Upload 25 files
Browse files- train/F1_curve.png +0 -0
- train/PR_curve.png +0 -0
- train/P_curve.png +0 -0
- train/R_curve.png +0 -0
- train/args.yaml +17 -9
- train/confusion_matrix.png +0 -0
- train/confusion_matrix_normalized.png +0 -0
- train/labels.jpg +0 -0
- train/labels_correlogram.jpg +0 -0
- train/results.csv +100 -54
- train/results.png +0 -0
- train/train_batch0.jpg +0 -0
- train/train_batch1.jpg +0 -0
- train/train_batch11250.jpg +0 -0
- train/train_batch11251.jpg +0 -0
- train/train_batch11252.jpg +0 -0
- train/train_batch2.jpg +0 -0
- train/val_batch0_labels.jpg +0 -0
- train/val_batch0_pred.jpg +0 -0
- train/val_batch1_labels.jpg +0 -0
- train/val_batch1_pred.jpg +0 -0
- train/val_batch2_labels.jpg +0 -0
- train/val_batch2_pred.jpg +0 -0
- train/weights/best.pt +2 -2
- train/weights/last.pt +2 -2
train/F1_curve.png
CHANGED
train/PR_curve.png
CHANGED
train/P_curve.png
CHANGED
train/R_curve.png
CHANGED
train/args.yaml
CHANGED
@@ -1,8 +1,9 @@
|
|
1 |
task: detect
|
2 |
mode: train
|
3 |
model: /workspace/yolov8n.pt
|
4 |
-
data: /
|
5 |
epochs: 100
|
|
|
6 |
patience: 10
|
7 |
batch: 16
|
8 |
imgsz: 640
|
@@ -28,6 +29,7 @@ amp: true
|
|
28 |
fraction: 1.0
|
29 |
profile: false
|
30 |
freeze: null
|
|
|
31 |
overlap_mask: true
|
32 |
mask_ratio: 4
|
33 |
dropout: 0.0
|
@@ -42,21 +44,23 @@ half: false
|
|
42 |
dnn: false
|
43 |
plots: true
|
44 |
source: null
|
45 |
-
show: false
|
46 |
-
save_txt: false
|
47 |
-
save_conf: false
|
48 |
-
save_crop: false
|
49 |
-
show_labels: true
|
50 |
-
show_conf: true
|
51 |
vid_stride: 1
|
52 |
stream_buffer: false
|
53 |
-
line_width: null
|
54 |
visualize: false
|
55 |
augment: false
|
56 |
agnostic_nms: false
|
57 |
classes: null
|
58 |
retina_masks: false
|
59 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
format: torchscript
|
61 |
keras: false
|
62 |
optimize: false
|
@@ -90,9 +94,13 @@ shear: 0.0
|
|
90 |
perspective: 0.0
|
91 |
flipud: 0.0
|
92 |
fliplr: 0.5
|
|
|
93 |
mosaic: 1.0
|
94 |
mixup: 0.0
|
95 |
copy_paste: 0.0
|
|
|
|
|
|
|
96 |
cfg: null
|
97 |
tracker: botsort.yaml
|
98 |
save_dir: /workspace/runs/train_run_1/train
|
|
|
1 |
task: detect
|
2 |
mode: train
|
3 |
model: /workspace/yolov8n.pt
|
4 |
+
data: /deer_v7_batched/deer_v7_batch_1/data.yml
