End of training
Browse files- README.md +186 -0
- model.safetensors +1 -1
README.md
ADDED
@@ -0,0 +1,186 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: BSC-LT/roberta-base-bne
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- accuracy
|
8 |
+
model-index:
|
9 |
+
- name: services-ucacue
|
10 |
+
results: []
|
11 |
+
---
|
12 |
+
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# services-ucacue
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [BSC-LT/roberta-base-bne](https://huggingface.co/BSC-LT/roberta-base-bne) on an unknown dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 1.2478
|
21 |
+
- Accuracy: 0.8352
|
22 |
+
|
23 |
+
## Model description
|
24 |
+
|
25 |
+
More information needed
|
26 |
+
|
27 |
+
## Intended uses & limitations
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Training and evaluation data
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training procedure
|
36 |
+
|
37 |
+
### Training hyperparameters
|
38 |
+
|
39 |
+
The following hyperparameters were used during training:
|
40 |
+
- learning_rate: 5e-05
|
41 |
+
- train_batch_size: 40
|
42 |
+
- eval_batch_size: 48
|
43 |
+
- seed: 42
|
44 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
45 |
+
- lr_scheduler_type: linear
|
46 |
+
- lr_scheduler_warmup_steps: 500
|
47 |
+
- num_epochs: 20
|
48 |
+
|
49 |
+
### Training results
|
50 |
+
|
51 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
52 |
+
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
|
53 |
+
| 1.3181 | 0.16 | 100 | 0.9069 | 0.6518 |
|
54 |
+
| 0.7432 | 0.32 | 200 | 0.6677 | 0.7551 |
|
55 |
+
| 0.6287 | 0.47 | 300 | 0.5875 | 0.7858 |
|
56 |
+
| 0.5838 | 0.63 | 400 | 0.5399 | 0.7963 |
|
57 |
+
| 0.5493 | 0.79 | 500 | 0.5858 | 0.7871 |
|
58 |
+
| 0.517 | 0.95 | 600 | 0.5136 | 0.8102 |
|
59 |
+
| 0.4556 | 1.11 | 700 | 0.5451 | 0.7950 |
|
60 |
+
| 0.4213 | 1.27 | 800 | 0.5288 | 0.7969 |
|
61 |
+
| 0.4168 | 1.42 | 900 | 0.4665 | 0.8267 |
|
62 |
+
| 0.4234 | 1.58 | 1000 | 0.4680 | 0.8346 |
|
63 |
+
| 0.4202 | 1.74 | 1100 | 0.4615 | 0.8327 |
|
64 |
+
| 0.4343 | 1.9 | 1200 | 0.4756 | 0.8251 |
|
65 |
+
| 0.3699 | 2.06 | 1300 | 0.5059 | 0.8403 |
|
66 |
+
| 0.2934 | 2.22 | 1400 | 0.4621 | 0.8321 |
|
67 |
+
| 0.3074 | 2.37 | 1500 | 0.5008 | 0.8394 |
|
68 |
+
| 0.3213 | 2.53 | 1600 | 0.4685 | 0.8343 |
|
69 |
+
| 0.309 | 2.69 | 1700 | 0.4761 | 0.8390 |
|
70 |
+
| 0.2922 | 2.85 | 1800 | 0.4530 | 0.8387 |
|
71 |
+
| 0.2996 | 3.01 | 1900 | 0.5078 | 0.8352 |
|
72 |
+
| 0.1917 | 3.16 | 2000 | 0.6382 | 0.8248 |
|
73 |
+
| 0.1817 | 3.32 | 2100 | 0.5286 | 0.8305 |
|
74 |
+
| 0.2172 | 3.48 | 2200 | 0.5374 | 0.8356 |
|
75 |
+
| 0.225 | 3.64 | 2300 | 0.5987 | 0.8226 |
|
76 |
+
| 0.2306 | 3.8 | 2400 | 0.5182 | 0.8447 |
|
77 |
+
| 0.2348 | 3.96 | 2500 | 0.5315 | 0.8346 |
|
78 |
+
| 0.1636 | 4.11 | 2600 | 0.6174 | 0.8295 |
|
79 |
+
