Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
inference: false
|
3 |
+
license: cc-by-4.0
|
4 |
+
datasets:
|
5 |
+
- wikiann
|
6 |
+
language:
|
7 |
+
- bg
|
8 |
+
metrics:
|
9 |
+
- accuracy
|
10 |
+
---
|
11 |
+
|
12 |
+
# 🇧🇬 BERT - Bulgarian Named Entity Recognition
|
13 |
+
KeyBERT-BG is a model trained for a keyword extraction task in Bulgarian.
|
14 |
+
|
15 |
+
## Usage
|
16 |
+
Import the libraries:
|
17 |
+
```python
|
18 |
+
import re
|
19 |
+
from typing import Dict
|
20 |
+
from pprint import pprint
|
21 |
+
|
22 |
+
from transformers import AutoTokenizer, AutoModelForTokenClassification
|
23 |
+
```
|
24 |
+
|
25 |
+
Firstly, you'll have to define this method, since the text preprocessing is custom and the standard `pipeline` method won't suffice:
|
26 |
+
```python
|
27 |
+
def get_keywords(
|
28 |
+
text: str,
|
29 |
+
model_id="auhide/keybert-bg",
|
30 |
+
max_len: int = 300,
|
31 |
+
id2group: Dict[int, str] = {
|
32 |
+
# Indicates that this is not a keyword.
|
33 |
+
0: "O",
|
34 |
+
# Begining of keyword.
|
35 |
+
1: "B-KWD",
|
36 |
+
# Additional keywords (might also indicate the end of a keyword sequence).
|
37 |
+
# You can merge these with the begining keyword `B-KWD`.
|
38 |
+
2: "I-KWD",
|
39 |
+
}
|
40 |
+
):
|
41 |
+
# Initialize the tokenizer and model.
|
42 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
43 |
+
keybert = AutoModelForTokenClassification.from_pretrained(model_id)
|
44 |
+
|
45 |
+
# Preprocess the text.
|
46 |
+
# Surround punctuation with whitespace and convert multiple whitespaces
|
47 |
+
# into single ones.
|
48 |
+
text = re.sub(r"([,\.?!;:\'\"\(\)\[\]„”])", r" \1 ", text)
|
49 |
+
text = re.sub(r"\s+", r" ", text)
|
50 |
+
words = text.split()
|
51 |
+
|
52 |
+
# Tokenize the processed `text` (this includes padding or truncation).
|
53 |
+
tokens_data = tokenizer(
|
54 |
+
text.strip(),
|
55 |
+
padding="max_length",
|
56 |
+
max_length=max_len,
|
57 |
+
truncation=True,
|
58 |
+
return_tensors="pt"
|
59 |
+
)
|
60 |
+
input_ids = tokens_data.input_ids
|
61 |
+
attention_mask = tokens_data.attention_mask
|
62 |
+
|
63 |
+
# Predict the keywords.
|
64 |
+
out = keybert(input_ids, attention_mask=attention_mask).logits
|
65 |
+
# Softmax the last dimension so that the probabilities add up to 1.0.
|
66 |
+
out = out.softmax(-1)
|
67 |
+
# Based on the probabilities, generate the most probable keywords.
|
68 |
+
out_argmax = out.argmax(-1)
|
69 |
+
prediction = out_argmax.squeeze(0).tolist()
|
70 |
+
probabilities = out.squeeze(0)
|
71 |
+
|
72 |
+
return [
|
73 |
+
{
|
74 |
+
# Since the list of words does not have a [CLS] token, the index `i`
|
75 |
+
# is one step forward, which means that if we want to access the
|
76 |
+
# appropriate keyword we should use the index `i - 1`.
|
77 |
+
"entity": words[i - 1],
|
78 |
+
"entity_group": id2group[idx],
|
79 |
+
"score": float(probabilities[i, idx])
|
80 |
+
}
|
81 |
+
for i, idx in enumerate(prediction)
|
82 |
+
if idx == 1 or idx == 2
|
83 |
+
]
|
84 |
+
```
|
85 |
+
|
86 |
+
Choose a text and use the model on it. For example, I've chosen to use [this](https://www.24chasa.bg/bulgaria/article/14466321) article.
|
87 |
+
Then, you can call `get_keywords` on it and extract its keywords:
|
88 |
+
```python
|
89 |
+
# Reading the text from a file, since it is an article, and the text is large.
|
90 |
+
with open("input_text.txt", "r", encoding="utf-8") as f:
|
91 |
+
text = f.read()
|
92 |
+
|
93 |
+
keywords = get_keywords(text)
|
94 |
+
print("Keywords:")
|
95 |
+
pprint(keywords)
|
96 |
+
```
|
97 |
+
```sh
|
98 |
+
Keywords:
|
99 |
+
[{'entity': 'Пловдив', 'entity_group': 'B-KWD', 'score': 0.7669068574905396},
|
100 |
+
{'entity': 'Шофьорът', 'entity_group': 'B-KWD', 'score': 0.9119699597358704},
|
101 |
+
{'entity': 'катастрофа', 'entity_group': 'B-KWD', 'score': 0.8441269993782043}]
|
102 |
+
```
|