Ahmet
commited on
Commit
·
e8f6c47
1
Parent(s):
e2f69e8
upload files
Browse files- 1_Pooling/config.json +7 -0
- README.md +137 -0
- config.json +25 -0
- config_sentence_transformers.json +7 -0
- modules.json +14 -0
- pytorch_model.bin +3 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +7 -0
- tokenizer.json +0 -0
- tokenizer_config.json +17 -0
- training.py +210 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 512,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false
|
7 |
+
}
|
README.md
ADDED
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- tr
|
4 |
+
pipeline_tag: sentence-similarity
|
5 |
+
tags:
|
6 |
+
- sentence-transformers
|
7 |
+
- feature-extraction
|
8 |
+
- sentence-similarity
|
9 |
+
- transformers
|
10 |
+
datasets:
|
11 |
+
- nli_tr
|
12 |
+
- emrecan/stsb-mt-turkish
|
13 |
+
license: mit
|
14 |
+
---
|
15 |
+
|
16 |
+
# turkish-small-bert-uncased-mean-nli-stsb-tr
|
17 |
+
|
18 |
+
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 512 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
19 |
+
|
20 |
+
This model was adapted from [ytu-ce-cosmos/turkish-small-bert-uncased](https://huggingface.co/ytu-ce-cosmos/turkish-small-bert-uncased) and fine-tuned on these datasets:
|
21 |
+
- [nli_tr](https://huggingface.co/datasets/nli_tr)
|
22 |
+
- [emrecan/stsb-mt-turkish](https://huggingface.co/datasets/emrecan/stsb-mt-turkish)
|
23 |
+
|
24 |
+
## Usage (Sentence-Transformers)
|
25 |
+
|
26 |
+
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
|
27 |
+
|
28 |
+
```
|
29 |
+
pip install -U sentence-transformers
|
30 |
+
```
|
31 |
+
|
32 |
+
Then you can use the model like this:
|
33 |
+
|
34 |
+
```python
|
35 |
+
from sentence_transformers import SentenceTransformer
|
36 |
+
sentences = ["Bu örnek bir cümle", "Her cümle dönüştürülür"]
|
37 |
+
|
38 |
+
model = SentenceTransformer('atasoglu/turkish-small-bert-uncased-mean-nli-stsb-tr')
|
39 |
+
embeddings = model.encode(sentences)
|
40 |
+
print(embeddings)
|
41 |
+
```
|
42 |
+
|
43 |
+
|
44 |
+
|
45 |
+
## Usage (HuggingFace Transformers)
|
46 |
+
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
|
47 |
+
|
48 |
+
```python
|
49 |
+
from transformers import AutoTokenizer, AutoModel
|
50 |
+
import torch
|
51 |
+
|
52 |
+
|
53 |
+
#Mean Pooling - Take attention mask into account for correct averaging
|
54 |
+
def mean_pooling(model_output, attention_mask):
|
55 |
+
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
|
56 |
+
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
57 |
+
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
58 |
+
|
59 |
+
|
60 |
+
# Sentences we want sentence embeddings for
|
61 |
+
sentences = ["Bu örnek bir cümle", "Her cümle dönüştürülür"]
|
62 |
+
|
63 |
+
# Load model from HuggingFace Hub
|
64 |
+
tokenizer = AutoTokenizer.from_pretrained('atasoglu/turkish-small-bert-uncased-mean-nli-stsb-tr')
|
65 |
+
model = AutoModel.from_pretrained('atasoglu/turkish-small-bert-uncased-mean-nli-stsb-tr')
|
66 |
+
|
67 |
+
# Tokenize sentences
|
68 |
+
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
69 |
+
|
70 |
+
# Compute token embeddings
|
71 |
+
with torch.no_grad():
|
72 |
+
model_output = model(**encoded_input)