| 0.145 | 4.27 | 2700 | 0.5829 | 0.8330 |
|
80 |
+
| 0.159 | 4.43 | 2800 | 0.6558 | 0.8352 |
|
81 |
+
| 0.1546 | 4.59 | 2900 | 0.5983 | 0.8279 |
|
82 |
+
| 0.1674 | 4.75 | 3000 | 0.5318 | 0.8349 |
|
83 |
+
| 0.1667 | 4.91 | 3100 | 0.6102 | 0.8330 |
|
84 |
+
| 0.1553 | 5.06 | 3200 | 0.7027 | 0.8264 |
|
85 |
+
| 0.1047 | 5.22 | 3300 | 0.8185 | 0.8324 |
|
86 |
+
| 0.1294 | 5.38 | 3400 | 0.7657 | 0.8349 |
|
87 |
+
| 0.1287 | 5.54 | 3500 | 0.7114 | 0.8340 |
|
88 |
+
| 0.1403 | 5.7 | 3600 | 0.6230 | 0.8321 |
|
89 |
+
| 0.1358 | 5.85 | 3700 | 0.6789 | 0.8349 |
|
90 |
+
| 0.119 | 6.01 | 3800 | 0.6755 | 0.8435 |
|
91 |
+
| 0.0812 | 6.17 | 3900 | 0.8343 | 0.8305 |
|
92 |
+
| 0.0977 | 6.33 | 4000 | 0.8252 | 0.8251 |
|
93 |
+
| 0.1036 | 6.49 | 4100 | 0.8672 | 0.8298 |
|
94 |
+
| 0.1011 | 6.65 | 4200 | 0.8164 | 0.8245 |
|
95 |
+
| 0.1303 | 6.8 | 4300 | 0.7829 | 0.8311 |
|
96 |
+
| 0.121 | 6.96 | 4400 | 0.6958 | 0.8343 |
|
97 |
+
| 0.0797 | 7.12 | 4500 | 0.9208 | 0.8394 |
|
98 |
+
| 0.0832 | 7.28 | 4600 | 0.8302 | 0.8352 |
|
99 |
+
| 0.0869 | 7.44 | 4700 | 0.9605 | 0.8333 |
|
100 |
+
| 0.0825 | 7.59 | 4800 | 0.9242 | 0.8295 |
|
101 |
+
| 0.1019 | 7.75 | 4900 | 0.8342 | 0.8337 |
|
102 |
+
| 0.1081 | 7.91 | 5000 | 0.8462 | 0.8305 |
|
103 |
+
| 0.1016 | 8.07 | 5100 | 0.8536 | 0.8257 |
|
104 |
+
| 0.078 | 8.23 | 5200 | 0.9047 | 0.8298 |
|
105 |
+
| 0.0778 | 8.39 | 5300 | 0.9631 | 0.8292 |
|
106 |
+
| 0.0723 | 8.54 | 5400 | 0.9283 | 0.8327 |
|
107 |
+
| 0.0875 | 8.7 | 5500 | 0.9040 | 0.8305 |
|
108 |
+
| 0.0899 | 8.86 | 5600 | 0.8884 | 0.8305 |
|
109 |
+
| 0.0803 | 9.02 | 5700 | 0.9168 | 0.8321 |
|
110 |
+
| 0.0549 | 9.18 | 5800 | 1.0361 | 0.8378 |
|
111 |
+
| 0.0697 | 9.34 | 5900 | 1.0312 | 0.8413 |
|
112 |
+
| 0.0714 | 9.49 | 6000 | 0.9170 | 0.8381 |
|
113 |
+
| 0.0789 | 9.65 | 6100 | 0.8447 | 0.8352 |
|
114 |
+
| 0.0673 | 9.81 | 6200 | 0.8850 | 0.8327 |
|
115 |
+
| 0.0773 | 9.97 | 6300 | 0.9276 | 0.8403 |
|
116 |
+
| 0.0577 | 10.13 | 6400 | 0.8892 | 0.8368 |
|
117 |
+
| 0.0517 | 10.28 | 6500 | 1.0524 | 0.8264 |
|
118 |
+
| 0.0551 | 10.44 | 6600 | 0.9936 | 0.8260 |
|
119 |
+
| 0.0532 | 10.6 | 6700 | 1.1169 | 0.8321 |
|
120 |
+
| 0.0726 | 10.76 | 6800 | 1.0498 | 0.8273 |
|
121 |
+
| 0.0608 | 10.92 | 6900 | 0.9969 | 0.8343 |
|
122 |
+
| 0.0598 | 11.08 | 7000 | 1.0024 | 0.8371 |
|
123 |
+
| 0.0502 | 11.23 | 7100 | 1.0547 | 0.8251 |
|
124 |
+
| 0.0615 | 11.39 | 7200 | 0.9235 | 0.8298 |
|
125 |
+
| 0.0545 | 11.55 | 7300 | 0.9389 | 0.8362 |
|
126 |
+
| 0.0565 | 11.71 | 7400 | 0.8622 | 0.8390 |
|
127 |
+
| 0.0601 | 11.87 | 7500 | 0.9792 | 0.8381 |
|
128 |
+
| 0.0623 | 12.03 | 7600 | 1.0572 | 0.8359 |
|
129 |
+
| 0.0494 | 12.18 | 7700 | 1.0454 | 0.8394 |
|
130 |
+
| 0.0561 | 12.34 | 7800 | 1.0160 | 0.8390 |
|
131 |
+
| 0.0459 | 12.5 | 7900 | 1.0492 | 0.8384 |
|
132 |
+
| 0.0539 | 12.66 | 8000 | 0.9913 | 0.8413 |
|
133 |
+
| 0.052 | 12.82 | 8100 | 0.9678 | 0.8394 |
