Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v2.zip +3 -0
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v2/data +95 -0
- a2c-PandaReachDense-v2/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v2/policy.pth +3 -0
- a2c-PandaReachDense-v2/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v2/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v2
|
16 |
+
type: PandaReachDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -2.15 +/- 0.31
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v2**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6f2c7154e0247c7ba06f24fcd7660693a736158551c3213fb28c40a9db4e3a6d
|
3 |
+
size 108046
|
a2c-PandaReachDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0
|
a2c-PandaReachDense-v2/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f5fc7a661f0>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f5fc7a65380>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"num_timesteps": 1000000,
|
23 |
+
"_total_timesteps": 1000000,
|
24 |
+
"_num_timesteps_at_start": 0,
|
25 |
+
"seed": null,
|
26 |
+
"action_noise": null,
|
27 |
+
"start_time": 1681481052325756418,
|
28 |
+
"learning_rate": 0.0007,
|
29 |
+
"tensorboard_log": null,
|
30 |
+
"lr_schedule": {
|
31 |
+
":type:": "<class 'function'>",
|
32 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
33 |
+
},
|
34 |
+
"_last_obs": {
|
35 |
+
":type:": "<class 'collections.OrderedDict'>",
|
36 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAABPDDPjg/gTtXHAk/BPDDPjg/gTtXHAk/BPDDPjg/gTtXHAk/BPDDPjg/gTtXHAk/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA/CyqPxXnnz+l5Qk/EokDvoENxL0oX0y+Pz8LP2DCtz83kjE9Z9OgPxaAu79j+6u/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAE8MM+OD+BO1ccCT8zOc+7u8bfOmSI3rsE8MM+OD+BO1ccCT8zOc+7u8bfOmSI3rsE8MM+OD+BO1ccCT8zOc+7u8bfOmSI3rsE8MM+OD+BO1ccCT8zOc+7u8bfOmSI3ruUaA5LBEsGhpRoEnSUUpR1Lg==",
|
37 |
+
"achieved_goal": "[[0.38269055 0.0039443 0.5355887 ]\n [0.38269055 0.0039443 0.5355887 ]\n [0.38269055 0.0039443 0.5355887 ]\n [0.38269055 0.0039443 0.5355887 ]]",
|
38 |
+
"desired_goal": "[[ 1.3294978 1.2492396 0.53866035]\n [-0.12845257 -0.09572888 -0.19958174]\n [ 0.5439338 1.4356194 0.04335233]\n [ 1.2564515 -1.4648464 -1.3436092 ]]",