|
73 |
+
|
74 |
+
# Perform pooling. In this case, mean pooling.
|
75 |
+
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
|
76 |
+
|
77 |
+
print("Sentence embeddings:")
|
78 |
+
print(sentence_embeddings)
|
79 |
+
```
|
80 |
+
|
81 |
+
|
82 |
+
|
83 |
+
## Evaluation Results
|
84 |
+
|
85 |
+
Achieved results on the [STS-b](https://huggingface.co/datasets/emrecan/stsb-mt-turkish) test split are given below:
|
86 |
+
|
87 |
+
```txt
|
88 |
+
Cosine-Similarity : Pearson: 0.7387 Spearman: 0.7244
|
89 |
+
Manhattan-Distance: Pearson: 0.7118 Spearman: 0.7156
|
90 |
+
Euclidean-Distance: Pearson: 0.7119 Spearman: 0.7155
|
91 |
+
Dot-Product-Similarity: Pearson: 0.7164 Spearman: 0.7081
|
92 |
+
```
|
93 |
+
|
94 |
+
## Training
|
95 |
+
The model was trained with the parameters:
|
96 |
+
|
97 |
+
**DataLoader**:
|
98 |
+
|
99 |
+
`torch.utils.data.dataloader.DataLoader` of length 90 with parameters:
|
100 |
+
```
|
101 |
+
{'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
|
102 |
+
```
|
103 |
+
|
104 |
+
**Loss**:
|
105 |
+
|
106 |
+
`sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss`
|
107 |
+
|
108 |
+
Parameters of the fit()-Method:
|
109 |
+
```
|
110 |
+
{
|
111 |
+
"epochs": 5,
|
112 |
+
"evaluation_steps": 45,
|
113 |
+
"evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
|
114 |
+
"max_grad_norm": 1,
|
115 |
+
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
|
116 |
+
"optimizer_params": {
|
117 |
+
"lr": 2e-05
|
118 |
+
},
|
119 |
+
"scheduler": "WarmupLinear",
|
120 |
+
"steps_per_epoch": null,
|
121 |
+
"warmup_steps": 45,
|
122 |
+
"weight_decay": 0.01
|
123 |
+
}
|
124 |
+
```
|
125 |
+
|
126 |
+
|
127 |
+
## Full Model Architecture
|
128 |
+
```
|
129 |
+
SentenceTransformer(
|
130 |
+
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
|
131 |
+
(1): Pooling({'word_embedding_dimension': 512, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
|
132 |
+
)
|
133 |
+
```
|
134 |
+
|
135 |
+
## Citing & Authors
|
136 |
+
|
137 |
+
<!--- Describe where people can find more information -->
|
config.json
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "e5_b64_turkish_small_bert_uncased-mean-nli/",
|
3 |
+
"architectures": [
|
4 |
+
"BertModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"hidden_act": "gelu",
|
9 |
+
"hidden_dropout_prob": 0.1,
|
10 |
+
"hidden_size": 512,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"intermediate_size": 2048,
|
13 |
+
"layer_norm_eps": 1e-12,
|
14 |
+
"max_position_embeddings": 512,
|
15 |
+
"model_type": "bert",
|
16 |
+
"num_attention_heads": 8,
|
17 |
+
"num_hidden_layers": 4,
|
18 |
+
"pad_token_id": 0,
|
19 |
+
"position_embedding_type": "absolute",
|
20 |
+
"torch_dtype": "float32",
|
21 |
+
"transformers_version": "4.28.0",
|
22 |
+
"type_vocab_size": 2,
|
23 |
+
"use_cache": true,
|
24 |
+
"vocab_size": 32000
|
25 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "2.2.2",
|
4 |
+
"transformers": "4.28.0",
|
5 |
+
"pytorch": "2.1.0+cu121"
|
6 |
+
}
|
7 |
+
}
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f74195b8a9669f7049a5ebf54d48133741be60ce00ceb478e8a08728bb735530
|
3 |
+
size 118109958
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 256,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": "[CLS]",
|
3 |
+
"mask_token": "[MASK]",
|
4 |
+
"pad_token": "[PAD]",
|
5 |
+
"sep_token": "[SEP]",
|
6 |
+
"unk_token": "[UNK]"
|
7 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"clean_up_tokenization_spaces": true,
|
3 |
+
"cls_token": "[CLS]",
|
4 |
+
"do_basic_tokenize": true,
|
5 |
+
"do_lower_case": false,
|
6 |
+
"mask_token": "[MASK]",
|
7 |
+
"max_len": 512,
|
8 |
+
"model_max_length": 512,
|
9 |
+
"never_split": null,
|
10 |
+
"pad_token": "[PAD]",
|
11 |
+
"sep_token": "[SEP]",
|
12 |
+
"strip_accents": null,
|
13 |
+
"tokenize_chinese_chars": true,
|
14 |
+
"tokenizer_class": "BertTokenizer",
|
15 |
+
"truncation": true,
|
16 |
+
"unk_token": "[UNK]"
|
17 |
+
}
|
training.py
ADDED
@@ -0,0 +1,210 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# # -*- coding: utf-8 -*-