|
134 |
+
| 0.0524 | 12.97 | 8200 | 0.9991 | 0.8359 |
|
135 |
+
| 0.0476 | 13.13 | 8300 | 0.9980 | 0.8359 |
|
136 |
+
| 0.0384 | 13.29 | 8400 | 1.0535 | 0.8365 |
|
137 |
+
| 0.0484 | 13.45 | 8500 | 1.0327 | 0.8416 |
|
138 |
+
| 0.0461 | 13.61 | 8600 | 1.0804 | 0.8406 |
|
139 |
+
| 0.056 | 13.77 | 8700 | 1.0189 | 0.8359 |
|
140 |
+
| 0.0499 | 13.92 | 8800 | 1.0734 | 0.8349 |
|
141 |
+
| 0.0463 | 14.08 | 8900 | 1.0612 | 0.8343 |
|
142 |
+
| 0.0409 | 14.24 | 9000 | 1.1206 | 0.8321 |
|
143 |
+
| 0.043 | 14.4 | 9100 | 1.0902 | 0.8368 |
|
144 |
+
| 0.0391 | 14.56 | 9200 | 1.0407 | 0.8340 |
|
145 |
+
| 0.0438 | 14.72 | 9300 | 1.0803 | 0.8352 |
|
146 |
+
| 0.0404 | 14.87 | 9400 | 1.0797 | 0.8362 |
|
147 |
+
| 0.0514 | 15.03 | 9500 | 1.1111 | 0.8365 |
|
148 |
+
| 0.0341 | 15.19 | 9600 | 1.1324 | 0.8337 |
|
149 |
+
| 0.0399 | 15.35 | 9700 | 1.1461 | 0.8375 |
|
150 |
+
| 0.0486 | 15.51 | 9800 | 1.0840 | 0.8375 |
|
151 |
+
| 0.0396 | 15.66 | 9900 | 1.1105 | 0.8340 |
|
152 |
+
| 0.0411 | 15.82 | 10000 | 1.0873 | 0.8362 |
|
153 |
+
| 0.0391 | 15.98 | 10100 | 1.1769 | 0.8333 |
|
154 |
+
| 0.0419 | 16.14 | 10200 | 1.1856 | 0.8324 |
|
155 |
+
| 0.0371 | 16.3 | 10300 | 1.2263 | 0.8292 |
|
156 |
+
| 0.0361 | 16.46 | 10400 | 1.2021 | 0.8333 |
|
157 |
+
| 0.0374 | 16.61 | 10500 | 1.2242 | 0.8292 |
|
158 |
+
| 0.0383 | 16.77 | 10600 | 1.1600 | 0.8384 |
|
159 |
+
| 0.035 | 16.93 | 10700 | 1.1955 | 0.8356 |
|
160 |
+
| 0.0378 | 17.09 | 10800 | 1.1868 | 0.8340 |
|
161 |
+
| 0.0372 | 17.25 | 10900 | 1.2195 | 0.8302 |
|
162 |
+
| 0.037 | 17.41 | 11000 | 1.2149 | 0.8324 |
|
163 |
+
| 0.0342 | 17.56 | 11100 | 1.2127 | 0.8337 |
|
164 |
+
| 0.035 | 17.72 | 11200 | 1.2074 | 0.8362 |
|
165 |
+
| 0.0405 | 17.88 | 11300 | 1.2263 | 0.8327 |
|
166 |
+
| 0.0343 | 18.04 | 11400 | 1.2197 | 0.8333 |
|
167 |
+
| 0.0349 | 18.2 | 11500 | 1.2334 | 0.8337 |
|
168 |
+
| 0.0378 | 18.35 | 11600 | 1.2108 | 0.8365 |
|
169 |
+
| 0.0298 | 18.51 | 11700 | 1.2167 | 0.8356 |
|
170 |
+
| 0.0404 | 18.67 | 11800 | 1.2331 | 0.8371 |
|
171 |
+
| 0.0342 | 18.83 | 11900 | 1.2202 | 0.8337 |
|
172 |
+
| 0.0331 | 18.99 | 12000 | 1.2222 | 0.8346 |
|
173 |
+
| 0.032 | 19.15 | 12100 | 1.2287 | 0.8337 |
|
174 |
+
| 0.0299 | 19.3 | 12200 | 1.2368 | 0.8333 |
|
175 |
+
| 0.0332 | 19.46 | 12300 | 1.2439 | 0.8352 |
|
176 |
+
| 0.0353 | 19.62 | 12400 | 1.2481 | 0.8359 |
|
177 |
+
| 0.0353 | 19.78 | 12500 | 1.2485 | 0.8349 |
|
178 |
+
| 0.0304 | 19.94 | 12600 | 1.2478 | 0.8352 |
|
179 |
+
|
180 |
+
|
181 |
+
### Framework versions
|
182 |
+
|
183 |
+
- Transformers 4.39.3
|
184 |
+
- Pytorch 2.2.1+cu121
|
185 |
+
- Datasets 2.18.0
|
186 |
+
- Tokenizers 0.15.2
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 498612836
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4a3529c6fad333819980058957f620b6d986bc2ff016140d988699317d455530
|
3 |
size 498612836
|