Acc0.8607990012484394, F10.8614809399603419 , Augmented with bert-base-uncased.csv, finetuned on ProsusAI/finbert
Browse files- README.md +87 -0
- config.json +37 -0
- model.safetensors +3 -0
- training_args.bin +3 -0
README.md
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: ProsusAI/finbert
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- accuracy
|
7 |
+
- f1
|
8 |
+
- precision
|
9 |
+
- recall
|
10 |
+
model-index:
|
11 |
+
- name: finbert_bert-base-uncased
|
12 |
+
results: []
|
13 |
+
---
|
14 |
+
|
15 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
16 |
+
should probably proofread and complete it, then remove this comment. -->
|
17 |
+
|
18 |
+
# finbert_bert-base-uncased
|
19 |
+
|
20 |
+
This model is a fine-tuned version of [ProsusAI/finbert](https://huggingface.co/ProsusAI/finbert) on an unknown dataset.
|
21 |
+
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 0.8116
|
23 |
+
- Accuracy: 0.8752
|
24 |
+
- F1: 0.8758
|
25 |
+
- Precision: 0.8778
|
26 |
+
- Recall: 0.8752
|
27 |
+
|
28 |
+
## Model description
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Intended uses & limitations
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training and evaluation data
|
37 |
+
|
38 |
+
More information needed
|
39 |
+
|
40 |
+
## Training procedure
|
41 |
+
|
42 |
+
### Training hyperparameters
|
43 |
+
|
44 |
+
The following hyperparameters were used during training:
|
45 |
+
- learning_rate: 0.0001
|
46 |
+
- train_batch_size: 64
|
47 |
+
- eval_batch_size: 64
|
48 |
+
- seed: 42
|
49 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
+
- lr_scheduler_type: linear
|
51 |
+
- lr_scheduler_warmup_steps: 1000
|
52 |
+
- num_epochs: 25
|
53 |
+
|
54 |
+
### Training results
|
55 |
+
|
56 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|
57 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
|
58 |
+
| 0.8465 | 1.0 | 91 | 0.7610 | 0.6817 | 0.6643 | 0.6806 | 0.6817 |
|
59 |
+
| 0.5154 | 2.0 | 182 | 0.4672 | 0.8066 | 0.8082 | 0.8203 | 0.8066 |
|
60 |
+
| 0.331 | 3.0 | 273 | 0.4259 | 0.8393 | 0.8396 | 0.8407 | 0.8393 |
|
61 |
+
| 0.2461 | 4.0 | 364 | 0.5386 | 0.8315 | 0.8311 | 0.8405 | 0.8315 |
|
62 |
+
| 0.163 | 5.0 | 455 | 0.5392 | 0.8518 | 0.8496 | 0.8554 | 0.8518 |
|
63 |
+
| 0.1193 | 6.0 | 546 | 0.5441 | 0.8565 | 0.8559 | 0.8590 | 0.8565 |
|
64 |
+
| 0.0935 | 7.0 | 637 | 0.6496 | 0.8253 | 0.8218 | 0.8306 | 0.8253 |
|
65 |
+
| 0.0536 | 8.0 | 728 | 0.5461 | 0.8612 | 0.8609 | 0.8609 | 0.8612 |
|
66 |
+
| 0.0809 | 9.0 | 819 | 0.6680 | 0.8362 | 0.8350 | 0.8394 | 0.8362 |
|
67 |
+
| 0.0986 | 10.0 | 910 | 0.6303 | 0.8596 | 0.8597 | 0.8645 | 0.8596 |
|
68 |
+
| 0.0765 | 11.0 | 1001 | 0.7653 | 0.8300 | 0.8310 | 0.8511 | 0.8300 |
|
69 |
+
| 0.0507 | 12.0 | 1092 | 0.5176 | 0.8690 | 0.8691 | 0.8701 | 0.8690 |
|
70 |
+
| 0.0633 | 13.0 | 1183 | 0.9141 | 0.8268 | 0.8261 | 0.8370 | 0.8268 |
|
71 |
+
| 0.0529 | 14.0 | 1274 | 0.7537 | 0.8549 | 0.8552 | 0.8621 | 0.8549 |
|
72 |
+
| 0.0418 | 15.0 | 1365 | 0.9200 | 0.8346 | 0.8342 | 0.8441 | 0.8346 |
|
73 |
+
| 0.0151 | 16.0 | 1456 | 0.8578 | 0.8565 | 0.8549 | 0.8622 | 0.8565 |
|
74 |
+
| 0.0154 | 17.0 | 1547 | 0.8116 | 0.8752 | 0.8758 | 0.8778 | 0.8752 |
|
75 |
+
| 0.0054 | 18.0 | 1638 | 0.8926 | 0.8736 | 0.8733 | 0.8751 | 0.8736 |
|
76 |
+
| 0.0259 | 19.0 | 1729 | 0.9026 | 0.8705 | 0.8705 | 0.8709 | 0.8705 |
|
77 |
+
| 0.0036 | 20.0 | 1820 | 0.9616 | 0.8721 | 0.8713 | 0.8716 | 0.8721 |
|
78 |
+
| 0.0012 | 21.0 | 1911 | 0.9985 | 0.8658 | 0.8656 | 0.8655 | 0.8658 |
|
79 |
+
| 0.002 | 22.0 | 2002 | 0.9833 | 0.8690 | 0.8689 | 0.8688 | 0.8690 |
|
80 |
+
|
81 |
+
|
82 |
+
### Framework versions
|
83 |
+
|
84 |
+
- Transformers 4.37.0
|
85 |
+
- Pytorch 2.1.2
|
86 |
+
- Datasets 2.1.0
|
87 |
+
- Tokenizers 0.15.1
|
config.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "ProsusAI/finbert",
|
3 |
+
"architectures": [
|
4 |
+
"BertForSequenceClassification"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"gradient_checkpointing": false,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 768,
|
12 |
+
"id2label": {
|
13 |
+
"0": "positive",
|
14 |
+
"1": "negative",
|
15 |
+
"2": "neutral"
|
16 |
+
},
|
17 |
+
"initializer_range": 0.02,
|
18 |
+
"intermediate_size": 3072,
|
19 |
+
"label2id": {
|
20 |
+
"negative": 1,
|
21 |
+
"neutral": 2,
|
22 |
+
"positive": 0
|
23 |
+
},
|
24 |
+
"layer_norm_eps": 1e-12,
|
25 |
+
"max_position_embeddings": 512,
|
26 |
+
"model_type": "bert",
|
27 |
+
"num_attention_heads": 12,
|
28 |
+
"num_hidden_layers": 12,
|
29 |
+
"pad_token_id": 0,
|
30 |
+
"position_embedding_type": "absolute",
|
31 |
+
"problem_type": "single_label_classification",
|
32 |
+
"torch_dtype": "float32",
|
33 |
+
"transformers_version": "4.37.0",
|
34 |
+
"type_vocab_size": 2,
|
35 |
+
"use_cache": true,
|
36 |
+
"vocab_size": 30522
|
37 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:92e2252bdcd470ae819565435150a3706828ab96a0a01c34e329ca72bb5ee120
|
3 |
+
size 437961724
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c210ea09232c52efd172188552b893fefa19531baa303ccc2078fbf96ec2b056
|
3 |
+
size 4664
|