BounharAbdelaziz
commited on
Commit
•
4ccb9b9
1
Parent(s):
f8381b3
Update README.md
Browse files
README.md
CHANGED
@@ -6,36 +6,73 @@ tags:
|
|
6 |
metrics:
|
7 |
- bleu
|
8 |
model-index:
|
9 |
-
- name: Terjman-Nano
|
10 |
results: []
|
|
|
|
|
|
|
|
|
|
|
11 |
---
|
12 |
|
13 |
-
|
14 |
-
should probably proofread and complete it, then remove this comment. -->
|
15 |
|
16 |
-
|
|
|
17 |
|
18 |
-
This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-ar](https://huggingface.co/Helsinki-NLP/opus-mt-en-ar) on an unknown dataset.
|
19 |
It achieves the following results on the evaluation set:
|
20 |
- Loss: 3.2038
|
21 |
- Bleu: 10.6239
|
22 |
- Gen Len: 35.2727
|
23 |
|
24 |
-
## Model description
|
25 |
|
26 |
-
|
27 |
|
28 |
-
|
|
|
|
|
29 |
|
30 |
-
|
|
|
31 |
|
32 |
-
|
|
|
|
|
33 |
|
34 |
-
|
|
|
35 |
|
36 |
-
|
|
|
37 |
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
The following hyperparameters were used during training:
|
41 |
- learning_rate: 3e-05
|
@@ -49,7 +86,7 @@ The following hyperparameters were used during training:
|
|
49 |
- lr_scheduler_warmup_ratio: 0.03
|
50 |
- num_epochs: 40
|
51 |
|
52 |
-
|
53 |
|
54 |
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
|
55 |
|:-------------:|:-------:|:----:|:---------------:|:-------:|:-------:|
|
@@ -95,7 +132,7 @@ The following hyperparameters were used during training:
|
|
95 |
| 3.524 | 39.9287 | 5600 | 3.2038 | 10.6239 | 35.2727 |
|
96 |
|
97 |
|
98 |
-
|
99 |
|
100 |
- Transformers 4.40.2
|
101 |
- Pytorch 2.2.1+cu121
|
|
|
6 |
metrics:
|
7 |
- bleu
|
8 |
model-index:
|
9 |
+
- name: Terjman-Nano
|
10 |
results: []
|
11 |
+
datasets:
|
12 |
+
- atlasia/darija_english
|
13 |
+
language:
|
14 |
+
- ar
|
15 |
+
- en
|
16 |
---
|
17 |
|
18 |
+
# Terjman-Nano (77M params)
|
|
|
19 |
|
20 |
+
Our model is built upon the powerful Transformer architecture, leveraging state-of-the-art natural language processing techniques.
|
21 |
+
It is a fine-tuned version of [Helsinki-NLP/opus-mt-en-ar](https://huggingface.co/Helsinki-NLP/opus-mt-en-ar) on a the [darija_english](atlasia/darija_english) dataset enhanced with curated corpora ensuring high-quality and accurate translations.
|
22 |
|
|
|
23 |
It achieves the following results on the evaluation set:
|
24 |
- Loss: 3.2038
|
25 |
- Bleu: 10.6239
|
26 |
- Gen Len: 35.2727
|
27 |
|
|
|
28 |
|
29 |
+
## Usage
|
30 |
|
31 |
+
Using our model for translation is simple and straightforward.
|
32 |
+
You can integrate it into your projects or workflows via the Hugging Face Transformers library.
|
33 |
+
Here's a basic example of how to use the model in Python:
|
34 |
|
35 |
+
```python
|
36 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
37 |
|
38 |
+
# Load the tokenizer and model
|
39 |
+
tokenizer = AutoTokenizer.from_pretrained("atlasia/Terjman-Nano")
|
40 |
+
model = AutoModelForSeq2SeqLM.from_pretrained("atlasia/Terjman-Nano")
|
41 |
|
42 |
+
# Define your Moroccan Darija Arabizi text
|
43 |
+
input_text = "Your english text goes here."
|
44 |
|
45 |
+
# Tokenize the input text
|
46 |
+
input_tokens = tokenizer(input_text, return_tensors="pt", padding=True, truncation=True)
|
47 |
|
48 |
+
# Perform translation
|
49 |
+
output_tokens = model.generate(**input_tokens)
|
50 |
+
|
51 |
+
# Decode the output tokens
|
52 |
+
output_text = tokenizer.decode(output_tokens[0], skip_special_tokens=True)
|
53 |
+
|
54 |
+
print("Translation:", output_text)
|
55 |
+
```
|
56 |
+
|
57 |
+
## Example
|
58 |
+
|
59 |
+
Let's see an example of transliterating Moroccan Darija Arabizi to Arabic:
|
60 |
+
|
61 |
+
**Input**: "Hi my friend, can you tell me a joke in moroccan darija? I'd be happy to hear that from you!"
|
62 |
+
|
63 |
+
**Output**: "مرحبا يا صديقي، يمكن تقال لي نكتة فالداريا المغاربية؟ أنا سَأكُونُ سعيد بسمْاع هادشي منك!"
|
64 |
+
|
65 |
+
## Limiations
|
66 |
+
|
67 |
+
This version has some limitations mainly due to the Tokenizer.
|
68 |
+
We're currently collecting more data with the aim of continous improvements.
|
69 |
+
|
70 |
+
## Feedback
|
71 |
+
|
72 |
+
We're continuously striving to improve our model's performance and usability and we will be improving it incrementaly.
|
73 |
+
If you have any feedback, suggestions, or encounter any issues, please don't hesitate to reach out to us.
|
74 |
+
|
75 |
+
## Training hyperparameters
|
76 |
|
77 |
The following hyperparameters were used during training:
|
78 |
- learning_rate: 3e-05
|
|
|
86 |
- lr_scheduler_warmup_ratio: 0.03
|
87 |
- num_epochs: 40
|
88 |
|
89 |
+
## Training results
|
90 |
|
91 |
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
|
92 |
|:-------------:|:-------:|:----:|:---------------:|:-------:|:-------:|
|
|
|
132 |
| 3.524 | 39.9287 | 5600 | 3.2038 | 10.6239 | 35.2727 |
|
133 |
|
134 |
|
135 |
+
## Framework versions
|
136 |
|
137 |
- Transformers 4.40.2
|
138 |
- Pytorch 2.2.1+cu121
|