|
5 |
epochs: 100
|
6 |
+
time: null
|
7 |
patience: 10
|
8 |
batch: 16
|
9 |
imgsz: 640
|
|
|
29 |
fraction: 1.0
|
30 |
profile: false
|
31 |
freeze: null
|
32 |
+
multi_scale: false
|
33 |
overlap_mask: true
|
34 |
mask_ratio: 4
|
35 |
dropout: 0.0
|
|
|
44 |
dnn: false
|
45 |
plots: true
|
46 |
source: null
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
vid_stride: 1
|
48 |
stream_buffer: false
|
|
|
49 |
visualize: false
|
50 |
augment: false
|
51 |
agnostic_nms: false
|
52 |
classes: null
|
53 |
retina_masks: false
|
54 |
+
embed: null
|
55 |
+
show: false
|
56 |
+
save_frames: false
|
57 |
+
save_txt: false
|
58 |
+
save_conf: false
|
59 |
+
save_crop: false
|
60 |
+
show_labels: true
|
61 |
+
show_conf: true
|
62 |
+
show_boxes: true
|
63 |
+
line_width: null
|
64 |
format: torchscript
|
65 |
keras: false
|
66 |
optimize: false
|
|
|
94 |
perspective: 0.0
|
95 |
flipud: 0.0
|
96 |
fliplr: 0.5
|
97 |
+
bgr: 0.0
|
98 |
mosaic: 1.0
|
99 |
mixup: 0.0
|
100 |
copy_paste: 0.0
|
101 |
+
auto_augment: randaugment
|
102 |
+
erasing: 0.4
|
103 |
+
crop_fraction: 1.0
|
104 |
cfg: null
|
105 |
tracker: botsort.yaml
|
106 |
save_dir: /workspace/runs/train_run_1/train
|
train/confusion_matrix.png
CHANGED
train/confusion_matrix_normalized.png
CHANGED
train/labels.jpg
CHANGED
train/labels_correlogram.jpg
CHANGED
train/results.csv
CHANGED
@@ -1,55 +1,101 @@
|
|
1 |
epoch, train/box_loss, train/cls_loss, train/dfl_loss, metrics/precision(B), metrics/recall(B), metrics/mAP50(B), metrics/mAP50-95(B), val/box_loss, val/cls_loss, val/dfl_loss, lr/pg0, lr/pg1, lr/pg2
|
2 |
-
1, 1.
|
3 |
-
2, 1.
|
4 |
-
3, 1.
|
5 |
-
4, 1.
|
6 |
-
5, 1.
|
7 |
-
6, 1.
|
8 |
-
7, 1.
|
9 |
-
8, 1.
|
10 |
-
9,
|
11 |
-
10,
|
12 |
-
11, 1.
|
13 |
-
12, 1.
|
14 |
-
13, 1.
|
15 |
-
14, 1.
|
16 |
-
15, 1.
|
17 |
-
16, 1.
|
18 |
-
17,
|
19 |
-
18, 1.
|
20 |
-
19, 1.
|
21 |
-
20,
|
22 |
-
21, 1.
|
23 |
-
22, 1.
|
24 |
-
23,
|
25 |
-
24,
|
26 |
-
25, 1.
|
27 |
-
26, 1.
|
28 |
-
27, 1.
|
29 |
-
28, 1.
|
30 |
-
29, 1.
|
31 |
-
30, 1.
|
32 |
-
31, 1.
|
33 |
-
32, 1.
|
34 |
-
33, 1.
|
35 |
-
34, 1.
|
36 |
-
35, 1.
|
37 |
-
36, 1.
|
38 |
-
37, 1.
|
39 |
-
38, 1.
|
40 |
-
39,
|
41 |
-
40, 1.
|
42 |
-
41,
|
43 |
-
42,
|
44 |
-
43,
|
45 |
-
44, 1.
