austinzheng commited on
Commit
1d006ca
1 Parent(s): 452b6f2

This is the first test commit

Browse files
LunarLander_test.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7510d8c6e5d32e35c0dcb316b47a2115881c45233e427efe848110480281ec78
3
+ size 147063
LunarLander_test/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
LunarLander_test/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f608bc51a60>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f608bc51af0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f608bc51b80>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f608bc51c10>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f608bc51ca0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f608bc51d30>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f608bc51dc0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f608bc51e50>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f608bc51ee0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f608bc51f70>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f608bc55040>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f608bc4aba0>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 16384,
46
+ "_total_timesteps": 100,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1670687112865926580,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAECJTD4Iwyk/i4nnPoAEXL/nwhG+f17HPQAAAAAAAAAA7a4YvjlumD+GyQa/9jgXv5cQGj97p4Q+AAAAAAAAAABA3K+97Q9IPyDO6b6rKpy/vjmWP57mnD4AAAAAAAAAAMZBU7663bs/Xj9BvwcS+72l0Ak+HpXEPQAAAAAAAAAAmunBO00uvj/YNQW8gfNnvYwZHT7TsuE9AAAAAAAAAADNxnE8Kh1pP3kuQT3zpI2/RRWDvZ5NlrwAAAAAAAAAAFOg0z7x//k9fhuHP0d9lb8foUa/E4fpvgAAAAAAAAAAZuGzPCNxsT9+Xjw/02qzvk0r07wykDS+AAAAAAAAAABibpW+LqyCP3ZeZr9UeyK/cUrFPrFGQT4AAAAAAAAAAFicaL8Ypf09G1Rvv4mTuL+w2MU9uWmKvgAAAAAAAAAA4IR/viz6Rj/DtUG/GUZzvwJC2j4h44s+AAAAAAAAAAB7RaO+doA+P/kYTL/bkGK/8YjSPpQjhz4AAAAAAAAAAJrNEj0I6rA/sLMdP+I0Qr5WRye9Un8CvgAAAAAAAAAA8ItXvmgFmz+mB/G+hOVVv6L8OT8S+bM+AAAAAAAAAAAm0J29Z1Z8P4ABlT7FUmK/bZp1v40por4AAAAAAAAAALpkC74kiHU/0uwAv2w5dr/E5ZE+O4l7PgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -162.84,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIKsQj8fIWWsCUhpRSlIwBbJRLWowBdJRHQHpOyTQmeDp1fZQoaAZoCWgPQwio/Gt55XhYwJSGlFKUaBVLSGgWR0B6T5hJAdGRdX2UKGgGaAloD0MIjILg8e15e8CUhpRSlGgVS1JoFkdAelBObRWtEHV9lChoBmgJaA9DCD9XW7G/Nk3AlIaUUpRoFUs8aBZHQHpQnCfpUxV1fZQoaAZoCWgPQwjuzATDeRJ8wJSGlFKUaBVLcmgWR0B6UM8ifQKKdX2UKGgGaAloD0MIkUWaeAcXYsCUhpRSlGgVS1RoFkdAelDBshxHXnV9lChoBmgJaA9DCIbKv5ZXxVDAlIaUUpRoFUttaBZHQHpQwDA8B+51fZQoaAZoCWgPQwhB2ClWjVhuwJSGlFKUaBVLcmgWR0B6UM4vN/vwdX2UKGgGaAloD0MIILQevgzIdMCUhpRSlGgVS4xoFkdAelD3UQTVUnV9lChoBmgJaA9DCMrhk04kW27AlIaUUpRoFUt7aBZHQHpRBP0qYqp1fZQoaAZoCWgPQwg+JlKazcxZwJSGlFKUaBVLUmgWR0B6Uat/4IrwdX2UKGgGaAloD0MICi/BqY/hbsCUhpRSlGgVS3poFkdAelGnLJSzgXV9lChoBmgJaA9DCATj4NJx/XXAlIaUUpRoFUt9aBZHQHpSYHkcS5B1fZQoaAZoCWgPQwjn/X+cMONUwJSGlFKUaBVLS2gWR0B6UpIoVmBfdX2UKGgGaAloD0MI4DDRIAXdVsCUhpRSlGgVS0ZoFkdAelLUhV2ic3V9lChoBmgJaA9DCNpVSPnJ/WnAlIaUUpRoFUtuaBZHQHpTKASWZ7Z1fZQoaAZoCWgPQwis4LchBnV0wJSGlFKUaBVLXmgWR0B6Uz4sVclgdX2UKGgGaAloD0MIzc6id6oEZ8CUhpRSlGgVS0poFkdAelPK5kK/mHV9lChoBmgJaA9DCHva4a/JcWnAlIaUUpRoFUtHaBZHQHpUqO1fE4x1fZQoaAZoCWgPQwip29lXHj9gwJSGlFKUaBVLVmgWR0B6VQ/RmbsodX2UKGgGaAloD0MIIPEr1vCbbcCUhpRSlGgVS1FoFkdAelYYyfthNXV9lChoBmgJaA9DCGSw4lRrWlbAlIaUUpRoFUtkaBZHQHpWKfSQYDV1fZQoaAZoCWgPQwird7gdGpxFwJSGlFKUaBVLQmgWR0B6VkEMb3oLdX2UKGgGaAloD0MIS5ARUOEpbsCUhpRSlGgVS2VoFkdAelZb0voNeHV9lChoBmgJaA9DCL/xtWcWYmTAlIaUUpRoFUtMaBZHQHpWn8jzI3l1fZQoaAZoCWgPQwgTZARUeLl2wJSGlFKUaBVLaGgWR0B6VsO4G2TgdX2UKGgGaAloD0MIgJ2bNuM4ZsCUhpRSlGgVS3BoFkdAelb+/gzguXV9lChoBmgJaA9DCE890uA2EmLAlIaUUpRoFUtQaBZHQHpXUSZjQRh1fZQoaAZoCWgPQwg10lJ5O+lmwJSGlFKUaBVLUWgWR0B6V9RQ79ycdX2UKGgGaAloD0MIl1XYDHD8U8CUhpRSlGgVS0poFkdAelgEk0JnhHV9lChoBmgJaA9DCE+UhETaf2rAlIaUUpRoFUuAaBZHQHpX8WCVbA11fZQoaAZoCWgPQwjGppVCoBlgwJSGlFKUaBVLcWgWR0B6V/9jwx33dX2UKGgGaAloD0MIhCnKpfE2VsCUhpRSlGgVS45oFkdAeljNAC4jKXV9lChoBmgJaA9DCJYGflTDAFfAlIaUUpRoFUtuaBZHQHpZTsUqQRx1fZQoaAZoCWgPQwizeLEwRKBRwJSGlFKUaBVLQWgWR0B6Wb8iwB5pdX2UKGgGaAloD0MIf2snSsLRb8CUhpRSlGgVS1ZoFkdAelnvJiiItXV9lChoBmgJaA9DCI50BkZe6lbAlIaUUpRoFUtBaBZHQHpat8zAN5N1fZQoaAZoCWgPQwgN+z2xzjlgwJSGlFKUaBVLT2gWR0B6WshgVoHtdX2UKGgGaAloD0MI0lYlkX28X8CUhpRSlGgVS0toFkdAelruoxYaHnV9lChoBmgJaA9DCG2rWWd8tmnAlIaUUpRoFUtSaBZHQHpa5Q1rIo51fZQoaAZoCWgPQwhMpgpGJVhgwJSGlFKUaBVLS2gWR0B6WxTAFgUldX2UKGgGaAloD0MIGqiMfx95YcCUhpRSlGgVS39oFkdAelvxQizLOnV9lChoBmgJaA9DCFTm5htRgHLAlIaUUpRoFUtYaBZHQHpcUdaMaS91fZQoaAZoCWgPQwjzkZT0sBBxwJSGlFKUaBVLUGgWR0B6XIv0yxiYdX2UKGgGaAloD0MIv