|
2 |
+
# """turkish-sentence-embedding.ipynb
|
3 |
+
|
4 |
+
# Automatically generated by Colaboratory.
|
5 |
+
|
6 |
+
# Original file is located at
|
7 |
+
# https://colab.research.google.com/drive/1jvsd0ZRXCjsd5-lH6EI7GaEYIjHN-6d8
|
8 |
+
# """
|
9 |
+
|
10 |
+
# import sys
|
11 |
+
# import torch
|
12 |
+
# if not torch.cuda.is_available():
|
13 |
+
# print("CUDA NOT FOUND!")
|
14 |
+
# sys.exit(0)
|
15 |
+
|
16 |
+
from datasets import load_dataset
|
17 |
+
# ds_multinli = load_dataset("nli_tr", "multinli_tr")
|
18 |
+
# ds_snli = load_dataset("nli_tr", "snli_tr")
|
19 |
+
ds_stsb = load_dataset("emrecan/stsb-mt-turkish")
|
20 |
+
|
21 |
+
# """# ALLNLI Training"""
|
22 |
+
|
23 |
+
# import math
|
24 |
+
# from sentence_transformers import models, losses, datasets
|
25 |
+
from sentence_transformers import LoggingHandler, SentenceTransformer, util, InputExample
|
26 |
+
# from sentence_transformers.evaluation import EmbeddingSimilarityEvaluator
|
27 |
+
import logging
|
28 |
+
# from datetime import datetime
|
29 |
+
# import sys
|
30 |
+
# import os
|
31 |
+
# import gzip
|
32 |
+
# import csv
|
33 |
+
# import random
|
34 |
+
|
35 |
+
# #### Just some code to print debug information to stdout
|
36 |
+
logging.basicConfig(
|
37 |
+
format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO, handlers=[LoggingHandler()]
|
38 |
+
)
|
39 |
+
# #### /print debug information to stdout
|
40 |
+
|
41 |
+
# model_name = "ytu-ce-cosmos/turkish-small-bert-uncased"
|
42 |
+
train_batch_size = 64 # The larger you select this, the better the results (usually). But it requires more GPU memory
|
43 |
+
max_seq_length = 75
|
44 |
+
num_epochs = 5
|
45 |
+
|
46 |
+
# # Save path of the model
|
47 |
+
model_save_path = "e5_b64_turkish_small_bert_uncased-mean-nli"
|
48 |
+
|
49 |
+
# # Here we define our SentenceTransformer model
|
50 |
+
# word_embedding_model = models.Transformer(model_name, max_seq_length=max_seq_length).cuda()
|
51 |
+
# pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension(), pooling_mode="mean")
|
52 |
+
# model = SentenceTransformer(modules=[word_embedding_model, pooling_model])
|
53 |
+
|
54 |
+
# def add_to_samples(sent1, sent2, label):
|
55 |
+
# if sent1 not in train_data:
|
56 |
+
# train_data[sent1] = {"contradiction": set(), "entailment": set(), "neutral": set()}
|
57 |
+
# train_data[sent1][label].add(sent2)
|
58 |
+
|
59 |
+
# """
|
60 |
+
# 0: neutral
|
61 |
+
# 1: entailment
|
62 |
+
# 2: contradiction
|
63 |
+
# """
|
64 |
+
# id_to_label = {0: "entailment", 1: "neutral", 2: "contradiction"}
|
65 |
+
|
66 |
+
# train_data = {}
|
67 |
+
|
68 |
+
# nan_count = 0
|
69 |
+
# ds_allnli_train = [ds_multinli["train"], ds_snli["train"]]
|
70 |
+
# for ds in ds_allnli_train:
|
71 |
+
# for row in ds:
|
72 |
+
# sent1 = row["premise"].strip()
|
73 |
+
# sent2 = row["hypothesis"].strip()
|
74 |
+
# label = row["label"]
|
75 |
+
# label = id_to_label.get(label)
|
