Update README.md (#1)
Browse files- Update README.md (eb0cb058b2d16a5122663b03666d0e5ba5683592)
README.md
CHANGED
@@ -1,3 +1,48 @@
|
|
1 |
---
|
2 |
license: apache-2.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
+
datasets:
|
4 |
+
- atasoglu/flickr8k-turkish
|
5 |
+
language:
|
6 |
+
- tr
|
7 |
+
metrics:
|
8 |
+
- rouge
|
9 |
+
library_name: transformers
|
10 |
+
pipeline_tag: image-to-text
|
11 |
+
tags:
|
12 |
+
- image-to-text
|
13 |
+
- image-captioning
|
14 |
+
base_model:
|
15 |
+
- google/vit-base-patch16-224
|
16 |
+
- ytu-ce-cosmos/turkish-gpt2
|
17 |
---
|
18 |
+
|
19 |
+
# vit-base-patch16-224-turkish-gpt2-medium
|
20 |
+
|
21 |
+
This vision encoder-decoder model utilizes the [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) as the encoder and [ytu-ce-cosmos/turkish-gpt2-medium](https://huggingface.co/ytu-ce-cosmos/turkish-gpt2-medium) as the decoder, and it has been fine-tuned on the [flickr8k-turkish](https://huggingface.co/datasets/atasoglu/flickr8k-turkish) dataset to generate image captions in Turkish.
|
22 |
+
|
23 |
+
## Usage
|
24 |
+
|
25 |
+
```py
|
26 |
+
import torch
|
27 |
+
from transformers import VisionEncoderDecoderModel, ViTImageProcessor, AutoTokenizer
|
28 |
+
from PIL import Image
|
29 |
+
|
30 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
31 |
+
model_id = "atasoglu/vit-base-patch16-224-turkish-gpt2-medium"
|
32 |
+
img = Image.open("example.jpg")
|
33 |
+
|
34 |
+
feature_extractor = ViTImageProcessor.from_pretrained(model_id)
|
35 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
36 |
+
model = VisionEncoderDecoderModel.from_pretrained(model_id)
|
37 |
+
model.to(device)
|
38 |
+
|
39 |
+
features = feature_extractor(images=[img], return_tensors="pt")
|
40 |
+
pixel_values = features.pixel_values.to(device)
|
41 |
+
|
42 |
+
generated_captions = tokenizer.batch_decode(
|
43 |
+
model.generate(pixel_values, max_new_tokens=20),
|
44 |
+
skip_special_tokens=True,
|
45 |
+
)
|
46 |
+
|
47 |
+
print(generated_captions)
|
48 |
+
```
|