|
39 |
+
"observation": "[[ 0.38269055 0.0039443 0.5355887 -0.00632396 0.00170728 -0.00679116]\n [ 0.38269055 0.0039443 0.5355887 -0.00632396 0.00170728 -0.00679116]\n [ 0.38269055 0.0039443 0.5355887 -0.00632396 0.00170728 -0.00679116]\n [ 0.38269055 0.0039443 0.5355887 -0.00632396 0.00170728 -0.00679116]]"
|
40 |
+
},
|
41 |
+
"_last_episode_starts": {
|
42 |
+
":type:": "<class 'numpy.ndarray'>",
|
43 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
44 |
+
},
|
45 |
+
"_last_original_obs": {
|
46 |
+
":type:": "<class 'collections.OrderedDict'>",
|
47 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAnUGCPF3klL1HIx0+rnuCuy2O6z1W1Zc+yfAKvidk0j228GM+k7qxPELAQz315/Q8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
48 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
49 |
+
"desired_goal": "[[ 0.01590043 -0.07270119 0.15345488]\n [-0.00398203 0.11501727 0.2965495 ]\n [-0.13568415 0.10273009 0.22259793]\n [ 0.02169541 0.04779077 0.02989576]]",
|
50 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
51 |
+
},
|
52 |
+
"_episode_num": 0,
|
53 |
+
"use_sde": false,
|
54 |
+
"sde_sample_freq": -1,
|
55 |
+
"_current_progress_remaining": 0.0,
|
56 |
+
"_stats_window_size": 100,
|
57 |
+
"ep_info_buffer": {
|
58 |
+
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIoIzxYfZy/7+UhpRSlIwBbJRLMowBdJRHQKXU97+kxh51fZQoaAZoCWgPQwgIc7uX+6T7v5SGlFKUaBVLMmgWR0Cl1HxW1c+rdX2UKGgGaAloD0MI3gAz38EP/b+UhpRSlGgVSzJoFkdApdQaIk7fYXV9lChoBmgJaA9DCGSsNv+vWgXAlIaUUpRoFUsyaBZHQKXTrOoHcDd1fZQoaAZoCWgPQwhmguFcw2wAwJSGlFKUaBVLMmgWR0Cl1mQyRB/rdX2UKGgGaAloD0MI4xx1dFxN+r+UhpRSlGgVSzJoFkdApdXpCBwuNHV9lChoBmgJaA9DCHrjpDDvkQHAlIaUUpRoFUsyaBZHQKXVhs2NvO11fZQoaAZoCWgPQwi9xcN7DuwAwJSGlFKUaBVLMmgWR0Cl1RmyPdVOdX2UKGgGaAloD0MIhslUwajEAcCUhpRSlGgVSzJoFkdApdfbKgZjx3V9lChoBmgJaA9DCM43onvWFQHAlIaUUpRoFUsyaBZHQKXXX88cMmZ1fZQoaAZoCWgPQwhYN94dGWsBwJSGlFKUaBVLMmgWR0Cl1v3/5tWNdX2UKGgGaAloD0MIzQGCOXq89r+UhpRSlGgVSzJoFkdApdaQ4ffXPXV9lChoBmgJaA9DCAH20akr3/+/lIaUUpRoFUsyaBZHQKXZT27nPmh1fZQoaAZoCWgPQwjqswOuK+YJwJSGlFKUaBVLMmgWR0Cl2NP24/eMdX2UKGgGaAloD0MIfZQRF4DGDMCUhpRSlGgVSzJoFkdApdhx5iVjZ3V9lChoBmgJaA9DCNuJkpBI2wLAlIaUUpRoFUsyaBZHQKXYBJvHcUN1fZQoaAZoCWgPQwiWd9UD5qEHwJSGlFKUaBVLMmgWR0Cl2sFf7aZhdX2UKGgGaAloD0MI2c9iKZLv/L+UhpRSlGgVSzJoFkdApdpGLcbiqHV9lChoBmgJaA9DCGK85lWd1QXAlIaUUpRoFUsyaBZHQKXZ5DtPYWd1fZQoaAZoCWgPQwgdrP9zmE8AwJSGlFKUaBVLMmgWR0Cl2XcQiA2AdX2UKGgGaAloD0MI/mDgufcwAsCUhpRSlGgVSzJoFkdApdxH0TURWnV9lChoBmgJaA9DCJLM6h1uh/i/lIaUUpRoFUsyaBZHQKXbzGEwnIB1fZQoaAZoCWgPQwigF+5cGCkNwJSGlFKUaBVLMmgWR0Cl22o371qWdX2UKGgGaAloD0MIOgMjL2siB8CUhpRSlGgVSzJoFkdApdr9IGyHEnV9lChoBmgJaA9DCOQR3EjZ4gjAlIaUUpRoFUsyaBZHQKXdWhQm/nJ1fZQoaAZoCWgPQwj430p2bOQEwJSGlFKUaBVLMmgWR0Cl3N4tg8bJdX2UKGgGaAloD0MIRRFSt7MvBsCUhpRSlGgVSzJoFkdApdx7hR64UnV9lChoBmgJaA9DCJiFdk6zwATAlIaUUpRoFUsyaBZHQKXcDe67NB51fZQoaAZoCWgPQwgFw7mGGVr8v5SGlFKUaBVLMmgWR0Cl3jtFjNILdX2UKGgGaAloD0MI0qxsH/KWAMCUhpRSlGgVSzJoFkdApd2/RmbsnnV9lChoBmgJaA9DCOMYyR6hJvu/lIaUUpRoFUsyaBZHQKXdXLNfPX11fZQoaAZoCWgPQwhS8uocAzIBwJSGlFKUaBVLMmgWR0Cl3O7YTTOPdX2UKGgGaAloD0MIh272B8rNBMCUhpRSlGgVSzJoFkdApd8cM/hVEXV9lChoBmgJaA9DCOrMPSR8jwXAlIaUUpRoFUsyaBZHQKXeoDaoMrp1fZQoaAZoCWgPQwjBN02fHbD7v5SGlFKUaBVLMmgWR0Cl3j2T5ftydX2UKGgGaAloD0MI5+CZ0CQxBMCUhpRSlGgVSzJoFkdApd3P2bobGXV9lChoBmgJaA9DCNMwfERMSQXAlIaUUpRoFUsyaBZHQKXgAnCO3lV1fZQoaAZoCWgPQwgTglX18vv9v5SGlFKUaBVLMmgWR0Cl34aBAfMfdX2UKGgGaAloD0MIBCDu6lWk/r+UhpRSlGgVSzJoFkdApd8jyz5XVHV9lChoBmgJaA9DCKLrwg/OJwPAlIaUUpRoFUsyaBZHQKXetjuKGcp1fZQoaAZoCWgPQwgWS5F8JTADwJSGlFKUaBVLMmgWR0Cl4NwHiWE9dX2UKGgGaAloD0MIvJF55A8GBsCUhpRSlGgVSzJoFkdApeBgEW69TXV9lChoBmgJaA9DCNuizAaZpP2/lIaUUpRoFUsyaBZHQKXf/V3ljmV1fZQoaAZoCWgPQwhC7bd2osQGwJSGlFKUaBVLMmgWR0Cl34+aa1CxdX2UKGgGaAloD0MIVaUtrvH5BMCUhpRSlGgVSzJoFkdApeG+Wa+ev3V9lChoBmgJaA9DCHXN5JttzgDAlIaUUpRoFUsyaBZHQKXhQoRZlnR1fZQoaAZoCWgPQwimtz8XDXkFwJSGlFKUaBVLMmgWR0Cl4N/+0gKXdX2UKGgGaAloD0MIniPyXUodBMCUhpRSlGgVSzJoFkdApeByKUFB6nV9lChoBmgJaA9DCMqJdhVSfgHAlIaUUpRoFUsyaBZHQKXinCMxXXB1fZQoaAZoCWgPQwguH0lJD0MJwJSGlFKUaBVLMmgWR0Cl4iAfU4JedX2UKGgGaAloD0MI/wkuVtSAAsCUhpRSlGgVSzJoFkdApeG9g0CRwXV9lChoBmgJaA9DCBUaiGUzBwvAlIaUUpRoFUsyaBZHQKXhT7XxvvV1fZQoaAZoCWgPQwiqYb8n1qn7v5SGlFKUaBVLMmgWR0Cl43dcbBGhdX2UKGgGaAloD0MIuW5Kea3EAsCUhpRSlGgVSzJoFkdApeL7Ta0x/XV9lChoBmgJaA9DCI84ZAPpogrAlIaUUpRoFUsyaBZHQKXimKUmlZZ1fZQoaAZoCWgPQwg2Ia0x6CQJwJSGlFKUaBVLMmgWR0Cl4irPUrkKdX2UKGgGaAloD0MIKelhaHUyBMCUhpRSlGgVSzJoFkdApeRYqTbFj3V9lChoBmgJaA9DCIqT+x2KwhDAlIaUUpRoFUsyaBZHQKXj3JnQID51fZQoaAZoCWgPQwhgkzXqIXoGwJSGlFKUaBVLMmgWR