76 |
+
# if label:
|
77 |
+
# add_to_samples(sent1, sent2, label)
|
78 |
+
# add_to_samples(sent2, sent1, label) # Also add the opposite
|
79 |
+
# else:
|
80 |
+
# nan_count += 1
|
81 |
+
|
82 |
+
# print("total Nan:", nan_count)
|
83 |
+
|
84 |
+
|
85 |
+
# train_samples = []
|
86 |
+
# for sent1, others in train_data.items():
|
87 |
+
# if len(others["entailment"]) > 0 and len(others["contradiction"]) > 0:
|
88 |
+
# train_samples.append(
|
89 |
+
# InputExample(
|
90 |
+
# texts=[sent1, random.choice(list(others["entailment"])), random.choice(list(others["contradiction"]))]
|
91 |
+
# )
|
92 |
+
# )
|
93 |
+
# train_samples.append(
|
94 |
+
# InputExample(
|
95 |
+
# texts=[random.choice(list(others["entailment"])), sent1, random.choice(list(others["contradiction"]))]
|
96 |
+
# )
|
97 |
+
# )
|
98 |
+
|
99 |
+
# logging.info("Train samples: {}".format(len(train_samples)))
|
100 |
+
|
101 |
+
# train_dataloader = datasets.NoDuplicatesDataLoader(train_samples, batch_size=train_batch_size)
|
102 |
+
|
103 |
+
|
104 |
+
# # Our training loss
|
105 |
+
# train_loss = losses.MultipleNegativesRankingLoss(model)
|
106 |
+
|
107 |
+
# logging.info("Read STSbenchmark dev dataset")
|
108 |
+
# dev_samples = []
|
109 |
+
# for row in ds_stsb["validation"]:
|
110 |
+
# score = float(row["score"]) / 5.0 # Normalize score to range 0 ... 1
|
111 |
+
# dev_samples.append(InputExample(texts=[row["sentence1"], row["sentence2"]], label=score))
|
112 |
+
|
113 |
+
# dev_evaluator = EmbeddingSimilarityEvaluator.from_input_examples(
|
114 |
+
# dev_samples, batch_size=train_batch_size, name="sts-dev"
|
115 |
+
# )
|
116 |
+
|
117 |
+
# test_samples = []
|
118 |
+
# for row in ds_stsb["test"]:
|
119 |
+
# score = float(row["score"]) / 5.0 # Normalize score to range 0 ... 1
|
120 |
+
# test_samples.append(InputExample(texts=[row["sentence1"], row["sentence2"]], label=score))
|
121 |
+
|
122 |
+
|
123 |
+
# test_evaluator = EmbeddingSimilarityEvaluator.from_input_examples(
|
124 |
+
# test_samples, batch_size=train_batch_size, name="sts-test"
|
125 |
+
# )
|
126 |
+
|
127 |
+
# # Configure the training
|
128 |
+
# warmup_steps = math.ceil(len(train_dataloader) * num_epochs * 0.1) # 10% of train data for warm-up
|
129 |
+
# logging.info("Warmup-steps: {}".format(warmup_steps))
|
130 |
+
|
131 |
+
# print(test_evaluator(model))
|
132 |
+
|
133 |
+
# model.fit(
|
134 |
+
# train_objectives=[(train_dataloader, train_loss)],
|
135 |
+
# evaluator=dev_evaluator,
|
136 |
+
# epochs=num_epochs,
|
137 |
+
# evaluation_steps=int(len(train_dataloader) * 0.1),
|
138 |
+
# warmup_steps=warmup_steps,
|
139 |
+
# output_path=model_save_path,
|
140 |
+
# use_amp=False, # Set to True, if your GPU supports FP16 operations
|
141 |
+
# )
|
142 |
+
|
143 |
+
# ft_model = SentenceTransformer(model_save_path)
|
144 |
+
# print(test_evaluator(ft_model, output_path=model_save_path))
|
145 |
+
|
