cosine-similarity for each pair of sentences
2656
+ scores = F.cosine_similarity(embeddings.unsqueeze(1), embeddings.unsqueeze(0), dim=-1)
2657
+
2658
+ print(scores.cpu().numpy())
2659
+ ```
2660
+
2661
+ # Training Parameters
2662
+
2663
+ Below are the training parameters used to fine-tune the model:
2664
+
2665
+ ```
2666
+ Epochs = 40
2667
+ Warmup ratio = 0.1
2668
+ Learning rate = 5e-6
2669
+ Batch size = 16
2670
+ Checkpoint step = 102000
2671
+ Contrastive loss temperature = 0.01
2672
+ ```
2673
+
2674
+ Specific training details and strategies will be published shortly.
2675
+
2676
+ # Evaluation
2677
+
2678
+ The model was evaluated using the [MTEB Evaluation](https://huggingface.co/mteb) suite.
2679
+
2680
+
2681
+ # Acknowledgements
2682
+
2683
+ This work is supported by the "KCP IV - Exploring Data Use in the Development Economics Literature using Large Language Models (AI and LLMs)" project funded by the [Knowledge for Change Program (KCP)](https://www.worldbank.org/en/programs/knowledge-for-change) of the World Bank - RA-P503405-RESE-TF0C3444.
2684
+
2685
+ The findings, interpretations, and conclusions expressed in this material are entirely those of the authors. They do not necessarily represent the views of the International Bank for Reconstruction and Development/World Bank and its affiliated organizations, or those of the Executive Directors of the World Bank or the governments they represent.