|
46 |
-
45,
|
47 |
-
46,
|
48 |
-
47,
|
49 |
-
48,
|
50 |
-
49,
|
51 |
-
50,
|
52 |
-
51,
|
53 |
-
52,
|
54 |
-
53,
|
55 |
-
54,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
epoch, train/box_loss, train/cls_loss, train/dfl_loss, metrics/precision(B), metrics/recall(B), metrics/mAP50(B), metrics/mAP50-95(B), val/box_loss, val/cls_loss, val/dfl_loss, lr/pg0, lr/pg1, lr/pg2
|
2 |
+
1, 1.3319, 1.9389, 1.5572, 0.66437, 0.51574, 0.57525, 0.28466, 1.5432, 2.2896, 1.7922, 0.00066133, 0.00066133, 0.00066133
|
3 |
+
2, 1.4503, 1.6458, 1.6456, 0.58779, 0.56777, 0.58637, 0.29895, 1.7695, 2.0758, 2.0873, 0.0013147, 0.0013147, 0.0013147
|
4 |
+
3, 1.4837, 1.505, 1.6676, 0.65056, 0.5512, 0.59051, 0.27176, 1.8934, 1.6368, 2.0316, 0.0019548, 0.0019548, 0.0019548
|
5 |
+
4, 1.4742, 1.4377, 1.6535, 0.76204, 0.65211, 0.71095, 0.38159, 1.613, 1.7156, 1.8098, 0.00194, 0.00194, 0.00194
|
6 |
+
5, 1.4436, 1.3329, 1.6229, 0.70811, 0.6138, 0.63616, 0.32627, 1.7326, 1.6136, 1.8997, 0.00192, 0.00192, 0.00192
|
7 |
+
6, 1.4162, 1.2883, 1.6068, 0.8353, 0.71235, 0.79082, 0.40202, 1.7221, 1.3139, 1.8792, 0.0019001, 0.0019001, 0.0019001
|
8 |
+
7, 1.3578, 1.2017, 1.5542, 0.8356, 0.71954, 0.7939, 0.42871, 1.5642, 1.1996, 1.7318, 0.0018801, 0.0018801, 0.0018801
|
9 |
+
8, 1.3795, 1.1859, 1.5733, 0.85289, 0.75753, 0.82535, 0.48419, 1.4731, 1.1071, 1.6581, 0.0018601, 0.0018601, 0.0018601
|
10 |
+
9, 1.328, 1.1385, 1.5299, 0.85182, 0.78765, 0.84764, 0.50074, 1.4434, 1.0358, 1.596, 0.0018401, 0.0018401, 0.0018401
|
11 |
+
10, 1.3056, 1.0945, 1.5098, 0.87109, 0.76323, 0.84347, 0.50211, 1.44, 1.0225, 1.6233, 0.0018201, 0.0018201, 0.0018201
|
12 |
+
11, 1.2995, 1.1002, 1.5105, 0.83467, 0.80873, 0.86351, 0.51792, 1.3729, 1.0322, 1.5746, 0.0018001, 0.0018001, 0.0018001
|
13 |
+
12, 1.2755, 1.0501, 1.4925, 0.82779, 0.71536, 0.79584, 0.4422, 1.5377, 1.1848, 1.7186, 0.0017801, 0.0017801, 0.0017801
|
14 |
+
13, 1.2691, 1.0404, 1.4961, 0.87969, 0.74699, 0.84741, 0.52667, 1.37, 0.95022, 1.5667, 0.0017601, 0.0017601, 0.0017601
|
15 |
+
14, 1.2237, 0.99533, 1.4577, 0.89408, 0.81325, 0.87567, 0.5437, 1.34, 0.9001, 1.5343, 0.0017401, 0.0017401, 0.0017401
|
16 |
+
15, 1.2304, 0.98767, 1.4774, 0.88232, 0.82831, 0.88297, 0.54429, 1.3675, 0.85753, 1.5657, 0.0017201, 0.0017201, 0.0017201
|
17 |
+
16, 1.2063, 0.95478, 1.4433, 0.92573, 0.82596, 0.89358, 0.56527, 1.2983, 0.81623, 1.501, 0.0017002, 0.0017002, 0.0017002