0Cl43nSF49pdX2UKGgGaAloD0MIVvXyO01GBsCUhpRSlGgVSzJoFkdApeMMAFPi1nV9lChoBmgJaA9DCAZINIEiNgHAlIaUUpRoFUsyaBZHQKXlPX4CZF51fZQoaAZoCWgPQwhblq/L8B8AwJSGlFKUaBVLMmgWR0Cl5MGG/N7jdX2UKGgGaAloD0MIZavLKQGx/L+UhpRSlGgVSzJoFkdApeRfCTEBKnV9lChoBmgJaA9DCGObVDTW/gDAlIaUUpRoFUsyaBZHQKXj8THsC1Z1fZQoaAZoCWgPQwjZJ4BiZIn/v5SGlFKUaBVLMmgWR0Cl5i3oC+10dX2UKGgGaAloD0MIz04GR8lLA8CUhpRSlGgVSzJoFkdApeWyFK02L3V9lChoBmgJaA9DCB8tzhjmhAPAlIaUUpRoFUsyaBZHQKXlT3evZAZ1fZQoaAZoCWgPQwiLUdfa+zQPwJSGlFKUaBVLMmgWR0Cl5OHpKSPmdX2UKGgGaAloD0MIC+9yEd8pAcCUhpRSlGgVSzJoFkdApecjAk9lmXV9lChoBmgJaA9DCI/66xUWfADAlIaUUpRoFUsyaBZHQKXmpxaPjn51fZQoaAZoCWgPQwgeigJ9Ik8EwJSGlFKUaBVLMmgWR0Cl5kRe9i+ddX2UKGgGaAloD0MILv8h/fa1BcCUhpRSlGgVSzJoFkdApeXWqvNeMXV9lChoBmgJaA9DCJUO1v85TALAlIaUUpRoFUsyaBZHQKXoFnpSrHV1fZQoaAZoCWgPQwgVdHtJYxQBwJSGlFKUaBVLMmgWR0Cl55p++dsjdX2UKGgGaAloD0MIfshbrn4sBcCUhpRSlGgVSzJoFkdApec33FkxynV9lChoBmgJaA9DCJ5haksd5P+/lIaUUpRoFUsyaBZHQKXmyjQiRnx1fZQoaAZoCWgPQwgVjiCVYgf4v5SGlFKUaBVLMmgWR0Cl6Px0+1SgdX2UKGgGaAloD0MIyD8ziA/sCMCUhpRSlGgVSzJoFkdApeiAY+B6KXV9lChoBmgJaA9DCP4PsFbt+gbAlIaUUpRoFUsyaBZHQKXoHZQHiWF1fZQoaAZoCWgPQwhA+FCiJc8HwJSGlFKUaBVLMmgWR0Cl56+8f3evdX2UKGgGaAloD0MIkh/xK9aQCsCUhpRSlGgVSzJoFkdApenXJtBOYnV9lChoBmgJaA9DCDtSfecXpQTAlIaUUpRoFUsyaBZHQKXpWxfv4M51fZQoaAZoCWgPQwhOKa+V0N0BwJSGlFKUaBVLMmgWR0Cl6PhS9/SZdX2UKGgGaAloD0MIFQFO7+I9AsCUhpRSlGgVSzJoFkdApeiKlrM1THV9lChoBmgJaA9DCGyWy0bnnAvAlIaUUpRoFUsyaBZHQKXqvLamGdt1fZQoaAZoCWgPQwgxW7Iqwq0HwJSGlFKUaBVLMmgWR0Cl6kDs2NvPdX2UKGgGaAloD0MI5WGh1jQ/EcCUhpRSlGgVSzJoFkdApeneHvc8DHV9lChoBmgJaA9DCLWK/tDMUwrAlIaUUpRoFUsyaBZHQKXpcFGoaUB1fZQoaAZoCWgPQwjcSxqjdZQHwJSGlFKUaBVLMmgWR0Cl65e49X9zdX2UKGgGaAloD0MIKnEd44oLCcCUhpRSlGgVSzJoFkdApesbqfOD8XV9lChoBmgJaA9DCG6mQjwSLwfAlIaUUpRoFUsyaBZHQKXquPDHfdh1fZQoaAZoCWgPQwi858ByhEz5v5SGlFKUaBVLMmgWR0Cl6ksPJ7swdX2UKGgGaAloD0MIsKnzqPj//7+UhpRSlGgVSzJoFkdApeyA00m+kHV9lChoBmgJaA9DCII2OXzSCQTAlIaUUpRoFUsyaBZHQKXsBPE87p51fZQoaAZoCWgPQwjpnnWNlkMDwJSGlFKUaBVLMmgWR0Cl66Io3JgcdX2UKGgGaAloD0MIs3xdhv+0/b+UhpRSlGgVSzJoFkdApes0WsRxtHV9lChoBmgJaA9DCKuVCb/UrwDAlIaUUpRoFUsyaBZHQKXtkAVfu1F1fZQoaAZoCWgPQwhrfZHQlvP+v5SGlFKUaBVLMmgWR0Cl7RQjt5UtdX2UKGgGaAloD0MIYi8UsB2MA8CUhpRSlGgVSzJoFkdApeyydc0Lt3V9lChoBmgJaA9DCCZV203w7QbAlIaUUpRoFUsyaBZHQKXsRNxEORV1ZS4="
|
60 |
+
},
|
61 |
+
"ep_success_buffer": {
|
62 |
+
":type:": "<class 'collections.deque'>",
|
63 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
64 |
+
},
|
65 |
+
"_n_updates": 50000,
|
66 |
+
"n_steps": 5,
|
67 |
+
"gamma": 0.99,
|
68 |
+
"gae_lambda": 1.0,
|
69 |
+
"ent_coef": 0.0,
|
70 |
+
"vf_coef": 0.5,
|
71 |
+
"max_grad_norm": 0.5,
|
72 |
+
"normalize_advantage": false,
|
73 |
+
"observation_space": {
|
74 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
75 |
+
":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
|
76 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
77 |
+
"_shape": null,
|
78 |
+
"dtype": null,
|
79 |
+
"_np_random": null
|
80 |
+
},
|
81 |
+
"action_space": {
|
82 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
83 |
+
":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
84 |
+
"dtype": "float32",
|
85 |
+
"_shape": [
|
86 |
+
3
|
87 |
+
],
|
88 |
+
"low": "[-1. -1. -1.]",
|
89 |
+
"high": "[1. 1. 1.]",
|
90 |
+
"bounded_below": "[ True True True]",
|
91 |
+
"bounded_above": "[ True True True]",
|
92 |
+
"_np_random": null
|
93 |
+
},
|
94 |
+
"n_envs": 4
|
95 |
+
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b9fd928b7e811a5b58dffc6cff8f394368540946f13dafd1a062e2e147293c9e
|
3 |
+
size 44734
|
a2c-PandaReachDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:40af714b00a20fb07d632bf19acd94e12188918ddce90076ff7b06208030d16e
|
3 |
+
size 46014
|
a2c-PandaReachDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 1.8.0
|
4 |
+
- PyTorch: 2.0.0+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f5fc7a661f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f5fc7a65380>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681481052325756418, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAABPDDPjg/gTtXHAk/BPDDPjg/gTtXHAk/BPDDPjg/gTtXHAk/BPDDPjg/gTtXHAk/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA/CyqPxXnnz+l5Qk/EokDvoENxL0oX0y+Pz8LP2DCtz83kjE9Z9OgPxaAu79j+6u/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAE8MM+OD+BO1ccCT8zOc+7u8bfOmSI3rsE8MM+OD+BO1ccCT8zOc+7u8bfOmSI3rsE8MM+OD+BO1ccCT8zOc+7u8bfOmSI3rsE8MM+OD+BO1ccCT8zOc+7u8bfOmSI3ruUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.38269055 0.0039443 0.5355887 ]\n [0.38269055 0.0039443 0.5355887 ]\n [0.38269055 0.0039443 0.5355887 ]\n [0.38269055 0.0039443 0.5355887 ]]", "desired_goal": "[[ 1.3294978 1.2492396 0.53866035]\n [-0.12845257 -0.09572888 -0.19958174]\n [ 0.5439338 1.4356194 0.04335233]\n [ 1.2564515 -1.4648464 -1.3436092 ]]", "observation": "[[ 0.38269055 0.0039443 0.5355887 -0.00632396 0.00170728 -0.00679116]\n [ 0.38269055 0.0039443 0.5355887 -0.00632396 0.00170728 -0.00679116]\n [ 0.38269055 0.0039443 0.5355887 -0.00632396 0.00170728 -0.00679116]\n [ 0.38269055 0.0039443 0.5355887 -0.00632396 0.00170728 -0.00679116]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAnUGCPF3klL1HIx0+rnuCuy2O6z1W1Zc+yfAKvidk0j228GM+k7qxPELAQz315/Q8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.01590043 -0.07270119 0.15345488]\n [-0.00398203 0.11501727 0.2965495 ]\n [-0.13568415 0.10273009 0.22259793]\n [ 0.02169541 0.04779077 0.02989576]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIoIzxYfZy/7+UhpRSlIwBbJRLMowBdJRHQKXU97+kxh51fZQoaAZoCWgPQwgIc7uX+6T7v5SGlFKUaBVLMmgWR0Cl1HxW1c+rdX2UKGgGaAloD0MI3gAz38EP/b+UhpRSlGgVSzJoFkdApdQaIk7fYXV9lChoBmgJaA9DCGSsNv+vWgXAlIaUUpRoFUsyaBZHQKXTrOoHcDd1fZQoaAZoCWgPQwhmguFcw2wAwJSGlFKUaBVLMmgWR0Cl1mQyRB/rdX2UKGgGaAloD0MI4xx1dFxN+r+UhpRSlGgVSzJoFkdApdXpCBwuNHV9lChoBmgJaA9DCHrjpDDvkQHAlIaUUpRoFUsyaBZHQKXVhs2NvO11fZQoaAZoCWgPQwi9xcN7DuwAwJSGlFKUaBVLMmgWR0Cl1RmyPdVOdX2UKGgGaAloD0MIhslUwajEAcCUhpRSlGgVSzJoFkdApdfbKgZjx3V9lChoBmgJaA9DCM43onvWFQHAlIaUUpRoFUsyaBZHQKXXX88cMmZ1fZQoaAZoCWgPQwhYN94dGWsBwJSGlFKUaBVLMmgWR0Cl1v3/5tWNdX2UKGgGaAloD0MIzQGCOXq89r+UhpRSlGgVSzJoFkdApdaQ4ffXPXV9lChoBmgJaA9DCAH20akr3/+/lIaUUpRoFUsyaBZHQKXZT27nPmh1fZQoaAZoCWgPQwjqswOuK+YJwJSGlFKUaBVLMmgWR0Cl2NP24/eMdX2UKGgGaAloD0MIfZQRF4DGDMCUhpRSlGgVSzJoFkdApdhx5iVjZ3V9lChoBmgJaA9DCNuJkpBI2wLAlIaUUpRoFUsyaBZHQKXYBJvHcUN1fZQoaAZoCWgPQwiWd9UD5qEHwJSGlFKUaBVLMmgWR0Cl2sFf7aZhdX2UKGgGaAloD0MI2c9iKZLv/L+UhpRSlGgVSzJoFkdApdpGLcbiqHV9lChoBmgJaA9DCGK85lWd1QXAlIaUUpRoFUsyaBZHQKXZ5DtPYWd1fZQoaAZoCWgPQwgdrP9zmE8AwJSGlFKUaBVLMmgWR0Cl2XcQiA2AdX2UKGgGaAloD0MI/mDgufcwAsCUhpRSlGgVSzJoFkdApdxH0TURWnV9lChoBmgJaA9DCJLM6h1uh/i/lIaUUpRoFUsyaBZHQKXbzGEwnIB1fZQoaAZoCWgPQwigF+5cGCkNwJSGlFKUaBVLMmgWR0Cl22o371qWdX2UKGgGaAloD0MIOgMjL2siB8CUhpRSlGgVSzJoFkdApdr9IGyHEnV9lChoBmgJaA9DCOQR3EjZ4gjAlIaUUpRoFUsyaBZHQKXdWhQm/nJ1fZQoaAZoCWgPQwj430p2bOQEwJSGlFKUaBVLMmgWR0Cl3N4tg8bJdX2UKGgGaAloD0MIRRFSt7MvBsCUhpRSlGgVSzJoFkdApdx7hR64UnV9lChoBmgJaA9DCJiFdk6zwATAlIaUUpRoFUsyaBZHQKXcDe67NB51fZQoaAZoCWgPQwgFw7mGGVr8v5SGlFKUaBVLMmgWR0Cl3jtFjNILdX2UKGgGaAloD0MI0qxsH/KWAMCUhpRSlGgVSzJoFkdApd2/RmbsnnV9lChoBmgJaA9DCOMYyR6hJvu/lIaUUpRoFUsyaBZHQKXdXLNfPX11fZQoaAZoCWgPQwhS8uocAzIBwJSGlFKUaBVLMmgWR0Cl3O7YTTOPdX2UKGgGaAloD0MIh272B8rNBMCUhpRSlGgVSzJoFkdApd8cM/hVEXV9lChoBmgJaA9DCOrMPSR8jwXAlIaUUpRoFUsyaBZHQKXeoDaoMrp1fZQoaAZoCWgPQwjBN02fHbD7v5SGlFKUaBVLMmgWR0Cl3j2T5ftydX2UKGgGaAloD0MI5+CZ0CQxBMCUhpRSlGgVSzJoFkdApd3P2bobGXV9lChoBmgJaA9DCNMwfERMSQXAlIaUUpRoFUsyaBZHQKXgAnCO3lV1fZQoaAZoCWgPQwgTglX18vv9v5SGlFKUaBVLMmgWR0Cl34aBAfMfdX2UKGgGaAloD0MIBCDu6lWk/r+UhpRSlGgVSzJoFkdApd8jyz5XVHV9lChoBmgJaA9DCKLrwg/OJwPAlIaUUpRoFUsyaBZHQKXetjuKGcp1fZQoaAZoCWgPQwgWS5F8JTADwJSGlFKUaBVLMmgWR0Cl4NwHiWE9dX2UKGgGaAloD0MIvJF55A8GBsCUhpRSlGgVSzJoFkdApeBgEW69TXV9lChoBmgJaA9DCNuizAaZpP2/lIaUUpRoFUsyaBZHQKXf/V3ljmV1fZQoaAZoCWgPQwhC7bd2osQGwJSGlFKUaBVLMmgWR0Cl34+aa1CxdX2UKGgGaAloD0MIVaUtrvH5BMCUhpRSlGgVSzJoFkdApeG+Wa+ev3V9lChoBmgJaA9DCHXN5JttzgDAlIaUUpRoFUsyaBZHQKXhQoRZlnR1fZQoaAZoCWgPQwimtz8XDXkFwJSGlFKUaBVLMmgWR0Cl4N/+0gKXdX2UKGgGaAloD0MIniPyXUodBMCUhpRSlGgVSzJoFkdApeByKUFB6nV9lChoBmgJaA9DCMqJdhVSfgHAlIaUUpRoFUsyaBZHQKXinCMxXXB1fZQoaAZoCWgPQwguH0lJD0MJwJSGlFKUaBVLMmgWR0Cl4iAfU4JedX2UKGgGaAloD0MI/wkuVtSAAsCUhpRSlGgVSzJoFkdApeG9g0CRwXV9lChoBmgJaA9DCBUaiGUzBwvAlIaUUpRoFUsyaBZHQKXhT7XxvvV1fZQoaAZoCWgPQwiqYb8n1qn7v5SGlFKUaBVLMmgWR0Cl43dcbBGhdX2UKGgGaAloD0MIuW5Kea3EAsCUhpRSlGgVSzJoFkdApeL7Ta0x/XV9lChoBmgJaA9DCI84ZAPpogrAlIaUUpRoFUsyaBZHQKXimKUmlZZ1fZQoaAZoCWgPQwg2Ia0x6CQJwJSGlFKUaBVLMmgWR0Cl4irPUrkKdX2UKGgGaAloD0MIKelhaHUyBMCUhpRSlGgVSzJoFkdApeRYqTbFj3V9lChoBmgJaA9DCIqT+x2KwhDAlIaUUpRoFUsyaBZHQKXj3JnQID51fZQoaAZoCWgPQwhgkzXqIXoGwJSGlFKUaBVLMmgWR0Cl43nSF49pdX2UKGgGaAloD0MIVvXyO01GBsCUhpRSlGgVSzJoFkdApeMMAFPi1nV9lChoBmgJaA9DCAZINIEiNgHAlIaUUpRoFUsyaBZHQKXlPX4CZF51fZQoaAZoCWgPQwhblq/L8B8AwJSGlFKUaBVLMmgWR0Cl5MGG/N7jdX2UKGgGaAloD0MIZavLKQGx/L+UhpRSlGgVSzJoFkdApeRfCTEBKnV9lChoBmgJaA9DCGObVDTW/gDAlIaUUpRoFUsyaBZHQKXj8THsC1Z1fZQoaAZoCWgPQwjZJ4BiZIn/v5SGlFKUaBVLMmgWR0Cl5i3oC+10dX2UKGgGaAloD0MIz04GR8lLA8