atasoglu commited on
Commit
0ede15b
1 Parent(s): 9c85855

Update README.md (#1)

Browse files

- Update README.md (f97211c158211c68e80a65b6acf84d98cad0acc2)

Files changed (1) hide show
  1. README.md +17 -5
README.md CHANGED
@@ -6,14 +6,22 @@ tags:
6
  - feature-extraction
7
  - sentence-similarity
8
  - transformers
9
-
 
 
 
 
 
 
10
  ---
11
 
12
  # atasoglu/xlm-roberta-base-nli-stsb-tr
13
 
14
  This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
15
 
16
- <!--- Describe your model here -->
 
 
17
 
18
  ## Usage (Sentence-Transformers)
19
 
@@ -76,10 +84,14 @@ print(sentence_embeddings)
76
 
77
  ## Evaluation Results
78
 
79
- <!--- Describe how your model was evaluated -->
80
-
81
- For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=atasoglu/xlm-roberta-base-nli-stsb-tr)
82
 
 
 
 
 
 
 
83
 
84
  ## Training
85
  The model was trained with the parameters:
 
6
  - feature-extraction
7
  - sentence-similarity
8
  - transformers
9
+ license: mit
10
+ datasets:
11
+ - nli_tr
12
+ - emrecan/stsb-mt-turkish
13
+ language:
14
+ - tr
15
+ base_model: FacebookAI/xlm-roberta-base
16
  ---
17
 
18
  # atasoglu/xlm-roberta-base-nli-stsb-tr
19
 
20
  This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
21
 
22
+ This model was adapted from [FacebookAI/xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base) and fine-tuned on these datasets:
23
+ - [nli_tr](https://huggingface.co/datasets/nli_tr)
24
+ - [emrecan/stsb-mt-turkish](https://huggingface.co/datasets/emrecan/stsb-mt-turkish)
25
 
26
  ## Usage (Sentence-Transformers)
27
 
 
84
 
85
  ## Evaluation Results
86
 
87
+ Achieved results on the [STS-b](https://huggingface.co/datasets/emrecan/stsb-mt-turkish) test split are given below:
 
 
88
 
89
+ ```txt
90
+ Cosine-Similarity : Pearson: 0.8268 Spearman: 0.8273
91
+ Manhattan-Distance: Pearson: 0.8216 Spearman: 0.8260
92
+ Euclidean-Distance: Pearson: 0.8166 Spearman: 0.8223
93
+ Dot-Product-Similarity: Pearson: 0.7982 Spearman: 0.7931
94
+ ```
95
 
96
  ## Training
97
  The model was trained with the parameters: