atorre commited on
Commit
370e212
·
1 Parent(s): 060e019

First training of a2c agent on PandaReachDense-v2.

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: a2c
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -2.61 +/- 0.33
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **a2c** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **a2c** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1b18748d34159ebc1a4c7eff3509e6ddd880db5475e21768db8b1b9511c5a62a
3
+ size 107768
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f645f8caaf0>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc_data object at 0x7f645f8c84b0>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "observation_space": {
23
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
24
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
25
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
26
+ "_shape": null,
27
+ "dtype": null,
28
+ "_np_random": null
29
+ },
30
+ "action_space": {
31
+ ":type:": "<class 'gym.spaces.box.Box'>",
32
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
33
+ "dtype": "float32",
34
+ "_shape": [
35
+ 3
36
+ ],
37
+ "low": "[-1. -1. -1.]",
38
+ "high": "[1. 1. 1.]",
39
+ "bounded_below": "[ True True True]",
40
+ "bounded_above": "[ True True True]",
41
+ "_np_random": null
42
+ },
43
+ "n_envs": 4,
44
+ "num_timesteps": 1000000,
45
+ "_total_timesteps": 1000000,
46
+ "_num_timesteps_at_start": 0,
47
+ "seed": null,
48
+ "action_noise": null,
49
+ "start_time": 1673978640254421868,
50
+ "learning_rate": 0.0007,
51
+ "tensorboard_log": null,
52
+ "lr_schedule": {
53
+ ":type:": "<class 'function'>",
54
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
+ },
56
+ "_last_obs": {
57
+ ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAOH/SPm85K73w2Qk/OH/SPm85K73w2Qk/OH/SPm85K73w2Qk/OH/SPm85K73w2Qk/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAADs+1v9I7ij4v9rg/CvqHvUwKWr7YixY/PI8fPRLgtz8u9cg/zl4Uv6JRe72LEka+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAA4f9I+bzkrvfDZCT/f4Bg79m6Ku3vSQDo4f9I+bzkrvfDZCT/f4Bg79m6Ku3vSQDo4f9I+bzkrvfDZCT/f4Bg79m6Ku3vSQDo4f9I+bzkrvfDZCT/f4Bg79m6Ku3vSQDqUaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[ 0.41112685 -0.04180282 0.5384817 ]\n [ 0.41112685 -0.04180282 0.5384817 ]\n [ 0.41112685 -0.04180282 0.5384817 ]\n [ 0.41112685 -0.04180282 0.5384817 ]]",