|
18 |
+
17, 1.193, 0.94033, 1.4333, 0.90835, 0.82229, 0.88183, 0.55209, 1.3506, 0.82356, 1.5663, 0.0016802, 0.0016802, 0.0016802
|
19 |
+
18, 1.1762, 0.91876, 1.4211, 0.93227, 0.86145, 0.91883, 0.58322, 1.2944, 0.77196, 1.465, 0.0016602, 0.0016602, 0.0016602
|
20 |
+
19, 1.1766, 0.89996, 1.4273, 0.88375, 0.8358, 0.88575, 0.54884, 1.3057, 0.84002, 1.5216, 0.0016402, 0.0016402, 0.0016402
|
21 |
+
20, 1.1663, 0.89129, 1.4204, 0.91018, 0.85459, 0.92199, 0.58784, 1.2428, 0.75788, 1.4358, 0.0016202, 0.0016202, 0.0016202
|
22 |
+
21, 1.1488, 0.87247, 1.404, 0.88688, 0.83133, 0.87583, 0.54372, 1.3351, 0.76871, 1.5392, 0.0016002, 0.0016002, 0.0016002
|
23 |
+
22, 1.1282, 0.85634, 1.3964, 0.89432, 0.85693, 0.90005, 0.57259, 1.2556, 0.78641, 1.4653, 0.0015802, 0.0015802, 0.0015802
|
24 |
+
23, 1.122, 0.83773, 1.3815, 0.92305, 0.8509, 0.90502, 0.58526, 1.2636, 0.75162, 1.4748, 0.0015602, 0.0015602, 0.0015602
|
25 |
+
24, 1.1529, 0.87412, 1.4047, 0.92811, 0.87499, 0.92486, 0.61492, 1.2026, 0.69445, 1.4086, 0.0015402, 0.0015402, 0.0015402
|
26 |
+
25, 1.1204, 0.8215, 1.3786, 0.91869, 0.87651, 0.92202, 0.60921, 1.2123, 0.70228, 1.4267, 0.0015202, 0.0015202, 0.0015202
|
27 |
+
26, 1.1108, 0.83268, 1.3781, 0.90403, 0.83283, 0.90531, 0.58423, 1.2607, 0.78015, 1.4531, 0.0015002, 0.0015002, 0.0015002
|
28 |
+
27, 1.1091, 0.82368, 1.3757, 0.92232, 0.87616, 0.92691, 0.60369, 1.2177, 0.6925, 1.4254, 0.0014803, 0.0014803, 0.0014803
|
29 |
+
28, 1.0772, 0.80484, 1.3531, 0.94044, 0.83886, 0.91844, 0.60243, 1.2137, 0.71425, 1.4197, 0.0014603, 0.0014603, 0.0014603
|
30 |
+
29, 1.0886, 0.79289, 1.3518, 0.93182, 0.87048, 0.92517, 0.61245, 1.198, 0.69431, 1.4314, 0.0014403, 0.0014403, 0.0014403
|
31 |
+
30, 1.0808, 0.81306, 1.3562, 0.93818, 0.86851, 0.91973, 0.60768, 1.2042, 0.68076, 1.4199, 0.0014203, 0.0014203, 0.0014203
|
32 |
+
31, 1.0541, 0.76236, 1.3351, 0.94171, 0.87589, 0.93404, 0.61088, 1.2033, 0.65307, 1.4515, 0.0014003, 0.0014003, 0.0014003
|
33 |
+
32, 1.0461, 0.7607, 1.3405, 0.95169, 0.89012, 0.92513, 0.60954, 1.2216, 0.65525, 1.4279, 0.0013803, 0.0013803, 0.0013803
|
34 |
+
33, 1.0405, 0.76315, 1.3173, 0.94051, 0.86898, 0.9253, 0.60309, 1.2132, 0.66961, 1.4088, 0.0013603, 0.0013603, 0.0013603
|
35 |
+
34, 1.0537, 0.76513, 1.3262, 0.94901, 0.89157, 0.93683, 0.61974, 1.1821, 0.6361, 1.3885, 0.0013403, 0.0013403, 0.0013403
|
