|
from typing import Dict, List, Any |
|
from PIL import Image |
|
import torch |
|
from torch import autocast |
|
from diffusers import StableDiffusionLatentUpscalePipeline |
|
import base64 |
|
from io import BytesIO |
|
from transformers.utils import logging |
|
|
|
logging.set_verbosity_info() |
|
logger = logging.get_logger("transformers") |
|
logger.info("INFO") |
|
logger.warning("WARN") |
|
|
|
|
|
|
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') |
|
|
|
|
|
|
|
|
|
class EndpointHandler(): |
|
def __init__(self, path=""): |
|
self.path = path |
|
|
|
|
|
self.pipe = StableDiffusionLatentUpscalePipeline.from_pretrained(path, torch_dtype=torch.float16) |
|
self.pipe = self.pipe.to(device) |
|
|
|
|
|
def __call__(self, data) -> List[Dict[str, Any]]: |
|
""" |
|
Args: |
|
image (:obj:`string`) |
|
Return: |
|
A :obj:`dict`:. base64 encoded image |
|
""" |
|
logger.info('data received %s', data) |
|
inputs = data.get("inputs") |
|
logger.info('inputs received %s', inputs) |
|
|
|
image_base64 = base64.b64decode(inputs['image']) |
|
logger.info('image_base64') |
|
image_bytes = BytesIO(image_base64) |
|
logger.info('image_bytes') |
|
image = Image.open(image_bytes) |
|
prompt = inputs['prompt'] |
|
logger.info('image') |
|
with autocast(device.type): |
|
upscaled_image = self.pipe(prompt, image).images[0] |
|
|
|
buffered = BytesIO() |
|
upscaled_image.save(buffered, format="JPEG") |
|
img_str = base64.b64encode(buffered.getvalue()) |
|
|
|
|
|
return {"image": img_str.decode()} |
|
|
|
|