60
+ "desired_goal": "[[-1.4203813 0.26998764 1.4450129 ]\n [-0.06639488 -0.2129299 0.58807135]\n [ 0.03895496 1.4365256 1.5699823 ]\n [-0.5795716 -0.06135715 -0.19343011]]",
61
+ "observation": "[[ 0.41112685 -0.04180282 0.5384817 0.00233274 -0.00422465 0.00073556]\n [ 0.41112685 -0.04180282 0.5384817 0.00233274 -0.00422465 0.00073556]\n [ 0.41112685 -0.04180282 0.5384817 0.00233274 -0.00422465 0.00073556]\n [ 0.41112685 -0.04180282 0.5384817 0.00233274 -0.00422465 0.00073556]]"
62
+ },
63
+ "_last_episode_starts": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
66
+ },
67
+ "_last_original_obs": {
68
+ ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAvvsoPfXdzD2ypjA+UaGTPKBbsjs4SIM9kgLTPE18cj2f4Zk9QMigPcREar1JTT8+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[ 0.04125571 0.10003272 0.17251089]\n [ 0.01802126 0.00544305 0.06410259]\n [ 0.02575806 0.05920057 0.07513737]\n [ 0.07850695 -0.05719449 0.18681826]]",
72
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
+ },
74
+ "_episode_num": 0,
75
+ "use_sde": false,
76
+ "sde_sample_freq": -1,
77
+ "_current_progress_remaining": 0.0,
78
+ "ep_info_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMImzv6X65lBMCUhpRSlIwBbJRLMowBdJRHQKVTbWOIZZV1fZQoaAZoCWgPQwjwwADChxIEwJSGlFKUaBVLMmgWR0ClUyytmthedX2UKGgGaAloD0MIdt7GZkcqB8CUhpRSlGgVSzJoFkdApVLqcCo0h3V9lChoBmgJaA9DCAtdiUD17wLAlIaUUpRoFUsyaBZHQKVSpzfaYeF1fZQoaAZoCWgPQwhp4h3gSUsDwJSGlFKUaBVLMmgWR0ClVG2IGhVVdX2UKGgGaAloD0MISUc5mE0gBsCUhpRSlGgVSzJoFkdApVQscZLqU3V9lChoBmgJaA9DCMYy/RLxdgbAlIaUUpRoFUsyaBZHQKVT6jZ+QU51fZQoaAZoCWgPQwiCO1CnPLr3v5SGlFKUaBVLMmgWR0ClU6c3dbgTdX2UKGgGaAloD0MIEyf3OxTlAcCUhpRSlGgVSzJoFkdApVVdBa9sanV9lChoBmgJaA9DCCPcZFQZZgDAlIaUUpRoFUsyaBZHQKVVHBZZB9l1fZQoaAZoCWgPQwiwc9NmnIYJwJSGlFKUaBVLMmgWR0ClVNn446wMdX2UKGgGaAloD0MIll8GY0SiAcCUhpRSlGgVSzJoFkdApVSWsV+I/XV9lChoBmgJaA9DCAjJAiZwiwLAlIaUUpRoFUsyaBZHQKVWRnTy8SR1fZQoaAZoCWgPQwghHomXp3MCwJSGlFKUaBVLMmgWR0ClVgZOrQw9dX2UKGgGaAloD0MIo3iVtU3RA8CUhpRSlGgVSzJoFkdApVXExbjcVXV9lChoBmgJaA9DCCTtRh/zwQbAlIaUUpRoFUsyaBZHQKVVgh8IAwR1fZQoaAZoCWgPQwgHKXgKudIDwJSGlFKUaBVLMmgWR0ClVzDn3cpLdX2UKGgGaAloD0MIYOXQItu5A8CUhpRSlGgVSzJoFkdApVbv4TK1X3V9lChoBmgJaA9DCBR15h4SPgTAlIaUUpRoFUsyaBZHQKVWrbGFSKp1fZQoaAZoCWgPQwgX1/hM9i8FwJSGlFKUaBVLMmgWR0ClVmp7sv7FdX2UKGgGaAloD0MIn1c89UhjBcCUhpRSlGgVSzJoFkdApVgkwL3K0XV9lChoBmgJaA9DCPJ9calK2wLAlIaUUpRoFUsyaBZHQKVX49Ba9sd1fZQoaAZoCWgPQwhYVpqUgk4FwJSGlFKUaBVLMmgWR0ClV6GjCYTkdX2UKGgGaAloD0MI7tEb7iOXAsCUhpRSlGgVSzJoFkdApVdekrPMS3V9lChoBmgJaA9DCM0GmWTkrADAlIaUUpRoFUsyaBZHQKVZHDSgGr11fZQoaAZoCWgPQwg0R1Z+GawDwJSGlFKUaBVLMmgWR0ClWNu14Pf9dX2UKGgGaAloD0MI5/up8dKtBsCUhpRSlGgVSzJoFkdApViZ1FH8THV9lChoBmgJaA9DCMAjKlQ3NwLAlIaUUpRoFUsyaBZHQKVYVoM8YAN1fZQoaAZoCWgPQwiLM4Y5QVsFwJSGlFKUaBVLMmgWR0ClWhrj5sTGdX2UKGgGaAloD0MI46qy74qgBMCUhpRSlGgVSzJoFkdApVnZ5kbxVnV9lChoBmgJaA9DCJ6xL9l4UAHAlIaUUpRoFUsyaBZHQKVZl+WGATZ1fZQoaAZoCWgPQwgyychZ2JMGwJSGlFKUaBVLMmgWR0ClWVSMcZLqdX2UKGgGaAloD0MIvxBy3v/HA8CUhpRSlGgVSzJoFkdApVsOq//Nq3V9lChoBmgJaA9DCPp8lBEXQAHAlIaUUpRoFUsyaBZHQKVaze2NNrV1fZQoaAZoCWgPQwgG19zR/xIHwJSGlFKUaBVLMmgWR0ClWou+RHPNdX2UKGgGaAloD0MIajS5GANLA8CUhpRSlGgVSzJoFkdApVpIku6ErXV9lChoBmgJaA9DCLraiv1lFwLAlIaUUpRoFUsyaBZHQKVb+H58BuJ1fZQoaAZoCWgPQwgrUfaWcr4FwJSGlFKUaBVLMmgWR0ClW7d+w1R+dX2UKGgGaAloD0MIAFMGDmgJBsCUhpRSlGgVSzJoFkdApVt1To+wDHV9lChoBmgJaA9DCHRd+MH5VAXAlIaUUpRoFUsyaBZHQKVbMiu+yqx1fZQoaAZoCWgPQwjQ7SWN0RoIwJSGlFKUaBVLMmgWR0ClXOmygPEsdX2UKGgGaAloD0MIYfw07s2vCMCUhpRSlGgVSzJoFkdApVyoq7ROUXV9lChoBmgJaA9DCKA1P/7S4gDAlIaUUpRoFUsyaBZHQKVcZuF6Avt1fZQoaAZoCWgPQwjBi76CNMMBwJSGlFKUaBVLMmgWR0ClXCOEVWS2dX2UKGgGaAloD0MIAcPy59uiAsCUhpRSlGgVSzJoFkdApV3ibSZ0CHV9lChoBmgJaA9DCKME/YUe8QHAlIaUUpRoFUsyaBZHQKVdoY9gWrR1fZQoaAZoCWgPQwju0LAYdc0EwJSGlFKUaBVLMmgWR0ClXV9sSCe3dX2UKGgGaAloD0MIrkm3JXIBAMCUhpRSlGgVSzJoFkdApV0cfzSThnV9lChoBmgJaA9DCIrkK4GUGALAlIaUUpRoFUsyaBZHQKVe8XbdrO91fZQoaAZoCWgPQwjxZaIIqZsBwJSGlFKUaBVLMmgWR0ClXrJ71Iy1dX2UKGgGaAloD0MIibMiaqKPAcCUhpRSlGgVSzJoFkdApV5xMzuWr3V9lChoBmgJaA9DCMODZte99QjAlIaUUpRoFUsyaBZHQKVeLoFFDv51fZQoaAZoCWgPQwjhJTj1gUQHwJSGlFKUaBVLMmgWR0ClYHMHjZL7dX2UKGgGaAloD0MIm1lLAWnfB8CUhpRSlGgVSzJoFkdApWAyl+EytXV9lChoBmgJaA9DCDG1pQ7y2grAlIaUUpRoFUsyaBZHQKVf8RmK64F1fZQoaAZoCWgPQwjgEoB/SnUIwJSGlFKUaBVLMmgWR0ClX65r56+ndX2UKGgGaAloD0MI0sYRa/FpCsCUhpRSlGgVSzJoFkdApWIC8UVSGnV9lChoBmgJaA9DCO1ESUikrQLAlIaUUpRoFUsyaBZHQKVhwpG4I8h1fZQoaAZoCWgPQwgIkncOZQgFwJSGlFKUaBVLMmgWR0ClYYEOZssQdX2UKGgGaAloD0MIgV64c2HECMCUhpRSlGgVSzJoFkdApWE+nIhhY3V9lChoBmgJaA9DCLYuNUI/MwvAlIaUUpRoFUsyaBZHQKVji29+PR11fZQoaAZoCWgPQwirXRPSGmMFwJSGlFKUaBVLMmgWR0ClY0sR6F/QdX2UKGgGaAloD0MIrFj8prBSAsCUhpRSlGgVSzJoFkdApWMJi1Aqu3V9lChoBmgJaA9DCK32sBcKmAbAlIaUUpRoFUsyaBZHQKVixyauwHJ1fZQoaAZoCWgPQwgdVrjlI8kBwJSGlFKUaBVLMmgWR0ClZSaE8JUpdX2UKGgGaAloD0MIwocSLXmcBcCUhpRSlGgVSzJoFkdApWTmJzkp7XV9lChoBmgJaA9DCJpBfGDH/wfAlIaUUpRoFUsyaBZHQKVkpTisGPh1fZQoaAZoCWgPQwjb3QN0Xy4DwJSGlFKUaBVLMmgWR0ClZGLULDyfdX2UKGgGaAloD0MIsDpypDOw/r+UhpRSlGgVSzJoFkdApWbkpI+W4XV9lChoBmgJaA9DCDpa1ZKOcgTAlIaUUpRoFUsyaBZHQKVmpD+irT91fZQoaAZoCWgPQwitGK4OgBgDwJSGlFKUaBVLMmgWR0ClZmLamGdqdX2UKGgGaAloD0MIAfinVImSBMCUhpRSlGgVSzJoFkdApWYgPI4lyHV9lChoBmgJaA9DCEGC4seY+wXAlIaUUpRoFUsyaBZHQKVohB6a9bp1fZQoaAZoCWgPQwivk/qytDMGwJSGlFKUaBVLMmgWR0ClaEQZn+Q2dX2UKGgGaAloD0MIzzEge717BcCUhpRSlGgVSzJoFkdApWgDAeq7y3V9lChoBmgJaA9DCJkMx/MZkAPAlIaUUpRoFUsyaBZHQKVnwF9KEnN1fZQoaAZoCWgPQwhnDHOCNnkCwJSGlFKUaBVLMmgWR0ClaZzQmeDndX2UKGgGaAloD0MI/Wt55XrbBcCUhpRSlGgVSzJoFkdApWlbyjHn2nV9lChoBmgJaA9DCAXeyafHFgXAlIaUUpRoFUsyaBZHQKVpGakRBeJ1fZQoaAZoCWgPQwjeAgmKH8MHwJSGlFKUaBVLMmgWR0ClaNawMYuTdX2UKGgGaAloD0MIBFq6gm3kA8CUhpRSlGgVSzJoFkdApWqHHktEonV9lChoBmgJaA9DCOeJ52wBoQTAlIaUUpRoFUsyaBZHQKVqRikO7QN1fZQoaAZoCWgPQwjg2R694R4BwJSGlFKUaBVLMmgWR0ClagQYcebNdX2UKGgGaAloD0MIFTduMT/3AMCUhpRSlGgVSzJoFkdApWnA9C/oJXV9lChoBmgJaA9DCD6XqUnwBgjAlIaUUpRoFUsyaBZHQKVrfZvDP4V1fZQoaAZoCWgPQwiIKvwZ3kwFwJSGlFKUaBVLMmgWR0ClazzOgQHzdX2UKGgGaAloD0MIXb9gN2xbBsCUhpRSlGgVSzJoFkdApWr6rNnoPnV9lChoBmgJaA9DCKxyofKvBQTAlIaUUpRoFUsyaBZHQKVqt8BMi8p1fZQoaAZoCWgPQwieCU0SS6oFwJSGlFKUaBVLMmgWR0ClbG9dVvMsdX2UKGgGaAloD0MI8KfGSzdpBMCUhpRSlGgVSzJoFkdApWwuT7l7t3V9lChoBmgJaA9DCKJD4EigAQTAlIaUUpRoFUsyaBZHQKVr7C/Glyl1fZQoaAZoCWgPQwhQUmABTBkHwJSGlFKUaBVLMmgWR0Cla6jjR2KVdX2UKGgGaAloD0MIBwlRvqCFBcCUhpRSlGgVSzJoFkdApW1cQEpy63V9lChoBmgJaA9DCFGf5A6b6ATAlIaUUpRoFUsyaBZHQKVtG2AoXsR1fZQoaAZoCWgPQwjWAKWhRkEEwJSGlFKUaBVLMmgWR0ClbNlGgBcSdX2UKGgGaAloD0MIGRwlr85xBsCUhpRSlGgVSzJoFkdApWyWFlCkXXV9lChoBmgJaA9DCMnMBS6PlQLAlIaUUpRoFUsyaBZHQKVuXHzYmLN1fZQoaAZoCWgPQwiyhSAHJawNwJSGlFKUaBVLMmgWR0ClbhuPvKEGdX2UKGgGaAloD0MIzHoxlBMtBcCUhpRSlGgVSzJoFkdApW3ZXS0BwXV9lChoBmgJaA9DCEgZcQFolAvAlIaUUpRoFUsyaBZHQKVtlg4wRGt1ZS4="
81
+ },
82
+ "ep_success_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
+ },
86
+ "_n_updates": 50000,
87
+ "n_steps": 5,
88
+ "gamma": 0.99,
89
+ "gae_lambda": 1.0,
90
+ "ent_coef": 0.0,
91
+ "vf_coef": 0.5,
92
+ "max_grad_norm": 0.5,
93
+ "normalize_advantage": false
94
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:662d8841d78fac5370b7c8d0930ba368f4c6b962619c81411d939a7f7da9eb36
3
+ size 44606
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8870687c349301e9a1e18553624283b71ceb81f82136f5c557f9a923515c5d78
3
+ size 45886
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.0+cu116
5
+ - GPU Enabled: False
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f645f8caaf0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f645f8c84b0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673978640254421868, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAOH/SPm85K73w2Qk/OH/SPm85K73w2Qk/OH/SPm85K73w2Qk/OH/SPm85K73w2Qk/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAADs+1v9I7ij4v9rg/CvqHvUwKWr7YixY/PI8fPRLgtz8u9cg/zl4Uv6JRe72LEka+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAA4f9I+bzkrvfDZCT/f4Bg79m6Ku3vSQDo4f9I+bzkrvfDZCT/f4Bg79m6Ku3vSQDo4f9I+bzkrvfDZCT/f4Bg79m6Ku3vSQDo4f9I+bzkrvfDZCT/f4Bg79m6Ku3vSQDqUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.41112685 -0.04180282 0.5384817 ]\n [ 0.41112685 -0.04180282 0.5384817 ]\n [ 0.41112685 -0.04180282 0.5384817 ]\n [ 0.41112685 -0.04180282 0.5384817 ]]", "desired_goal": "[[-1.4203813 0.26998764 1.4450129 ]\n [-0.06639488 -0.2129299 0.58807135]\n [ 0.03895496 1.4365256 1.5699823 ]\n [-0.5795716 -0.06135715 -0.19343011]]", "observation": "[[ 0.41112685 -0.04180282 0.5384817 0.00233274 -0.00422465 0.00073556]\n [ 