|
from typing import Dict, List, Any |
|
from PIL import Image |
|
import torch |
|
from torch import autocast |
|
from diffusers import StableDiffusionPipeline |
|
import base64 |
|
from io import BytesIO |
|
|
|
|
|
|
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') |
|
|
|
if device.type != 'cuda': |
|
raise ValueError("need to run on GPU") |
|
|
|
class EndpointHandler(): |
|
def __init__(self, path=""): |
|
|
|
self.pipe = StableDiffusionPipeline.from_pretrained(path, torch_dtype=torch.float16) |
|
self.pipe = self.pipe.to(device) |
|
|
|
|
|
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]: |
|
""" |
|
Args: |
|
images (:obj:`string`) |
|
Return: |
|
A :obj:`dict`:. base64 encoded image |
|
""" |
|
inputs = data.pop("inputs", data) |
|
print("Printing inputs") |
|
print(inputs) |
|
print("") |
|
|
|
print("Printing image") |
|
print(inputs['image']) |
|
print("") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return {"image": "img_str.decode()"} |
|
|