update README.md
Browse files
README.md
CHANGED
@@ -33,7 +33,7 @@ Then you can use the model like this:
|
|
33 |
|
34 |
```python
|
35 |
from sentence_transformers import SentenceTransformer
|
36 |
-
sentences = ["
|
37 |
|
38 |
model = SentenceTransformer('atasoglu/turkish-mini-bert-uncased-mean-nli-stsb-tr')
|
39 |
embeddings = model.encode(sentences)
|
@@ -58,7 +58,7 @@ def mean_pooling(model_output, attention_mask):
|
|
58 |
|
59 |
|
60 |
# Sentences we want sentence embeddings for
|
61 |
-
sentences = [
|
62 |
|
63 |
# Load model from HuggingFace Hub
|
64 |
tokenizer = AutoTokenizer.from_pretrained('atasoglu/turkish-mini-bert-uncased-mean-nli-stsb-tr')
|
|
|
33 |
|
34 |
```python
|
35 |
from sentence_transformers import SentenceTransformer
|
36 |
+
sentences = ["Bu örnek bir cümle", "Her cümle dönüştürülür"]
|
37 |
|
38 |
model = SentenceTransformer('atasoglu/turkish-mini-bert-uncased-mean-nli-stsb-tr')
|
39 |
embeddings = model.encode(sentences)
|
|
|
58 |
|
59 |
|
60 |
# Sentences we want sentence embeddings for
|
61 |
+
sentences = ["Bu örnek bir cümle", "Her cümle dönüştürülür"]
|
62 |
|
63 |
# Load model from HuggingFace Hub
|
64 |
tokenizer = AutoTokenizer.from_pretrained('atasoglu/turkish-mini-bert-uncased-mean-nli-stsb-tr')
|