0.41112685 -0.04180282 0.5384817 0.00233274 -0.00422465 0.00073556]\n [ 0.41112685 -0.04180282 0.5384817 0.00233274 -0.00422465 0.00073556]\n [ 0.41112685 -0.04180282 0.5384817 0.00233274 -0.00422465 0.00073556]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAvvsoPfXdzD2ypjA+UaGTPKBbsjs4SIM9kgLTPE18cj2f4Zk9QMigPcREar1JTT8+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.04125571 0.10003272 0.17251089]\n [ 0.01802126 0.00544305 0.06410259]\n [ 0.02575806 0.05920057 0.07513737]\n [ 0.07850695 -0.05719449 0.18681826]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMImzv6X65lBMCUhpRSlIwBbJRLMowBdJRHQKVTbWOIZZV1fZQoaAZoCWgPQwjwwADChxIEwJSGlFKUaBVLMmgWR0ClUyytmthedX2UKGgGaAloD0MIdt7GZkcqB8CUhpRSlGgVSzJoFkdApVLqcCo0h3V9lChoBmgJaA9DCAtdiUD17wLAlIaUUpRoFUsyaBZHQKVSpzfaYeF1fZQoaAZoCWgPQwhp4h3gSUsDwJSGlFKUaBVLMmgWR0ClVG2IGhVVdX2UKGgGaAloD0MISUc5mE0gBsCUhpRSlGgVSzJoFkdApVQscZLqU3V9lChoBmgJaA9DCMYy/RLxdgbAlIaUUpRoFUsyaBZHQKVT6jZ+QU51fZQoaAZoCWgPQwiCO1CnPLr3v5SGlFKUaBVLMmgWR0ClU6c3dbgTdX2UKGgGaAloD0MIEyf3OxTlAcCUhpRSlGgVSzJoFkdApVVdBa9sanV9lChoBmgJaA9DCCPcZFQZZgDAlIaUUpRoFUsyaBZHQKVVHBZZB9l1fZQoaAZoCWgPQwiwc9NmnIYJwJSGlFKUaBVLMmgWR0ClVNn446wMdX2UKGgGaAloD0MIll8GY0SiAcCUhpRSlGgVSzJoFkdApVSWsV+I/XV9lChoBmgJaA9DCAjJAiZwiwLAlIaUUpRoFUsyaBZHQKVWRnTy8SR1fZQoaAZoCWgPQwghHomXp3MCwJSGlFKUaBVLMmgWR0ClVgZOrQw9dX2UKGgGaAloD0MIo3iVtU3RA8CUhpRSlGgVSzJoFkdApVXExbjcVXV9lChoBmgJaA9DCCTtRh/zwQbAlIaUUpRoFUsyaBZHQKVVgh8IAwR1fZQoaAZoCWgPQwgHKXgKudIDwJSGlFKUaBVLMmgWR0ClVzDn3cpLdX2UKGgGaAloD0MIYOXQItu5A8CUhpRSlGgVSzJoFkdApVbv4TK1X3V9lChoBmgJaA9DCBR15h4SPgTAlIaUUpRoFUsyaBZHQKVWrbGFSKp1fZQoaAZoCWgPQwgX1/hM9i8FwJSGlFKUaBVLMmgWR0ClVmp7sv7FdX2UKGgGaAloD0MIn1c89UhjBcCUhpRSlGgVSzJoFkdApVgkwL3K0XV9lChoBmgJaA9DCPJ9calK2wLAlIaUUpRoFUsyaBZHQKVX49Ba9sd1fZQoaAZoCWgPQwhYVpqUgk4FwJSGlFKUaBVLMmgWR0ClV6GjCYTkdX2UKGgGaAloD0MI7tEb7iOXAsCUhpRSlGgVSzJoFkdApVdekrPMS3V9lChoBmgJaA9DCM0GmWTkrADAlIaUUpRoFUsyaBZHQKVZHDSgGr11fZQoaAZoCWgPQwg0R1Z+GawDwJSGlFKUaBVLMmgWR0ClWNu14Pf9dX2UKGgGaAloD0MI5/up8dKtBsCUhpRSlGgVSzJoFkdApViZ1FH8THV9lChoBmgJaA9DCMAjKlQ3NwLAlIaUUpRoFUsyaBZHQKVYVoM8YAN1fZQoaAZoCWgPQwiLM4Y5QVsFwJSGlFKUaBVLMmgWR0ClWhrj5sTGdX