CUhpRSlGgVSzJoFkdApeWyFK02L3V9lChoBmgJaA9DCB8tzhjmhAPAlIaUUpRoFUsyaBZHQKXlT3evZAZ1fZQoaAZoCWgPQwiLUdfa+zQPwJSGlFKUaBVLMmgWR0Cl5OHpKSPmdX2UKGgGaAloD0MIC+9yEd8pAcCUhpRSlGgVSzJoFkdApecjAk9lmXV9lChoBmgJaA9DCI/66xUWfADAlIaUUpRoFUsyaBZHQKXmpxaPjn51fZQoaAZoCWgPQwgeigJ9Ik8EwJSGlFKUaBVLMmgWR0Cl5kRe9i+ddX2UKGgGaAloD0MILv8h/fa1BcCUhpRSlGgVSzJoFkdApeXWqvNeMXV9lChoBmgJaA9DCJUO1v85TALAlIaUUpRoFUsyaBZHQKXoFnpSrHV1fZQoaAZoCWgPQwgVdHtJYxQBwJSGlFKUaBVLMmgWR0Cl55p++dsjdX2UKGgGaAloD0MIfshbrn4sBcCUhpRSlGgVSzJoFkdApec33FkxynV9lChoBmgJaA9DCJ5haksd5P+/lIaUUpRoFUsyaBZHQKXmyjQiRnx1fZQoaAZoCWgPQwgVjiCVYgf4v5SGlFKUaBVLMmgWR0Cl6Px0+1SgdX2UKGgGaAloD0MIyD8ziA/sCMCUhpRSlGgVSzJoFkdApeiAY+B6KXV9lChoBmgJaA9DCP4PsFbt+gbAlIaUUpRoFUsyaBZHQKXoHZQHiWF1fZQoaAZoCWgPQwhA+FCiJc8HwJSGlFKUaBVLMmgWR0Cl56+8f3evdX2UKGgGaAloD0MIkh/xK9aQCsCUhpRSlGgVSzJoFkdApenXJtBOYnV9lChoBmgJaA9DCDtSfecXpQTAlIaUUpRoFUsyaBZHQKXpWxfv4M51fZQoaAZoCWgPQwhOKa+V0N0BwJSGlFKUaBVLMmgWR0Cl6PhS9/SZdX2UKGgGaAloD0MIFQFO7+I9AsCUhpRSlGgVSzJoFkdApeiKlrM1THV9lChoBmgJaA9DCGyWy0bnnAvAlIaUUpRoFUsyaBZHQKXqvLamGdt1fZQoaAZoCWgPQwgxW7Iqwq0HwJSGlFKUaBVLMmgWR0Cl6kDs2NvPdX2UKGgGaAloD0MI5WGh1jQ/EcCUhpRSlGgVSzJoFkdApeneHvc8DHV9lChoBmgJaA9DCLWK/tDMUwrAlIaUUpRoFUsyaBZHQKXpcFGoaUB1fZQoaAZoCWgPQwjcSxqjdZQHwJSGlFKUaBVLMmgWR0Cl65e49X9zdX2UKGgGaAloD0MIKnEd44oLCcCUhpRSlGgVSzJoFkdApesbqfOD8XV9lChoBmgJaA9DCG6mQjwSLwfAlIaUUpRoFUsyaBZHQKXquPDHfdh1fZQoaAZoCWgPQwi858ByhEz5v5SGlFKUaBVLMmgWR0Cl6ksPJ7swdX2UKGgGaAloD0MIsKnzqPj//7+UhpRSlGgVSzJoFkdApeyA00m+kHV9lChoBmgJaA9DCII2OXzSCQTAlIaUUpRoFUsyaBZHQKXsBPE87p51fZQoaAZoCWgPQwjpnnWNlkMDwJSGlFKUaBVLMmgWR0Cl66Io3JgcdX2UKGgGaAloD0MIs3xdhv+0/b+UhpRSlGgVSzJoFkdApes0WsRxtHV9lChoBmgJaA9DCKuVCb/UrwDAlIaUUpRoFUsyaBZHQKXtkAVfu1F1fZQoaAZoCWgPQwhrfZHQlvP+v5SGlFKUaBVLMmgWR0Cl7RQjt5UtdX2UKGgGaAloD0MIYi8UsB2MA8CUhpRSlGgVSzJoFkdApeyydc0Lt3V9lChoBmgJaA9DCCZV203w7QbAlIaUUpRoFUsyaBZHQKXsRNxEORV1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (816 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -2.146421296149492, "std_reward": 0.31209890473047586, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-14T14:51:02.339984"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:05e732c3880cc294399f64ad83fa40fe1b3c081e688314179272241e28581d4c
|
3 |
+
size 2381
|