146 |
+
from torch.utils.data import DataLoader
|
147 |
+
import math
|
148 |
+
from sentence_transformers import SentenceTransformer, LoggingHandler, losses, util, InputExample
|
149 |
+
from sentence_transformers.evaluation import EmbeddingSimilarityEvaluator
|
150 |
+
import logging
|
151 |
+
from datetime import datetime
|
152 |
+
import os
|
153 |
+
import gzip
|
154 |
+
import csv
|
155 |
+
|
156 |
+
#### /print debug information to stdout
|
157 |
+
|
158 |
+
|
159 |
+
# Read the dataset
|
160 |
+
|
161 |
+
# Load a pre-trained sentence transformer model
|
162 |
+
model = SentenceTransformer(model_save_path, device="cuda")
|
163 |
+
|
164 |
+
model_save_path = "e5_b64_turkish_small_bert_uncased-mean-nli-stsb"
|
165 |
+
|
166 |
+
# model_save_path = (
|
167 |
+
# "output/training_stsbenchmark_continue_training-" + model_name.replace("/", "-") + "-" + datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
|
168 |
+
# )
|
169 |
+
# Convert the dataset to a DataLoader ready for training
|
170 |
+
logging.info("Read STSbenchmark train dataset")
|
171 |
+
|
172 |
+
def generate_samples(split):
|
173 |
+
samples = []
|
174 |
+
for row in ds_stsb[split]:
|
175 |
+
score = float(row["score"]) / 5.0 # Normalize score to range 0 ... 1
|
176 |
+
samples.append(InputExample(texts=[row["sentence1"], row["sentence2"]], label=score))
|
177 |
+
return samples
|
178 |
+
|
179 |
+
train_samples = generate_samples("train")
|
180 |
+
dev_samples = generate_samples("validation")
|
181 |
+
test_samples = generate_samples("test")
|
182 |
+
|
183 |
+
train_dataloader = DataLoader(train_samples, shuffle=True, batch_size=train_batch_size)
|
184 |
+
train_loss = losses.CosineSimilarityLoss(model=model)
|
185 |
+
|
186 |
+
|
187 |
+
# Development set: Measure correlation between cosine score and gold labels
|
188 |
+
logging.info("Read STSbenchmark dev dataset")
|
189 |
+
evaluator = EmbeddingSimilarityEvaluator.from_input_examples(dev_samples, name="sts-dev")
|
190 |
+
|
191 |
+
|
192 |
+
# Configure the training. We skip evaluation in this example
|
193 |
+
warmup_steps = math.ceil(len(train_dataloader) * num_epochs * 0.1) # 10% of train data for warm-up
|
194 |
+
logging.info("Warmup-steps: {}".format(warmup_steps))
|
195 |
+
|
196 |
+
test_evaluator = EmbeddingSimilarityEvaluator.from_input_examples(test_samples, name="sts-test")
|
197 |
+
print(test_evaluator(model))
|
198 |
+
|
199 |
+
model.fit(
|
200 |
+
train_objectives=[(train_dataloader, train_loss)],
|
201 |
+
evaluator=evaluator,
|
202 |
+
epochs=num_epochs,
|
203 |
+
evaluation_steps=int(len(train_dataloader) * 0.5),
|
204 |
+
# evaluation_steps=1000,
|
205 |
+
warmup_steps=warmup_steps,
|
206 |
+
output_path=model_save_path,
|
207 |
+
)
|
208 |
+
|
209 |
+
ft_model = SentenceTransformer(model_save_path)
|
210 |
+
print(test_evaluator(ft_model, output_path=model_save_path))
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|