36 |
+
35, 1.0364, 0.74774, 1.3137, 0.95, 0.88698, 0.93346, 0.62166, 1.1639, 0.62096, 1.386, 0.0013203, 0.0013203, 0.0013203
|
37 |
+
36, 1.0375, 0.75455, 1.3219, 0.90028, 0.88705, 0.92154, 0.62715, 1.1578, 0.66632, 1.3846, 0.0013004, 0.0013004, 0.0013004
|
38 |
+
37, 1.0348, 0.73579, 1.3174, 0.93157, 0.88705, 0.93624, 0.63515, 1.1485, 0.61699, 1.3809, 0.0012804, 0.0012804, 0.0012804
|
39 |
+
38, 1.0362, 0.72428, 1.3183, 0.93287, 0.87651, 0.92179, 0.62797, 1.1491, 0.63005, 1.3902, 0.0012604, 0.0012604, 0.0012604
|
40 |
+
39, 0.9951, 0.71699, 1.2976, 0.94785, 0.87599, 0.93424, 0.64226, 1.1366, 0.62394, 1.3764, 0.0012404, 0.0012404, 0.0012404
|
41 |
+
40, 1.0286, 0.73329, 1.3192, 0.94696, 0.86295, 0.93192, 0.62027, 1.1531, 0.65479, 1.3848, 0.0012204, 0.0012204, 0.0012204
|
42 |
+
41, 0.99408, 0.69377, 1.2959, 0.94441, 0.87952, 0.93655, 0.64236, 1.1281, 0.60461, 1.3764, 0.0012004, 0.0012004, 0.0012004
|
43 |
+
42, 0.98241, 0.68742, 1.2776, 0.93415, 0.88855, 0.93312, 0.6435, 1.1133, 0.59133, 1.3584, 0.0011804, 0.0011804, 0.0011804
|
44 |
+
43, 0.97985, 0.70068, 1.2927, 0.92997, 0.89307, 0.93209, 0.62546, 1.1875, 0.61591, 1.3906, 0.0011604, 0.0011604, 0.0011604
|
45 |
+
44, 1.0005, 0.6981, 1.296, 0.94236, 0.91107, 0.93997, 0.64518, 1.1049, 0.59164, 1.3586, 0.0011404, 0.0011404, 0.0011404
|
46 |
+
45, 0.9878, 0.69831, 1.2833, 0.95094, 0.87578, 0.93467, 0.65068, 1.1129, 0.59774, 1.3432, 0.0011204, 0.0011204, 0.0011204
|
47 |
+
46, 0.99315, 0.68826, 1.2971, 0.94434, 0.89608, 0.93404, 0.64314, 1.1345, 0.59672, 1.3651, 0.0011004, 0.0011004, 0.0011004
|
48 |
+
47, 0.98394, 0.67581, 1.2867, 0.93328, 0.88705, 0.92861, 0.64548, 1.1003, 0.57873, 1.3558, 0.0010805, 0.0010805, 0.0010805
|
49 |
+
48, 0.94958, 0.67277, 1.2631, 0.9366, 0.88988, 0.92701, 0.63939, 1.1163, 0.59788, 1.3604, 0.0010605, 0.0010605, 0.0010605
|
50 |
+
49, 0.94926, 0.6719, 1.2596, 0.93922, 0.88102, 0.93569, 0.64946, 1.0985, 0.58132, 1.3427, 0.0010405, 0.0010405, 0.0010405
|
51 |
+
50, 0.96627, 0.65725, 1.2672, 0.95063, 0.88253, 0.93601, 0.64978, 1.0963, 0.57288, 1.3604, 0.0010205, 0.0010205, 0.0010205
|
52 |
+
51, 0.93638, 0.65394, 1.2542, 0.95005, 0.88102, 0.93848, 0.64735, 1.0872, 0.57092, 1.3354, 0.0010005, 0.0010005, 0.0010005
|
53 |
+
52, 0.95541, 0.66516, 1.2649, 0.91461, 0.88717, 0.92964, 0.64037, 1.1362, 0.61545, 1.379, 0.00098051, 0.00098051, 0.00098051
|
54 |
+