2UKGgGaAloD0MI46qy74qgBMCUhpRSlGgVSzJoFkdApVnZ5kbxVnV9lChoBmgJaA9DCJ6xL9l4UAHAlIaUUpRoFUsyaBZHQKVZl+WGATZ1fZQoaAZoCWgPQwgyychZ2JMGwJSGlFKUaBVLMmgWR0ClWVSMcZLqdX2UKGgGaAloD0MIvxBy3v/HA8CUhpRSlGgVSzJoFkdApVsOq//Nq3V9lChoBmgJaA9DCPp8lBEXQAHAlIaUUpRoFUsyaBZHQKVaze2NNrV1fZQoaAZoCWgPQwgG19zR/xIHwJSGlFKUaBVLMmgWR0ClWou+RHPNdX2UKGgGaAloD0MIajS5GANLA8CUhpRSlGgVSzJoFkdApVpIku6ErXV9lChoBmgJaA9DCLraiv1lFwLAlIaUUpRoFUsyaBZHQKVb+H58BuJ1fZQoaAZoCWgPQwgrUfaWcr4FwJSGlFKUaBVLMmgWR0ClW7d+w1R+dX2UKGgGaAloD0MIAFMGDmgJBsCUhpRSlGgVSzJoFkdApVt1To+wDHV9lChoBmgJaA9DCHRd+MH5VAXAlIaUUpRoFUsyaBZHQKVbMiu+yqx1fZQoaAZoCWgPQwjQ7SWN0RoIwJSGlFKUaBVLMmgWR0ClXOmygPEsdX2UKGgGaAloD0MIYfw07s2vCMCUhpRSlGgVSzJoFkdApVyoq7ROUXV9lChoBmgJaA9DCKA1P/7S4gDAlIaUUpRoFUsyaBZHQKVcZuF6Avt1fZQoaAZoCWgPQwjBi76CNMMBwJSGlFKUaBVLMmgWR0ClXCOEVWS2dX2UKGgGaAloD0MIAcPy59uiAsCUhpRSlGgVSzJoFkdApV3ibSZ0CHV9lChoBmgJaA9DCKME/YUe8QHAlIaUUpRoFUsyaBZHQKVdoY9gWrR1fZQoaAZoCWgPQwju0LAYdc0EwJSGlFKUaBVLMmgWR0ClXV9sSCe3dX2UKGgGaAloD0MIrkm3JXIBAMCUhpRSlGgVSzJoFkdApV0cfzSThnV9lChoBmgJaA9DCIrkK4GUGALAlIaUUpRoFUsyaBZHQKVe8XbdrO91fZQoaAZoCWgPQwjxZaIIqZsBwJSGlFKUaBVLMmgWR0ClXrJ71Iy1dX2UKGgGaAloD0MIibMiaqKPAcCUhpRSlGgVSzJoFkdApV5xMzuWr3V9lChoBmgJaA9DCMODZte99QjAlIaUUpRoFUsyaBZHQKVeLoFFDv51fZQoaAZoCWgPQwjhJTj1gUQHwJSGlFKUaBVLMmgWR0ClYHMHjZL7dX2UKGgGaAloD0MIm1lLAWnfB8CUhpRSlGgVSzJoFkdApWAyl+EytXV9lChoBmgJaA9DCDG1pQ7y2grAlIaUUpRoFUsyaBZHQKVf8RmK64F1fZQoaAZoCWgPQwjgEoB/SnUIwJSGlFKUaBVLMmgWR0ClX65r56+ndX2UKGgGaAloD0MI0sYRa/FpCsCUhpRSlGgVSzJoFkdApWIC8UVSGnV9lChoBmgJaA9DCO1ESUikrQLAlIaUUpRoFUsyaBZHQKVhwpG4I8h1fZQoaAZoCWgPQwgIkncOZQgFwJSGlFKUaBVLMmgWR0ClYYEOZssQdX2UKGgGaAloD0MIgV64c2HECMCUhpRSlGgVSzJoFkdApWE+nIhhY3V9lChoBmgJaA9DCLYuNUI/MwvAlIaUUpRoFUsyaBZHQKVji29+PR11fZQoaAZoCWgPQwirXRPSGmMFwJSGlFKUaBVLMmgWR0ClY0sR6F/QdX2UKGgGaAloD0MIrFj8prBSAsCUhpRSlGgVSzJoFkdApWMJi1Aqu3V9lChoBmgJaA9DCK32sBcKmAbAlIaUUpRoFUsyaBZHQKVixyauwHJ1fZQoaAZoCWgPQwgdVrjlI8kBwJSGlFKUaBVLMmgWR0ClZSaE8JUpdX2UKGgGaAloD0MIwocSLXmcBcCUhpRSlGgVSzJoFkdApWTmJzkp7XV9lChoBmgJaA9DCJpBfGDH/wfAlIaUUpRoFUsyaBZHQKVkpTisGPh1fZQoaAZoCWgPQwjb3QN0Xy4DwJSGlFKUaBVLMmgWR0ClZGLULDyfdX2UKGgGaAloD0MIsDpypDOw/r+UhpRSlGgVSzJoFkdApWbkpI+W4XV9lChoBmgJaA9DCDpa1ZKOcgTAlIaUUpRoFUsyaBZHQKVmpD+irT91fZQoaAZoCWgPQwitGK4OgBgDwJSGlFKUaBVLMmgWR0ClZmLamGdqdX2UKGgGaAloD0MIAfinVImSBMCUhpRSlGgVSzJoFkdApWYgPI4lyHV9lChoBmgJaA9DCEGC4seY+wXAlIaUUpRoFUsyaBZHQKVohB6a9bp1fZQoaAZoCWgPQwivk/qytDMGwJSGlFKUaBVLMmgWR0ClaEQZn+Q2dX2UKGgGaAloD0MIzzEge717BcCUhpRSlGgVSzJoFkdApWgDAeq7y3V9lChoBmgJaA9DCJkMx/MZkAPAlIaUUpRoFUsyaBZHQKVnwF9KEnN1fZQoaAZoCWgPQwhnDHOCNnkCwJSGlFKUaBVLMmgWR0ClaZzQmeDndX2UKGgGaAloD0MI/Wt55XrbBcCUhpRSlGgVSzJoFkdApWlbyjHn2nV9lChoBmgJaA9DCAXeyafHFgXAlIaUUpRoFUsyaBZHQKVpGakRBeJ1fZQoaAZoCWgPQwjeAgmKH8MHwJSGlFKUaBVLMmgWR0ClaNawMYuTdX2UKGgGaAloD0MIBFq6gm3kA8CUhpRSlGgVSzJoFkdApWqHHktEonV9lChoBmgJaA9DCOeJ52wBoQTAlIaUUpRoFUsyaBZHQKVqRikO7QN1fZQoaAZoCWgPQwjg2R694R4BwJSGlFKUaBVLMmgWR0ClagQYcebNdX2UKGgGaAloD0MIFTduMT/3AMCUhpRSlGgVSzJoFkdApWnA9C/oJXV9lChoBmgJaA9DCD6XqUnwBgjAlIaUUpRoFUsyaBZHQKVrfZvDP4V1fZQoaAZoCWgPQwiIKvwZ3kwFwJSGlFKUaBVLMmgWR0ClazzOgQHzdX2UKGgGaAloD0MIXb9gN2xbBsCUhpRSlGgVSzJoFkdApWr6rNnoPnV9lChoBmgJaA9DCKxyofKvBQTAlIaUUpRoFUsyaBZHQKVqt8BMi8p1fZQoaAZoCWgPQwieCU0SS6oFwJSGlFKUaBVLMmgWR0ClbG9dVvMsdX2UKGgGaAloD0MI8KfGSzdpBMCUhpRSlGgVSzJoFkdApWwuT7l7t3V9lChoBmgJaA9DCKJD4EigAQTAlIaUUpRoFUsyaBZHQKVr7C/Glyl1fZQoaAZoCWgPQwhQUmABTBkHwJSGlFKUaBVLMmgWR0Cla6jjR2KVdX2UKGgGaAloD0MIBwlRvqCFBcCUhpRSlGgVSzJoFkdApW1cQEpy63V9lChoBmgJaA9DCFGf5A6b6ATAlIaUUpRoFUsyaBZHQKVtG2AoXsR1fZQoaAZoCWgPQwjWAKWhRkEEwJSGlFKUaBVLMmgWR0ClbNlGgBcSdX2UKGgGaAloD0MIGRwlr85xBsCUhpRSlGgVSzJoFkdApWyWFlCkXXV9lChoBmgJaA9DCMnMBS6PlQLAlIaUUpRoFUsyaBZHQKVuXHzYmLN1fZQoaAZoCWgPQwiyhSAHJawNwJSGlFKUaBVLMmgWR0ClbhuPvKEGdX2UKGgGaAloD0MIzHoxlBMtBcCUhpRSlGgVSzJoFkdApW3ZXS0BwXV9lChoBmgJaA9DCEgZcQFolAvAlIaUUpRoFUsyaBZHQKVtlg4wRGt1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.0+cu116", "GPU Enabled": "False", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (824 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -2.614585994416848, "std_reward": 0.3254840824988612, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-17T22:11:54.966240"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:07b2d2e09b258531eef817881990a69d568937d34d732d53933363a9f35caf1a
3
+ size 3212