5gtWRV3TcCUhpRSlGgVS1NoFkdAelytJFspHHV9lChoBmgJaA9DCDf92Y8UjWHAlIaUUpRoFUtxaBZHQHpcwl8gIQh1fZQoaAZoCWgPQwgLJv4o6iNSwJSGlFKUaBVLX2gWR0B6XUQOFxn4dX2UKGgGaAloD0MIBiy5igVof8CUhpRSlGgVS2RoFkdAel1vjwQUYnV9lChoBmgJaA9DCLHfE+tUt0rAlIaUUpRoFUs/aBZHQHpeNHlOoHd1fZQoaAZoCWgPQwhzgGCOntRkwJSGlFKUaBVLRWgWR0B6XsMDwH7hdX2UKGgGaAloD0MIBBvXv2sFYMCUhpRSlGgVS2toFkdAel7pAD7qIXV9lChoBmgJaA9DCKVL/5JUT2HAlIaUUpRoFUtNaBZHQHpfCPU8V591fZQoaAZoCWgPQwhzY3rCUuxzwJSGlFKUaBVLW2gWR0B6XyYa5wwTdX2UKGgGaAloD0MIDeGYZU/IcMCUhpRSlGgVS2RoFkdAel8OhCdBjXV9lChoBmgJaA9DCMMOY9LfKFbAlIaUUpRoFUtoaBZHQHpfqVhTfix1fZQoaAZoCWgPQwjwFHKlnjtTwJSGlFKUaBVLV2gWR0B6X+EoOQQudX2UKGgGaAloD0MIJQSr6uVfWcCUhpRSlGgVSz9oFkdAemA+xnnMdXV9lChoBmgJaA9DCCSdgZEXOnLAlIaUUpRoFUtlaBZHQHpgcSXdCVt1fZQoaAZoCWgPQwiERxtHrK9mwJSGlFKUaBVLUmgWR0B6YQhbGFSLdX2UKGgGaAloD0MI3xtDAHDaX8CUhpRSlGgVS2NoFkdAemFhbnoxH3V9lChoBmgJaA9DCO3Vx0Pf62XAlIaUUpRoFUtmaBZHQHph6mGdqcp1fZQoaAZoCWgPQwjW/WMhOpRVwJSGlFKUaBVLPWgWR0B6YkzJp35fdX2UKGgGaAloD0MI/vLJiuEIXMCUhpRSlGgVS19oFkdAemJ66J66a3V9lChoBmgJaA9DCGGlgorqdnTAlIaUUpRoFUtsaBZHQHpileF+NLl1fZQoaAZoCWgPQwgpkq8EUmJbwJSGlFKUaBVLUmgWR0B6Yy5iExqPdX2UKGgGaAloD0MI2gJC6+ElX8CUhpRSlGgVS1RoFkdAemNu4wyqMnV9lChoBmgJaA9DCN5xio7kFGLAlIaUUpRoFUtxaBZHQHpjoFqzqr11fZQoaAZoCWgPQwgO3ewPlJdpwJSGlFKUaBVLWGgWR0B6Y8TDfm9ydX2UKGgGaAloD0MI7GrylNUAacCUhpRSlGgVS2doFkdAemPrHEMspXV9lChoBmgJaA9DCHsuU5Pg/F7AlIaUUpRoFUtfaBZHQHpkTa4+bEx1fZQoaAZoCWgPQwiqnWFqy1NkwJSGlFKUaBVLXGgWR0B6ZKwzLwF1dX2UKGgGaAloD0MIKCob1lQHWsCUhpRSlGgVS0BoFkdAemTr0J4SpXV9lChoBmgJaA9DCAd96e3Pj1zAlIaUUpRoFUtmaBZHQHpldbgTAWV1fZQoaAZoCWgPQwisUnqml1j1v5SGlFKUaBVLYmgWR0B6ZZ51Ng0CdX2UKGgGaAloD0MIpOGUuXn2d8CUhpRSlGgVS1doFkdAemXjNpudgHV9lChoBmgJaA9DCKMeotEdU1bAlIaUUpRoFUtVaBZHQHpnAIt16mh1fZQoaAZoCWgPQwgZxt0gWuM5wJSGlFKUaBVLeWgWR0B6Zx0q6OHWdX2UKGgGaAloD0MIqoB7nj+gXMCUhpRSlGgVS1doFkdAemdYHPeHi3V9lChoBmgJaA9DCNkKmpZYumbAlIaUUpRoFUtHaBZHQHpncJdB0IV1fZQoaAZoCWgPQwgR34lZr5ZqwJSGlFKUaBVLRGgWR0B6Z36j3225dX2UKGgGaAloD0MIAwgfSrT1XcCUhpRSlGgVS2doFkdAemes90RvnHV9lChoBmgJaA9DCJDaxMn9o1TAlIaUUpRoFUtOaBZHQHpnnSfDk2h1fZQoaAZoCWgPQwgjvhOz3qJowJSGlFKUaBVLZWgWR0B6aDbRF7UodX2UKGgGaAloD0MImGw82OIee8CUhpRSlGgVS1FoFkdAemhpxWDHwXV9lChoBmgJaA9DCFvOpbjqUHXAlIaUUpRoFUtaaBZHQHpoyPIXCTF1fZQoaAZoCWgPQwib6PNRRu1kwJSGlFKUaBVLQmgWR0B6aXvYvnKXdX2UKGgGaAloD0MIZd6q61BedMCUhpRSlGgVS1toFkdAemm7FsHjZXV9lChoBmgJaA9DCErUCz5NDXDAlIaUUpRoFUtmaBZHQHpp+F6Avtd1fZQoaAZoCWgPQwiWJqWg27c5wJSGlFKUaBVLVWgWR0B6amZy+6AfdX2UKGgGaAloD0MIH9rHCn7Ia8CUhpRSlGgVS1loFkdAemqHnEETx3V9lChoBmgJaA9DCIgq/Bne3nLAlIaUUpRoFUt0aBZHQHpreyeI2wV1fZQoaAZoCWgPQwh9smK4Ou5bwJSGlFKUaBVLT2gWR0B6a4qXnhbXdX2UKGgGaAloD0MIrG9gciOzacCUhpRSlGgVS0VoFkdAemwmCAc1fnV9lChoBmgJaA9DCHhflQuVY3bAlIaUUpRoFUtVaBZHQHpsZWRzRx91fZQoaAZoCWgPQwjGGFjH8QNzwJSGlFKUaBVLXmgWR0B6bMIzFdcCdX2UKGgGaAloD0MILSKKyRslaMCUhpRSlGgVS2JoFkdAemyypJf6XXV9lChoBmgJaA9DCCP430o2i3vAlIaUUpRoFUtcaBZHQHps4BFNL151fZQoaAZoCWgPQwglOzYCcfppwJSGlFKUaBVLRmgWR0B6bNh1DBuXdX2UKGgGaAloD0MInprLDYZAZsCUhpRSlGgVS2NoFkdAem4oZhrnDHV9lChoBmgJaA9DCHnL1Y9NBm/AlIaUUpRoFUt4aBZHQHpuXizcAR11ZS4="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 4,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 4,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
LunarLander_test/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4a14c15bb61009895a068c8428623e086e2025500998d04fc911b11a49b31a92
3
+ size 87929
LunarLander_test/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:58562b12b9dffe1c87eb9e9208b33bdd2ef961c8b1041de2d7fe9bc0b4d44741
3
+ size 43201
LunarLander_test/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
LunarLander_test/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
2
+ Python: 3.8.16
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.13.0+cu116
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -422.37 +/- 85.57
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f608bc51a60>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f608bc51af0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f608bc51b80>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f608bc51c10>", "_build": "<function ActorCriticPolicy._build at 0x7f608bc51ca0>", "forward": "<function ActorCriticPolicy.forward at 0x7f608bc51d30>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f608bc51dc0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f608bc51e50>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f608bc51ee0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f608bc51f70>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f608bc55040>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f608bc4aba0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 