53, 0.94663, 0.63978, 1.2653, 0.95479, 0.875, 0.93873, 0.6471, 1.1087, 0.5885, 1.3729, 0.00096052, 0.00096052, 0.00096052
|
55 |
+
54, 0.93826, 0.6342, 1.2647, 0.94367, 0.88297, 0.93765, 0.65868, 1.1025, 0.58733, 1.3526, 0.00094053, 0.00094053, 0.00094053
|
56 |
+
55, 0.92148, 0.62356, 1.2452, 0.93676, 0.89006, 0.93833, 0.65184, 1.1361, 0.58628, 1.3708, 0.00092054, 0.00092054, 0.00092054
|
57 |
+
56, 0.94256, 0.63751, 1.2642, 0.94328, 0.90163, 0.94404, 0.65295, 1.0917, 0.56268, 1.3527, 0.00090055, 0.00090055, 0.00090055
|
58 |
+
57, 0.93246, 0.63583, 1.2526, 0.93614, 0.90515, 0.94025, 0.65183, 1.0904, 0.57427, 1.3857, 0.00088056, 0.00088056, 0.00088056
|
59 |
+
58, 0.92829, 0.62547, 1.2537, 0.95068, 0.89985, 0.94038, 0.65068, 1.09, 0.57144, 1.3484, 0.00086057, 0.00086057, 0.00086057
|
60 |
+
59, 0.91279, 0.61362, 1.2392, 0.94549, 0.88814, 0.93805, 0.65967, 1.0807, 0.56447, 1.3499, 0.00084058, 0.00084058, 0.00084058
|
61 |
+
60, 0.90413, 0.62406, 1.2336, 0.95183, 0.8928, 0.94162, 0.66447, 1.0822, 0.5538, 1.3472, 0.00082059, 0.00082059, 0.00082059
|
62 |
+
61, 0.90536, 0.61694, 1.2381, 0.95787, 0.89029, 0.94043, 0.65505, 1.0942, 0.55624, 1.3542, 0.0008006, 0.0008006, 0.0008006
|
63 |
+
62, 0.87961, 0.60812, 1.2262, 0.93794, 0.89608, 0.92748, 0.64996, 1.1086, 0.56629, 1.3794, 0.00078061, 0.00078061, 0.00078061
|
64 |
+
63, 0.87036, 0.58885, 1.2155, 0.94793, 0.89307, 0.93379, 0.65885, 1.0846, 0.54267, 1.3491, 0.00076062, 0.00076062, 0.00076062
|
65 |
+
64, 0.87382, 0.58893, 1.2168, 0.95493, 0.89355, 0.94819, 0.6715, 1.0748, 0.55735, 1.3361, 0.00074063, 0.00074063, 0.00074063
|
66 |
+
65, 0.88006, 0.58724, 1.2138, 0.94674, 0.9102, 0.94689, 0.65812, 1.1036, 0.5506, 1.3471, 0.00072064, 0.00072064, 0.00072064
|
67 |
+
66, 0.88766, 0.58998, 1.2187, 0.93954, 0.90813, 0.94545, 0.65942, 1.0788, 0.53711, 1.3273, 0.00070065, 0.00070065, 0.00070065
|
68 |
+
67, 0.87421, 0.57441, 1.2051, 0.96279, 0.89628, 0.94583, 0.66176, 1.1002, 0.54171, 1.3444, 0.00068066, 0.00068066, 0.00068066
|
69 |
+
68, 0.87971, 0.5827, 1.2185, 0.93937, 0.90512, 0.94814, 0.65634, 1.0967, 0.546, 1.3503, 0.00066067, 0.00066067, 0.00066067
|
70 |
+
69, 0.85838, 0.57282, 1.1943, 0.94977, 0.91117, 0.94533, 0.6648, 1.1031, 0.53447, 1.3639, 0.00064068, 0.00064068, 0.00064068
|
71 |
+
70, 0.85315, 0.56511, 1.2001, 0.96022, 0.90892, 0.95485, 0.66769, 1.0828, 0.53359, 1.348, 0.00062069, 0.00062069, 0.00062069
