avnishkanungo
commited on
Commit
•
9ff39a9
1
Parent(s):
3ddf5d6
First Trained RL Model
Browse files- README.md +37 -0
- config.json +1 -0
- lunar_lander_proper_landing.zip +3 -0
- lunar_lander_proper_landing/_stable_baselines3_version +1 -0
- lunar_lander_proper_landing/data +99 -0
- lunar_lander_proper_landing/policy.optimizer.pth +3 -0
- lunar_lander_proper_landing/policy.pth +3 -0
- lunar_lander_proper_landing/pytorch_variables.pth +3 -0
- lunar_lander_proper_landing/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 265.23 +/- 22.45
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f040f79d000>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f040f79d090>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f040f79d120>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f040f79d1b0>", "_build": "<function ActorCriticPolicy._build at 0x7f040f79d240>", "forward": "<function ActorCriticPolicy.forward at 0x7f040f79d2d0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f040f79d360>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f040f79d3f0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f040f79d480>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f040f79d510>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f040f79d5a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f040f79d630>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f040f7a0280>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1684558111496589155, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIBWW73AXjk/U+uavLbaqL7Ioh48JKotPAAAAAAAAAAAmqOLPXS/tT/0KgU/kYHnvUr1CT0dx3I+AAAAAAAAAADzNsE9IO6aP/yIKD4zDqm+aEVcPvosOT4AAAAAAAAAAJoNMbwAJZg+5kWbvYPaqb6uyXW8BaVNPQAAAAAAAAAAM+ilvFSArz4xtQo9vNStvtd5lL3+gCQ+AAAAAAAAAABg8ha+UehwPtrTqz7uIi6+DfyiPbcOGj0AAAAAAAAAAM20FLzs0+67Xvx1vb55UryiHE899pLcPQAAgD8AAIA/ABixO3ENAjzGqu48Nndhvr2TiLxxWME8AAAAAAAAAABa15090gCjP9Q3CD80tQS/BqolPShJPD4AAAAAAAAAADOXn7uu54C6irLeOk05iDUl53a7vgoCugAAgD8AAIA/RqigPvCJaD/zaKu8nfnBvjxkiT5aRRe9AAAAAAAAAAAz7ae8Ewe5PyzMxb0Qyza+Uvx4veHKlL0AAAAAAAAAAM1NBz1X7Q8/oMapvDrjrb4m3qY7GeYJvQAAAAAAAAAAgIHBPSl4XLpJYi45xtcotpA5qjp1hBy1AAAAAAAAgD9mVUW9e8SQumrJXTj7ssO3NwEQO4PlUbcAAIA/AACAP9rtpL3nEWs++3M0PE/Zi772g/i9tYBePQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVNgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHCfubExZdSMAWyUTR4BjAF0lEdArOtGnIhhY3V9lChoBkdAcWW8/lhgE2gHTSYBaAhHQKzrn7DVH4J1fZQoaAZHQHMlq+evpyJoB00SAWgIR0Cs69RbjcVQdX2UKGgGR0BwNyFEiMYNaAdNFAFoCEdArOwlZPl+3HV9lChoBkdAcCCRaouPFWgHTTABaAhHQKzsQVARkEt1fZQoaAZHQHEc+FDfFaVoB00CAWgIR0Cs7Lridat+dX2UKGgGR0Bx5CKjzqbCaAdNUwFoCEdArO2dIkJKJ3V9lChoBkdAbl6kWykbgmgHTQQBaAhHQKzt8sFt8/l1fZQoaAZHQHFr9ayKNyZoB00OAWgIR0Cs7rPQOWjXdX2UKGgGR0BwVxL39JjEaAdL7GgIR0Cs7zTvAoG6dX2UKGgGR0BxOtTwUg0TaAdNTgFoCEdArO8/ovBacXV9lChoBkdAcJstDlYEGWgHTUkBaAhHQKzv7GPxQSB1fZQoaAZHQHBRtB8hLXdoB00bAWgIR0Cs8Fu7QLNOdX2UKGgGR0BscvGEPDpDaAdNRgFoCEdArPCcBhhH9XV9lChoBkdAck01P3ztkWgHTR0BaAhHQKzw20O3DvV1fZQoaAZHQG8Qfek56t1oB00bAWgIR0Cs8Rm47Rv4dX2UKGgGR0ByehNFjNILaAdNYgFoCEdArPE7qhUR4HV9lChoBkdAbG74cm0E5mgHTQ8BaAhHQKzxSxsVLzx1fZQoaAZHQHDyfp+tr9FoB010AWgIR0Cs8YwsoUi7dX2UKGgGR0Bx0aRT0g8saAdL/2gIR0Cs8bh9Cu2adX2UKGgGR0BxSS/7BO58aAdNdAFoCEdArPHf4mCyyHV9lChoBkdAcW6+AmReTmgHTTMBaAhHQKzx/3sXzlN1fZQoaAZHQD96pcX3xnZoB0vhaAhHQKzySfL9uP51fZQoaAZHQG0Yd1U2kzpoB00iAWgIR0Cs8vxPO6d2dX2UKGgGR0Bxc33Gn4wiaAdNDAFoCEdArPOBLPD503V9lChoBkdAcT+6oVEeAGgHTSEBaAhHQKz0UkVvddp1fZQoaAZHQG4XIa1kUbloB01EAWgIR0Cs9QEXk5p8dX2UKGgGR0Byezu0CzTnaAdNJwFoCEdArPUSlJpWWHV9lChoBkdAcs+pg1FYuGgHS/loCEdArPVMkSmIkHV9lChoBkdAbUHBqKxcFGgHTSkBaAhHQKz1hHmRvFZ1fZQoaAZHQHE40ILPUrloB00oAWgIR0Cs9ikmY0EYdX2UKGgGR0BEv74BV+7UaAdL9GgIR0Cs9k6wdKdydX2UKGgGR0Bx/dgc94eLaAdL/2gIR0Cs9lTSLIgedX2UKGgGR0Bu1FYQrc0taAdNPgFoCEdArPZr9l2/z3V9lChoBkdAcaErOqvNeWgHTRkBaAhHQKz2sbobGWF1fZQoaAZHQG6D0KZ2IO9oB00zAWgIR0Cs9t3RgJC0dX2UKGgGR0ByaDiYLLIQaAdNEgFoCEdArPcf0RODa3V9lChoBkdAcOCvPC2tuGgHTXMBaAhHQKz4Uz0pVjt1fZQoaAZHQG3XofjjrAxoB00zAWgIR0Cs+FSrgflqdX2UKGgGR0BxjJXbM5fdaAdNFgFoCEdArPi2xUvPC3V9lChoBkdAcc8UWEbo82gHTR4BaAhHQKz5ks3hn8N1fZQoaAZHQHMDko8ZDRdoB00WAWgIR0Cs+nlsHjZMdX2UKGgGR0BygkWvbGm2aAdL9mgIR0Cs+um8274BdX2UKGgGR0BxHmBxxT86aAdNJwFoCEdArPwJuZThpHV9lChoBkdAcDFtgKF7D2gHTTIBaAhHQKz8SblRxcV1fZQoaAZHQHHFMiOearpoB00HAWgIR0CtBt/4h2W6dX2UKGgGR0Bws/Xe3x4IaAdNIAFoCEdArQdmyAxzrHV9lChoBkdAcY5J8OTaCmgHTRsBaAhHQK0Hn27FsHl1fZQoaAZHQHEFFlf7aZhoB01JAWgIR0CtB6O8brC4dX2UKGgGR0BwBV77bcoIaAdNLgFoCEdArQesVHnU2HV9lChoBkdAb21WYnfEXWgHTQ8BaAhHQK0Hy49X9zh1fZQoaAZHQG8y8ox59mZoB00dAWgIR0CtB8tz0Yj0dX2UKGgGR0Bw3/+4smOVaAdNCAFoCEdArQiFsnAqNXV9lChoBkdAcPKBqsU7CGgHTR0BaAhHQK0I2r0aqCJ1fZQoaAZHQHMTlyeZof1oB0vuaAhHQK0JEAvtdAx1fZQoaAZHQHDofwiJO35oB0vzaAhHQK0Jw73fygB1fZQoaAZHQHFVMbvPTodoB01tAWgIR0CtCpqoAGSqdX2UKGgGR0Bvba9TP0I1aAdNKQFoCEdArQsknVoYenV9lChoBkdAclQ544ZMtmgHTQQBaAhHQK0LULeANG51fZQoaAZHQHJBNjwx33ZoB0vjaAhHQK0LXMXaakR1fZQoaAZHQHHgJDRc/t9oB0vhaAhHQK0LnibUgB91fZQoaAZHQHBnS1iONo9oB00kAWgIR0CtC8faQFLWdX2UKGgGR0ByvuJvYODraAdNJwFoCEdArQwPEMspX3V9lChoBkdAcCsPVurIYGgHTQ4BaAhHQK0Mn0yP+4t1fZQoaAZHQHCsvdM0xdpoB00eAWgIR0CtDMJ2ECeVdX2UKGgGR0BxES5UcXFcaAdNHAFoCEdArQziIpH7QHV9lChoBkdAccg94NZvDWgHTVwBaAhHQK0N6AQxveh1fZQoaAZHQHCtRNATqSpoB02IAmgIR0CtDgAYpDu0dX2UKGgGR0BzEQtg8bJfaAdNGwFoCEdArQ4j+cYqG3V9lChoBkdAcQSNUwSJ0mgHTRIBaAhHQK0O9OtW+491fZQoaAZHQHJ0DS5RTCNoB01zAWgIR0CtD1S00FbFdX2UKGgGR0BwwAXgtOEeaAdL92gIR0CtEEiUgSvldX2UKGgGR0ByjVntfG+9aAdNCwFoCEdArRBdMh5gPXV9lChoBkdAbYTD50r9VGgHTRABaAhHQK0Qha+N96V1fZQoaAZHQHHf8TrVvuRoB006AWgIR0CtESu9WZJDdX2UKGgGR0BwuvZoPCl8aAdNBAFoCEdArRGepqASWnV9lChoBkdAcKa9cKPXCmgHTUABaAhHQK0SSQBgeBB1fZQoaAZHQG9A7wz+FURoB00kAWgIR0CtEm1eSjgydX2UKGgGR0BvlykEcKgJaAdNIwFoCEdArRKIIrvsq3V9lChoBkdAclSwXZXdTGgHTWIBaAhHQK0So3ZPEbZ1fZQoaAZHQHMPXp4bCJpoB00bAWgIR0CtE3leWv8qdX2UKGgGR0BwSFTYNAkcaAdNIwFoCEdArRPIood+5XV9lChoBkdAcEVowmE5AGgHTTIBaAhHQK0T0iO/+Kl1fZQoaAZHQHJifBnBciZoB00RAWgIR0CtFIAnUlRhdX2UKGgGR0BwEaSxJNCaaAdNUwJoCEdArRSnovBacXV9lChoBkdAcTavAXVLBmgHS/BoCEdArRVT6SDAanV9lChoBkdAchEGRV6u4mgHTQYBaAhHQK0WIqGUOd51fZQoaAZHQHJ5iTQmeDpoB01PAWgIR0CtFnuU2UB5dX2UKGgGR0BwcvqLS/j9aAdNNAFoCEdArRcSujh1knV9lChoBkdAcMwF9roGIWgHTRUBaAhHQK0XRTfixV11fZQoaAZHQHI5kTpPhydoB0vsaAhHQK0XoI3R5Tt1fZQoaAZHQHIAz1kDp1RoB005AWgIR0CtGNEmY0EYdX2UKGgGR0BwdtE9dNWVaAdNCwFoCEdArRj70L+glHV9lChoBkdAbP5Bw++ueWgHTSABaAhHQK0ZP6LwWnF1fZQoaAZHQHA7FP3ztkZoB008AWgIR0CtGidzOopAdX2UKGgGR0Bya/0btJFtaAdNDQFoCEdArRpGYUnG83V9lChoBkdAcKaExZdOZmgHTR4BaAhHQK0bP8CPp6h1fZQoaAZHQHHk8nAqNIdoB00xAWgIR0CtG8CIUJv6dX2UKGgGR0Bw5WB9Tgl4aAdNHAFoCEdArRvwTh5xBHV9lChoBkdAcCUlWwNb1WgHTRgBaAhHQK0b/w/gR9R1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 292, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
lunar_lander_proper_landing.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8d556125267d29eed4b9bd0d2179d35202c884b13443d460f65e89aa48a23450
|
3 |
+
size 146739
|
lunar_lander_proper_landing/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
