avemio-digital's picture
Update README.md
5024d94 verified
---
library_name: sentence-transformers
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
license: mit
datasets:
- avemio/German-RAG-EMBEDDING-TRIPLES-HESSIAN-AI
language:
- de
- en
base_model:
- avemio/German-RAG-UAE-LARGE-V1-TRIPLES-HESSIAN-AI
- WhereIsAI/UAE-Large-V1
base_model_relation: merge
---
# German-RAG-UAE-LARGE-V1-TRIPLES-MERGED-HESSIAN-AI
This is a [sentence-transformers](https://www.SBERT.net) model trained on this [Dataset](https://huggingface.co/datasets/avemio/German-RAG-Embedding-Triples-Hessian-AI) with roughly 300k Triple-Samples. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
It was merged with the Base-Model [WhereIsAI/UAE-Large-V1](https://huggingface.co/WhereIsAI/UAE-Large-V1) again to maintain performance on other languages again.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
<!-- - **Base model:** [Unknown](https://huggingface.co/unknown) -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 1024 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Evaluation MTEB-Tasks
### Classification
- AmazonCounterfactualClassification
- AmazonReviewsClassification
- MassiveIntentClassification
- MassiveScenarioClassification
- MTOPDomainClassification
- MTOPIntentClassification
### Pair Classification
- FalseFriendsGermanEnglish
- PawsXPairClassification
### Retrieval
- GermanQuAD-Retrieval
- GermanDPR
### STS (Semantic Textual Similarity)
- GermanSTSBenchmark
| TASK | [UAE](https://huggingface.co/WhereIsAI/UAE-Large-V1/) | [German-RAG-UAE](https://huggingface.co/avemio/German-RAG-UAE-LARGE-V1-TRIPLES-HESSIAN-AI/) | Merged-UAE | German-RAG vs. UAE | Merged vs. UAE |
|-------------------------------------|-------|----------|------------|--------------|----------------|
| AmazonCounterfactualClassification | **0.5650** | 0.5449 | 0.5401 | -2.01% | -2.48% |
| AmazonReviewsClassification | 0.2738 | 0.2745 | **0.2782** | 0.08% | 0.44% |
| FalseFriendsGermanEnglish | **0.4808** | 0.4777 | 0.4703 | -0.32% | -1.05% |
| GermanQuAD-Retrieval | 0.7811 | 0.8353 | **0.8628** | 5.42% | 8.18% |
| GermanSTSBenchmark | 0.6421 | 0.6568 | **0.6754** | 1.47% | 3.33% |
| MassiveIntentClassification | **0.5139** | 0.4884 | 0.4714 | -2.55% | -4.25% |
| MassiveScenarioClassification | 0.6062 | 0.5837 | **0.6111** | -2.25% | 0.49% |
| GermanDPR | 0.6750 | 0.7210 | **0.7507** | 4.60% | 7.57% |
| MTOPDomainClassification | 0.7625 | 0.7450 | **0.7686** | -1.75% | 0.61% |
| MTOPIntentClassification | **0.4994** | 0.4516 | 0.4413 | -4.77% | -5.80% |
| PawsXPairClassification | **0.5452** | 0.5077 | 0.5162 | -3.76% | -2.90% |
## Evaluation on German-RAG-EMBEDDING-BENCHMARK
Accuracy is calculated by evaluating if the relevant context is the highest ranking embedding of the whole context array.
See Eval-Dataset and Evaluation Code [here](https://huggingface.co/datasets/avemio/German-RAG-EMBEDDING-BENCHMARK)
| Model Name | Accuracy |
|-------------------------------------------------|-----------|
| [bge-m3](https://huggingface.co/BAAI/bge-m3 ) | 0.8806 |
| [UAE-Large-V1](https://huggingface.co/WhereIsAI/UAE-Large-V1) | 0.8393 |
| [German-RAG-BGE-M3-TRIPLES-HESSIAN-AI](https://huggingface.co/avemio/German-RAG-BGE-M3-TRIPLES-HESSIAN-AI) | 0.8857 |
| [German-RAG-BGE-M3-TRIPLES-MERGED-HESSIAN-AI](https://huggingface.co/avemio/German-RAG-BGE-M3-TRIPLES-MERGED-HESSIAN-AI) | **0.8866** |
| [German-RAG-BGE-M3-MERGED-x-SNOWFLAKE-ARCTIC-HESSIAN-AI](https://huggingface.co/avemio/German-RAG-BGE-M3-MERGED-x-SNOWFLAKE-ARCTIC-HESSIAN-AI) | **0.8866** |
| [German-RAG-UAE-LARGE-V1-TRIPLES-HESSIAN-AI](https://huggingface.co/avemio/German-RAG-UAE-LARGE-V1-TRIPLES-HESSIAN-AI) | 0.8763 |
| [German-RAG-UAE-LARGE-V1-TRIPLES-MERGED-HESSIAN-AI](https://huggingface.co/avemio/German-RAG-UAE-LARGE-V1-TRIPLES-MERGED-HESSIAN-AI) | 0.8771 |
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("avemio-digital/UAE-Large-V1_Triples_Merged_with_base")
# Run inference
sentences = [
'The weather is lovely today.',
"It's so sunny outside!",
'He drove to the stadium.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.2.1
- Transformers: 4.44.2
- PyTorch: 2.5.0+cu121
- Accelerate: 0.34.2
- Datasets: 2.19.0
- Tokenizers: 0.19.1
## Citation
```
@article{li2023angle,
title={AnglE-optimized Text Embeddings},
author={Li, Xianming and Li, Jing},
journal={arXiv preprint arXiv:2309.12871},
year={2023}
}
```
## The German-RAG AI Team
[Marcel Rosiak](https://de.linkedin.com/in/marcel-rosiak)
[Soumya Paul](https://de.linkedin.com/in/soumya-paul-1636a68a)
[Siavash Mollaebrahim](https://de.linkedin.com/in/siavash-mollaebrahim-4084b5153?trk=people-guest_people_search-card)
[Zain ul Haq](https://de.linkedin.com/in/zain-ul-haq-31ba35196)