|
72 |
+
71, 0.86474, 0.5826, 1.2171, 0.95041, 0.89478, 0.94002, 0.66189, 1.0692, 0.53754, 1.3521, 0.0006007, 0.0006007, 0.0006007
|
73 |
+
72, 0.81885, 0.54574, 1.1857, 0.95275, 0.89608, 0.94652, 0.67172, 1.0635, 0.53495, 1.3406, 0.00058071, 0.00058071, 0.00058071
|
74 |
+
73, 0.82888, 0.56118, 1.1885, 0.94647, 0.90543, 0.94526, 0.67382, 1.0595, 0.52944, 1.3422, 0.00056072, 0.00056072, 0.00056072
|
75 |
+
74, 0.81734, 0.54483, 1.1845, 0.95082, 0.90265, 0.94598, 0.67337, 1.0672, 0.53474, 1.3354, 0.00054073, 0.00054073, 0.00054073
|
76 |
+
75, 0.83908, 0.54928, 1.2002, 0.94465, 0.90211, 0.94151, 0.66637, 1.0686, 0.53234, 1.345, 0.00052074, 0.00052074, 0.00052074
|
77 |
+
76, 0.81866, 0.53604, 1.1807, 0.95673, 0.9006, 0.94468, 0.67302, 1.0515, 0.52123, 1.344, 0.00050075, 0.00050075, 0.00050075
|
78 |
+
77, 0.82191, 0.53904, 1.1758, 0.94633, 0.91114, 0.94587, 0.66746, 1.071, 0.5304, 1.3436, 0.00048076, 0.00048076, 0.00048076
|
79 |
+
78, 0.80042, 0.5252, 1.1679, 0.95124, 0.91089, 0.94954, 0.67373, 1.0467, 0.50964, 1.3335, 0.00046077, 0.00046077, 0.00046077
|
80 |
+
79, 0.808, 0.52938, 1.1692, 0.95917, 0.89759, 0.94061, 0.67831, 1.0487, 0.51605, 1.3452, 0.00044078, 0.00044078, 0.00044078
|
81 |
+
80, 0.78654, 0.51889, 1.1722, 0.96708, 0.8991, 0.94873, 0.67791, 1.0465, 0.51037, 1.3351, 0.00042079, 0.00042079, 0.00042079
|
82 |
+
81, 0.80758, 0.53654, 1.1702, 0.95245, 0.90494, 0.94529, 0.673, 1.0598, 0.51563, 1.3441, 0.0004008, 0.0004008, 0.0004008
|
83 |
+
82, 0.78199, 0.50917, 1.1536, 0.95568, 0.90211, 0.94753, 0.67363, 1.0498, 0.51088, 1.3454, 0.00038081, 0.00038081, 0.00038081
|
84 |
+
83, 0.7792, 0.50774, 1.1621, 0.96001, 0.90384, 0.95187, 0.68448, 1.0385, 0.50381, 1.3267, 0.00036082, 0.00036082, 0.00036082
|
85 |
+
84, 0.78113, 0.50577, 1.1479, 0.96166, 0.90652, 0.95033, 0.68063, 1.053, 0.50589, 1.3395, 0.00034083, 0.00034083, 0.00034083
|
86 |
+
85, 0.77674, 0.51404, 1.151, 0.94349, 0.91566, 0.95109, 0.67947, 1.0445, 0.50468, 1.3308, 0.00032084, 0.00032084, 0.00032084
|
87 |
+
86, 0.79311, 0.52062, 1.1665, 0.95497, 0.90663, 0.95151, 0.6833, 1.043, 0.50616, 1.3417, 0.00030085, 0.00030085, 0.00030085
|
88 |
+
87, 0.76435, 0.50203, 1.1492, 0.9472, 0.91566, 0.95502, 0.68569, 1.0446, 0.49888, 1.3438, 0.00028086, 0.00028086, 0.00028086
|
89 |
+
88, 0.77065, 0.50064, 1.1522, 0.95602, 0.91668, 0.95431, 0.68404, 1.0298, 0.498, 1.3321, 0.00026087, 0.00026087, 0.00026087
|
90 |
+
89, 0.72368, 0.48203, 1.1275, 0.96458, 0.91566, 0.95318, 0.68537, 1.0418, 0.50315, 1.3473, 0.00024088, 0.00024088, 0.00024088
|
91 |
+
90, 0.75847, 0.50445, 1.1423, 0.96042, 0.91368, 0.95354, 0.6875, 1.0431, 0.502, 1.3456, 0.00022089, 0.00022089, 0.00022089
|
92 |
+
91, 0.71651, 0.3934, 1.1427, 0.96363, 0.90663, 0.94836, 0.6696, 1.0555, 0.51315, 1.3555, 0.0002009, 0.0002009, 0.0002009
|
93 |
+
92, 0.67522, 0.36113, 1.1121, 0.96004, 0.90455, 0.94801, 0.67579, 1.0607, 0.52278, 1.3623, 0.00018091, 0.00018091, 0.00018091
|
94 |
+
93, 0.67981, 0.36274, 1.1086, 0.95343, 0.90512, 0.95026, 0.68512, 1.0599, 0.51072, 1.3552, 0.00016092, 0.00016092, 0.00016092
|
95 |
+
94, 0.66726, 0.35318, 1.0998, 0.948, 0.91114, 0.95, 0.68621, 1.0549, 0.51119, 1.362, 0.00014093, 0.00014093, 0.00014093
|
96 |
+
95, 0.65902, 0.34472, 1.1051, 0.96506, 0.89307, 0.95143, 0.68727, 1.0408, 0.5027, 1.3495, 0.00012094, 0.00012094, 0.00012094
|
97 |
+
96, 0.6542, 0.34101, 1.0967, 0.95465, 0.90663, 0.95092, 0.68507, 1.0418, 0.5031, 1.3514, 0.00010095, 0.00010095, 0.00010095
|
98 |
+
97, 0.64514, 0.34047, 1.086, 0.95706, 0.90512, 0.95248, 0.68645, 1.0447, 0.5041, 1.3534, 8.096e-05, 8.096e-05, 8.096e-05
|
99 |
+
98, 0.63979, 0.33715, 1.0742, 0.95381, 0.90196, 0.95255, 0.68842, 1.043, 0.50853, 1.3554, 6.097e-05, 6.097e-05, 6.097e-05
|
100 |
+
99, 0.64051, 0.3345, 1.0865, 0.9526, 0.90512, 0.9527, 0.68805, 1.0422, 0.5018, 1.3549, 4.098e-05, 4.098e-05, 4.098e-05
|
101 |
+
100, 0.6264, 0.33138, 1.0779, 0.95132, 0.90512, 0.95375, 0.69118, 1.0417, 0.50098, 1.3542, 2.099e-05, 2.099e-05, 2.099e-05
|
train/results.png
CHANGED
train/train_batch0.jpg
CHANGED
train/train_batch1.jpg
CHANGED
train/train_batch11250.jpg
ADDED
train/train_batch11251.jpg
ADDED
train/train_batch11252.jpg
ADDED
train/train_batch2.jpg
CHANGED
train/val_batch0_labels.jpg
CHANGED
train/val_batch0_pred.jpg
CHANGED
train/val_batch1_labels.jpg
CHANGED
train/val_batch1_pred.jpg
CHANGED
train/val_batch2_labels.jpg
CHANGED
train/val_batch2_pred.jpg
CHANGED
train/weights/best.pt
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ab4f2eb05949c6ae6eb4b81f356c58dce6de6a216e21ab1ab7d4a9b4a43d5310
|
3 |
+
size 6241262
|
train/weights/last.pt
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8dad8be627a8a4929df348a66d92b1b14a32971977d709ab524493f436dcc3e9
|
3 |
+
size 6241262
|