lunar_lander_proper_landing/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f040f79d000>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f040f79d090>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f040f79d120>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f040f79d1b0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f040f79d240>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f040f79d2d0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f040f79d360>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f040f79d3f0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f040f79d480>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f040f79d510>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f040f79d5a0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f040f79d630>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f040f7a0280>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1684558111496589155,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIBWW73AXjk/U+uavLbaqL7Ioh48JKotPAAAAAAAAAAAmqOLPXS/tT/0KgU/kYHnvUr1CT0dx3I+AAAAAAAAAADzNsE9IO6aP/yIKD4zDqm+aEVcPvosOT4AAAAAAAAAAJoNMbwAJZg+5kWbvYPaqb6uyXW8BaVNPQAAAAAAAAAAM+ilvFSArz4xtQo9vNStvtd5lL3+gCQ+AAAAAAAAAABg8ha+UehwPtrTqz7uIi6+DfyiPbcOGj0AAAAAAAAAAM20FLzs0+67Xvx1vb55UryiHE899pLcPQAAgD8AAIA/ABixO3ENAjzGqu48Nndhvr2TiLxxWME8AAAAAAAAAABa15090gCjP9Q3CD80tQS/BqolPShJPD4AAAAAAAAAADOXn7uu54C6irLeOk05iDUl53a7vgoCugAAgD8AAIA/RqigPvCJaD/zaKu8nfnBvjxkiT5aRRe9AAAAAAAAAAAz7ae8Ewe5PyzMxb0Qyza+Uvx4veHKlL0AAAAAAAAAAM1NBz1X7Q8/oMapvDrjrb4m3qY7GeYJvQAAAAAAAAAAgIHBPSl4XLpJYi45xtcotpA5qjp1hBy1AAAAAAAAgD9mVUW9e8SQumrJXTj7ssO3NwEQO4PlUbcAAIA/AACAP9rtpL3nEWs++3M0PE/Zi772g/i9tYBePQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVNgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHCfubExZdSMAWyUTR4BjAF0lEdArOtGnIhhY3V9lChoBkdAcWW8/lhgE2gHTSYBaAhHQKzrn7DVH4J1fZQoaAZHQHMlq+evpyJoB00SAWgIR0Cs69RbjcVQdX2UKGgGR0BwNyFEiMYNaAdNFAFoCEdArOwlZPl+3HV9lChoBkdAcCCRaouPFWgHTTABaAhHQKzsQVARkEt1fZQoaAZHQHEc+FDfFaVoB00CAWgIR0Cs7Lridat+dX2UKGgGR0Bx5CKjzqbCaAdNUwFoCEdArO2dIkJKJ3V9lChoBkdAbl6kWykbgmgHTQQBaAhHQKzt8sFt8/l1fZQoaAZHQHFr9ayKNyZoB00OAWgIR0Cs7rPQOWjXdX2UKGgGR0BwVxL39JjEaAdL7GgIR0Cs7zTvAoG6dX2UKGgGR0BxOtTwUg0TaAdNTgFoCEdArO8/ovBacXV9lChoBkdAcJstDlYEGWgHTUkBaAhHQKzv7GPxQSB1fZQoaAZHQHBRtB8hLXdoB00bAWgIR0Cs8Fu7QLNOdX2UKGgGR0BscvGEPDpDaAdNRgFoCEdArPCcBhhH9XV9lChoBkdAck01P3ztkWgHTR0BaAhHQKzw20O3DvV1fZQoaAZHQG8Qfek56t1oB00bAWgIR0Cs8Rm47Rv4dX2UKGgGR0ByehNFjNILaAdNYgFoCEdArPE7qhUR4HV9lChoBkdAbG74cm0E5mgHTQ8BaAhHQKzxSxsVLzx1fZQoaAZHQHDyfp+tr9FoB010AWgIR0Cs8YwsoUi7dX2UKGgGR0Bx0aRT0g8saAdL/2gIR0Cs8bh9Cu2adX2UKGgGR0BxSS/7BO58aAdNdAFoCEdArPHf4mCyyHV9lChoBkdAcW6+AmReTmgHTTMBaAhHQKzx/3sXzlN1fZQoaAZHQD96pcX3xnZoB0vhaAhHQKzySfL9uP51fZQoaAZHQG0Yd1U2kzpoB00iAWgIR0Cs8vxPO6d2dX2UKGgGR0Bxc33Gn4wiaAdNDAFoCEdArPOBLPD503V9lChoBkdAcT+6oVEeAGgHTSEBaAhHQKz0UkVvddp1fZQoaAZHQG4XIa1kUbloB01EAWgIR0Cs9QEXk5p8dX2UKGgGR0Byezu0CzTnaAdNJwFoCEdArPUSlJpWWHV9lChoBkdAcs+pg1FYuGgHS/loCEdArPVMkSmIkHV9lChoBkdAbUHBqKxcFGgHTSkBaAhHQKz1hHmRvFZ1fZQoaAZHQHE40ILPUrloB00oAWgIR0Cs9ikmY0EYdX2UKGgGR0BEv74BV+7UaAdL9GgIR0Cs9k6wdKdydX2UKGgGR0Bx/dgc94eLaAdL/2gIR0Cs9lTSLIgedX2UKGgGR0Bu1FYQrc0taAdNPgFoCEdArPZr9l2/z3V9lChoBkdAcaErOqvNeWgHTRkBaAhHQKz2sbobGWF1fZQoaAZHQG6D0KZ2IO9oB00zAWgIR0Cs9t3RgJC0dX2UKGgGR0ByaDiYLLIQaAdNEgFoCEdArPcf0RODa3V9lChoBkdAcOCvPC2tuGgHTXMBaAhHQKz4Uz0pVjt1fZQoaAZHQG3XofjjrAxoB00zAWgIR0Cs+FSrgflqdX2UKGgGR0BxjJXbM5fdaAdNFgFoCEdArPi2xUvPC3V9lChoBkdAcc8UWEbo82gHTR4BaAhHQKz5ks3hn8N1fZQoaAZHQHMDko8ZDRdoB00WAWgIR0Cs+nlsHjZMdX2UKGgGR0BygkWvbGm2aAdL9mgIR0Cs+um8274BdX2UKGgGR0BxHmBxxT86aAdNJwFoCEdArPwJuZThpHV9lChoBkdAcDFtgKF7D2gHTTIBaAhHQKz8SblRxcV1fZQoaAZHQHHFMiOearpoB00HAWgIR0CtBt/4h2W6dX2UKGgGR0Bws/Xe3x4IaAdNIAFoCEdArQdmyAxzrHV9lChoBkdAcY5J8OTaCmgHTRsBaAhHQK0Hn27FsHl1fZQoaAZHQHEFFlf7aZhoB01JAWgIR0CtB6O8brC4dX2UKGgGR0BwBV77bcoIaAdNLgFoCEdArQesVHnU2HV9lChoBkdAb21WYnfEXWgHTQ8BaAhHQK0Hy49X9zh1fZQoaAZHQG8y8ox59mZoB00dAWgIR0CtB8tz0Yj0dX2UKGgGR0Bw3/+4smOVaAdNCAFoCEdArQiFsnAqNXV9lChoBkdAcPKBqsU7CGgHTR0BaAhHQK0I2r0aqCJ1fZQoaAZHQHMTlyeZof1oB0vuaAhHQK0JEAvtdAx1fZQoaAZHQHDofwiJO35oB0vzaAhHQK0Jw73fygB1fZQoaAZHQHFVMbvPTodoB01tAWgIR0CtCpqoAGSqdX2UKGgGR0Bvba9TP0I1aAdNKQFoCEdArQsknVoYenV9lChoBkdAclQ544ZMtmgHTQQBaAhHQK0LULeANG51fZQoaAZHQHJBNjwx33ZoB0vjaAhHQK0LXMXaakR1fZQoaAZHQHHgJDRc/t9oB0vhaAhHQK0LnibUgB91fZQoaAZHQHBnS1iONo9oB00kAWgIR0CtC8faQFLWdX2UKGgGR0ByvuJvYODraAdNJwFoCEdArQwPEMspX3V9lChoBkdAcCsPVurIYGgHTQ4BaAhHQK0Mn0yP+4t1fZQoaAZHQHCsvdM0xdpoB00eAWgIR0CtDMJ2ECeVdX2UKGgGR0BxES5UcXFcaAdNHAFoCEdArQziIpH7QHV9lChoBkdAccg94NZvDWgHTVwBaAhHQK0N6AQxveh1fZQoaAZHQHCtRNATqSpoB02IAmgIR0CtDgAYpDu0dX2UKGgGR0BzEQtg8bJfaAdNGwFoCEdArQ4j+cYqG3V9lChoBkdAcQSNUwSJ0mgHTRIBaAhHQK0O9OtW+491fZQoaAZHQHJ0DS5RTCNoB01zAWgIR0CtD1S00FbFdX2UKGgGR0BwwAXgtOEeaAdL92gIR0CtEEiUgSvldX2UKGgGR0ByjVntfG+9aAdNCwFoCEdArRBdMh5gPXV9lChoBkdAbYTD50r9VGgHTRABaAhHQK0Qha+N96V1fZQoaAZHQHHf8TrVvuRoB006AWgIR0CtESu9WZJDdX2UKGgGR0BwuvZoPCl8aAdNBAFoCEdArRGepqASWnV9lChoBkdAcKa9cKPXCmgHTUABaAhHQK0SSQBgeBB1fZQoaAZHQG9A7wz+FURoB00kAWgIR0CtEm1eSjgydX2UKGgGR0BvlykEcKgJaAdNIwFoCEdArRKIIrvsq3V9lChoBkdAclSwXZXdTGgHTWIBaAhHQK0So3ZPEbZ1fZQoaAZHQHMPXp4bCJpoB00bAWgIR0CtE3leWv8qdX2UKGgGR0BwSFTYNAkcaAdNIwFoCEdArRPIood+5XV9lChoBkdAcEVowmE5AGgHTTIBaAhHQK0T0iO/+Kl1fZQoaAZHQHJifBnBciZoB00RAWgIR0CtFIAnUlRhdX2UKGgGR0BwEaSxJNCaaAdNUwJoCEdArRSnovBacXV9lChoBkdAcTavAXVLBmgHS/BoCEdArRVT6SDAanV9lChoBkdAchEGRV6u4mgHTQYBaAhHQK0WIqGUOd51fZQoaAZHQHJ5iTQmeDpoB01PAWgIR0CtFnuU2UB5dX2UKGgGR0BwcvqLS/j9aAdNNAFoCEdArRcSujh1knV9lChoBkdAcMwF9roGIWgHTRUBaAhHQK0XRTfixV11fZQoaAZHQHI5kTpPhydoB0vsaAhHQK0XoI3R5Tt1fZQoaAZHQHIAz1kDp1RoB005AWgIR0CtGNEmY0EYdX2UKGgGR0BwdtE9dNWVaAdNCwFoCEdArRj70L+glHV9lChoBkdAbP5Bw++ueWgHTSABaAhHQK0ZP6LwWnF1fZQoaAZHQHA7FP3ztkZoB008AWgIR0CtGidzOopAdX2UKGgGR0Bya/0btJFtaAdNDQFoCEdArRpGYUnG83V9lChoBkdAcKaExZdOZmgHTR4BaAhHQK0bP8CPp6h1fZQoaAZHQHHk8nAqNIdoB00xAWgIR0CtG8CIUJv6dX2UKGgGR0Bw5WB9Tgl4aAdNHAFoCEdArRvwTh5xBHV9lChoBkdAcCUlWwNb1WgHTRgBaAhHQK0b/w/gR9R1ZS4="
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 292,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
lunar_lander_proper_landing/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f6830dc479a24e6448f2ab5e0861d2405c39a7c42159a7e76bcacfdbc0e88134
|
3 |
+
size 87929
|
lunar_lander_proper_landing/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:31f9efe95bcb8ffe414f392829a96406024fd8bc64ea321bee0fa4653cf02f66
|
3 |
+
size 43329
|
lunar_lander_proper_landing/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
lunar_lander_proper_landing/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
|
2 |
+
- Python: 3.10.11
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (189 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 265.2256858418671, "std_reward": 22.450515197643465, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-05-20T05:34:45.602897"}
|