aswin1906 commited on
Commit
2a49d55
1 Parent(s): 9c8845a

Create ReadMe.md

Browse files
Files changed (1) hide show
  1. README.md +72 -0
README.md ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ datasets:
4
+ - aswin1906/llama2-sql-instruct-2k
5
+ language:
6
+ - en
7
+ pipeline_tag: question-answering
8
+ tags:
9
+ - code
10
+ ---
11
+
12
+
13
+ # Fine-Tune Llama 2 Model Using qLORA for Custom SQL Dataset
14
+ Instruction fine-tuning has become extremely popular since the (accidental) release of LLaMA.
15
+ The size of these models and the peculiarities of training them on instructions and answers introduce more complexity and often require parameter-efficient learning techniques such as QLoRA.
16
+ Refer Dataset at **aswin1906/llama2-sql-instruct-2k**
17
+ ## Model Background
18
+
19
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/65059e484a8839a8bd5f67cb/tkHJ3Tuh7Jim4jKg6_h_m.png)
20
+
21
+ ## Model Inference
22
+ Refer the below code to apply model inference
23
+ ```
24
+ from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
25
+ import torch, re
26
+ from rich import print
27
+
28
+ class Training:
29
+ def __init__(self) -> None:
30
+ self.model_name= "meta-llama/Llama-2-7b-chat-hf"
31
+ self.dataset= "aswin1906/llama2-sql-instruct-2k"
32
+ self.model_path= "aswin1906/llama-7b-sql-2k"
33
+ self.instruction= 'You are given the following SQL table structure described by CREATE TABLE statement: CREATE TABLE "l" ( "player" text, "no" text, "nationality" text, "position" text, "years_in_toronto" text, "school_club_team" text ); Write an SQL query that provides the solution to the following question: '
34
+ self.model = AutoModelForCausalLM.from_pretrained(
35
+ self.model_path,
36
+ load_in_8bit=False,
37
+ torch_dtype=torch.float16,
38
+ device_map="auto"
39
+ )
40
+ self.tokenizer = AutoTokenizer.from_pretrained(self.model_path)
41
+
42
+ def inference(self, prompt):
43
+ """
44
+ Prompting started here
45
+ """
46
+ # Run text generation pipeline with our next model
47
+ pipe = pipeline(task="text-generation", model=self.model, tokenizer=self.tokenizer, max_length=200)
48
+ result = pipe(f'<s>[INST] {self.instruction}"{prompt}". [/INST]')
49
+ response= result[0]['generated_text'].split('[/INST]')[-1]
50
+ return response
51
+
52
+ train= Training()
53
+ instruction= re.split(';|by CREATE', train.instruction)
54
+ print(f"[purple4] ------------------------------Instruction--------------------------")
55
+ print(f"[medium_spring_green] {instruction[0]}")
56
+ print(f"[bold green]CREATE{instruction[1]};")
57
+ print(f"[medium_spring_green] {instruction[2]}")
58
+ print(f"[purple4] -------------------------------------------------------------------")
59
+ while True:
60
+ # prompt = 'What position does the player who played for butler cc (ks) play?'
61
+ print("[bold blue]#Human: [bold green]", end="")
62
+ user = input()
63
+ print('[bold blue]#Response: [bold green]', train.inference(user))
64
+
65
+ ```
66
+
67
+ Contact **aswin1906@gmail.com** for model training code
68
+
69
+ ## output
70
+
71
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/65059e484a8839a8bd5f67cb/ny_K7xBp53FILIhJkieX5.png)
72
+