16384, "_total_timesteps": 100, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1670687112865926580, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAECJTD4Iwyk/i4nnPoAEXL/nwhG+f17HPQAAAAAAAAAA7a4YvjlumD+GyQa/9jgXv5cQGj97p4Q+AAAAAAAAAABA3K+97Q9IPyDO6b6rKpy/vjmWP57mnD4AAAAAAAAAAMZBU7663bs/Xj9BvwcS+72l0Ak+HpXEPQAAAAAAAAAAmunBO00uvj/YNQW8gfNnvYwZHT7TsuE9AAAAAAAAAADNxnE8Kh1pP3kuQT3zpI2/RRWDvZ5NlrwAAAAAAAAAAFOg0z7x//k9fhuHP0d9lb8foUa/E4fpvgAAAAAAAAAAZuGzPCNxsT9+Xjw/02qzvk0r07wykDS+AAAAAAAAAABibpW+LqyCP3ZeZr9UeyK/cUrFPrFGQT4AAAAAAAAAAFicaL8Ypf09G1Rvv4mTuL+w2MU9uWmKvgAAAAAAAAAA4IR/viz6Rj/DtUG/GUZzvwJC2j4h44s+AAAAAAAAAAB7RaO+doA+P/kYTL/bkGK/8YjSPpQjhz4AAAAAAAAAAJrNEj0I6rA/sLMdP+I0Qr5WRye9Un8CvgAAAAAAAAAA8ItXvmgFmz+mB/G+hOVVv6L8OT8S+bM+AAAAAAAAAAAm0J29Z1Z8P4ABlT7FUmK/bZp1v40por4AAAAAAAAAALpkC74kiHU/0uwAv2w5dr/E5ZE+O4l7PgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -162.84, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIKsQj8fIWWsCUhpRSlIwBbJRLWowBdJRHQHpOyTQmeDp1fZQoaAZoCWgPQwio/Gt55XhYwJSGlFKUaBVLSGgWR0B6T5hJAdGRdX2UKGgGaAloD0MIjILg8e15e8CUhpRSlGgVS1JoFkdAelBObRWtEHV9lChoBmgJaA9DCD9XW7G/Nk3AlIaUUpRoFUs8aBZHQHpQnCfpUxV1fZQoaAZoCWgPQwjuzATDeRJ8wJSGlFKUaBVLcmgWR0B6UM8ifQKKdX2UKGgGaAloD0MIkUWaeAcXYsCUhpRSlGgVS1RoFkdAelDBshxHXnV9lChoBmgJaA9DCIbKv5ZXxVDAlIaUUpRoFUttaBZHQHpQwDA8B+51fZQoaAZoCWgPQwhB2ClWjVhuwJSGlFKUaBVLcmgWR0B6UM4vN/vwdX2UKGgGaAloD0MIILQevgzIdMCUhpRSlGgVS4xoFkdAelD3UQTVUnV9lChoBmgJaA9DCMrhk04kW27AlIaUUpRoFUt7aBZHQHpRBP0qYqp1fZQoaAZoCWgPQwg+JlKazcxZwJSGlFKUaBVLUmgWR0B6Uat/4IrwdX2UKGgGaAloD0MICi/BqY/hbsCUhpRSlGgVS3poFkdAelGnLJSzgXV9lChoBmgJaA9DCATj4NJx/XXAlIaUUpRoFUt9aBZHQHpSYHkcS5B1fZQoaAZoCWgPQwjn/X+cMONUwJSGlFKUaBVLS2gWR0B6UpIoVmBfdX2UKGgGaAloD0MI4DDRIAXdVsCUhpRSlGgVS0ZoFkdAelLUhV2ic3V9lChoBmgJaA9DCNpVSPnJ/WnAlIaUUpRoFUtuaBZHQHpTKASWZ7Z1fZQoaAZoCWgPQwis4LchBnV0wJSGlFKUaBVLXmgWR0B6Uz4sVclgdX2UKGgGaAloD0MIzc6id6oEZ8CUhpRSlGgVS0poFkdAelPK5kK/mHV9lChoBmgJaA9DCHva4a/JcWnAlIaUUpRoFUtHaBZHQHpUqO1fE4x1fZQoaAZoCWgPQwip29lXHj9gwJSGlFKUaBVLVmgWR0B6VQ/RmbsodX2UKGgGaAloD0MIIPEr1vCbbcCUhpRSlGgVS1FoFkdAelYYyfthNXV9lChoBmgJaA9DCGSw4lRrWlbAlIaUUpRoFUtkaBZHQHpWKfSQYDV1fZQoaAZoCWgPQwird7gdGpxFwJSGlFKUaBVLQmgWR0B6VkEMb3oLdX2UKGgGaAloD0MIS5ARUOEpbsCUhpRSlGgVS2VoFkdAelZb0voNeHV9lChoBmgJaA9DCL/xtWcWYmTAlIaUUpRoFUtMaBZHQHpWn8jzI3l1fZQoaAZoCWgPQwgTZARUeLl2wJSGlFKUaBVLaGgWR0B6VsO4G2TgdX2UKGgGaAloD0MIgJ2bNuM4ZsCUhpRSlGgVS3BoFkdAelb+/gzguXV9lChoBmgJaA9DCE890uA2EmLAlIaUUpRoFUtQaBZHQHpXUSZjQRh1fZQoaAZoCWgPQwg10lJ5O+lmwJSGlFKUaBVLUWgWR0B6V9RQ79ycdX2UKGgGaAloD0MIl1XYDHD8U8CUhpRSlGgVS0poFkdAelgEk0JnhHV9lChoBmgJaA9DCE+UhETaf2rAlIaUUpRoFUuAaBZHQHpX8WCVbA11fZQoaAZoCWgPQwjGppVCoBlgwJSGlFKUaBVLcWgWR0B6V/9jwx33dX2UKGgGaAloD0MIhCnKpfE2VsCUhpRSlGgVS45oFkdAeljNAC4jKXV9lChoBmgJaA9DCJYGflTDAFfAlIaUUpRoFUtuaBZHQHpZTsUqQRx1fZQoaAZoCWgPQwizeLEwRKBRwJSGlFKUaBVLQWgWR0B6Wb8iwB5pdX2UKGgGaAloD0MIf2snSsLRb8CUhpRSlGgVS1ZoFkdAelnvJiiItXV9lChoBmgJaA9DCI50BkZe6lbAlIaUUpRoFUtBaBZHQHpat8zAN5N1fZQoaAZoCWgPQwgN+z2xzjlgwJSGlFKUaBVLT2gWR0B6WshgVoHtdX2UKGgGaAloD0MI0lYlkX28X8CUhpRSlGgVS0toFkdAelruoxYaHnV9lChoBmgJaA9DCG2rWWd8tmnAlIaUUpRoFUtSaBZHQHpa5Q1rIo51fZQoaAZoCWgPQwhMpgpGJVhgwJSGlFKUaBVLS2gWR0B6WxTAFgUldX2UKGgGaAloD0MIGqiMfx95YcCUhpRSlGgVS39oFkdAelvxQizLOnV9lChoBmgJaA9DCFTm5htRgHLAlIaUUpRoFUtYaBZHQHpcUdaMaS91fZQoaAZoCWgPQwjzkZT0sBBxwJSGlFKUaBVLUGgWR0B6XIv0yxiYdX2UKGgGaAloD0MIv5gtWRV3TcCUhpRSlGgVS1NoFkdAelytJFspHHV9lChoBmgJaA9DCDf92Y8UjWHAlIaUUpRoFUtxaBZHQHpcwl8gIQh1fZQoaAZoCWgPQwgLJv4o6iNSwJSGlFKUaBVLX2gWR0B6XUQOFxn4dX2UKGgGaAloD0MIBiy5igVof8CUhpRSlGgVS2RoFkdAel1vjwQUYnV9lChoBmgJaA9DCLHfE+tUt0rAlIaUUpRoFUs/aBZHQHpeNHlOoHd1fZQoaAZoCWgPQwhzgGCOntRkwJSGlFKUaBVLRWgWR0B6XsMDwH7hdX2UKGgGaAloD0MIBBvXv2sFYMCUhpRSlGgVS2toFkdAel7pAD7qIXV9lChoBmgJaA9DCKVL/5JUT2HAlIaUUpRoFUtNaBZHQHpfCPU8V591fZQoaAZoCWgPQwhzY3rCUuxzwJSGlFKUaBVLW2gWR0B6XyYa5wwTdX2UKGgGaAloD0MIDeGYZU/IcMCUhpRSlGgVS2RoFkdAel8OhCdBjXV9lChoBmgJaA9DCMMOY9LfKFbAlIaUUpRoFUtoaBZHQHpfqVhTfix1fZQoaAZoCWgPQwjwFHKlnjtTwJSGlFKUaBVLV2gWR0B6X+EoOQQudX2UKGgGaAloD0MIJQSr6uVfWcCUhpRSlGgVSz9oFkdAemA+xnnMdXV9lChoBmgJaA9DCCSdgZEXOnLAlIaUUpRoFUtlaBZHQHpgcSXdCVt1fZQoaAZoCWgPQwiERxtHrK9mwJSGlFKUaBVLUmgWR0B6YQhbGFSLdX2UKGgGaAloD0MI3xtDAHDaX8CUhpRSlGgVS2NoFkdAemFhbnoxH3V9lChoBmgJaA9DCO3Vx0Pf62XAlIaUUpRoFUtmaBZHQHph6mGdqcp1fZQoaAZoCWgPQwjW/WMhOpRVwJSGlFKUaBVLPWgWR0B6YkzJp35fdX2UKGgGaAloD0MI/vLJiuEIXMCUhpRSlGgVS19oFkdAemJ66J66a3V9lChoBmgJaA9DCGGlgorqdnTAlIaUUpRoFUtsaBZHQHpileF+NLl1fZQoaAZoCWgPQwgpkq8EUmJbwJSGlFKUaBVLUmgWR0B6Yy5iExqPdX2UKGgGaAloD0MI2gJC6+ElX8CUhpRSlGgVS1RoFkdAemNu4wyqMnV9lChoBmgJaA9DCN5xio7kFGLAlIaUUpRoFUtxaBZHQHpjoFqzqr11fZQoaAZoCWgPQwgO3ewPlJdpwJSGlFKUaBVLWGgWR0B6Y8TDfm9ydX2UKGgGaAloD0MI7GrylNUAacCUhpRSlGgVS2doFkdAemPrHEMspXV9lChoBmgJaA9DCHsuU5Pg/F7AlIaUUpRoFUtfaBZHQHpkTa4+bEx1fZQoaAZoCWgPQwiqnWFqy1NkwJSGlFKUaBVLXGgWR0B6ZKwzLwF1dX2UKGgGaAloD0MIKCob1lQHWsCUhpRSlGgVS0BoFkdAemTr0J4SpXV9lChoBmgJaA9DCAd96e3Pj1zAlIaUUpRoFUtmaBZHQHpldbgTAWV1fZQoaAZoCWgPQwisUnqml1j1v5SGlFKUaBVLYmgWR0B6ZZ51Ng0CdX2UKGgGaAloD0MIpOGUuXn2d8CUhpRSlGgVS1doFkdAemXjNpudgHV9lChoBmgJaA9DCKMeotEdU1bAlIaUUpRoFUtVaBZHQHpnAIt16mh1fZQoaAZoCWgPQwgZxt0gWuM5wJSGlFKUaBVLeWgWR0B6Zx0q6OHWdX2UKGgGaAloD0MIqoB7nj+gXMCUhpRSlGgVS1doFkdAemdYHPeHi3V9lChoBmgJaA9DCNkKmpZYumbAlIaUUpRoFUtHaBZHQHpncJdB0IV1fZQoaAZoCWgPQwgR34lZr5ZqwJSGlFKUaBVLRGgWR0B6Z36j3225dX2UKGgGaAloD0MIAwgfSrT1XcCUhpRSlGgVS2doFkdAemes90RvnHV9lChoBmgJaA9DCJDaxMn9o1TAlIaUUpRoFUtOaBZHQHpnnSfDk2h1fZQoaAZoCWgPQwgjvhOz3qJowJSGlFKUaBVLZWgWR0B6aDbRF7UodX2UKGgGaAloD0MImGw82OIee8CUhpRSlGgVS1FoFkdAemhpxWDHwXV9lChoBmgJaA9DCFvOpbjqUHXAlIaUUpRoFUtaaBZHQHpoyPIXCTF1fZQoaAZoCWgPQwib6PNRRu1kwJSGlFKUaBVLQmgWR0B6aXvYvnKXdX2UKGgGaAloD0MIZd6q61BedMCUhpRSlGgVS1toFkdAemm7FsHjZXV9lChoBmgJaA9DCErUCz5NDXDAlIaUUpRoFUtmaBZHQHpp+F6Avtd1fZQoaAZoCWgPQwiWJqWg27c5wJSGlFKUaBVLVWgWR0B6amZy+6AfdX2UKGgGaAloD0MIH9rHCn7Ia8CUhpRSlGgVS1loFkdAemqHnEETx3V9lChoBmgJaA9DCIgq/Bne3nLAlIaUUpRoFUt0aBZHQHpreyeI2wV1fZQoaAZoCWgPQwh9smK4Ou5bwJSGlFKUaBVLT2gWR0B6a4qXnhbXdX2UKGgGaAloD0MIrG9gciOzacCUhpRSlGgVS0VoFkdAemwmCAc1fnV9lChoBmgJaA9DCHhflQuVY3bAlIaUUpRoFUtVaBZHQHpsZWRzRx91fZQoaAZoCWgPQwjGGFjH8QNzwJSGlFKUaBVLXmgWR0B6bMIzFdcCdX2UKGgGaAloD0MILSKKyRslaMCUhpRSlGgVS2JoFkdAemyypJf6XXV9lChoBmgJaA9DCCP430o2i3vAlIaUUpRoFUtcaBZHQHps4BFNL151fZQoaAZoCWgPQwglOzYCcfppwJSGlFKUaBVLRmgWR0B6bNh1DBuXdX2UKGgGaAloD0MInprLDYZAZsCUhpRSlGgVS2NoFkdAem4oZhrnDHV9lChoBmgJaA9DCHnL1Y9NBm/AlIaUUpRoFUt4aBZHQHpuXizcAR11ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 4, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 4, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (221 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -422.37450518494006, "std_reward": 85.56745527615324, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-10T15:56:12.811616"}