sdx4-upscaler / handler.py
asoderznik's picture
Update handler.py
9a7b414
raw
history blame
1.55 kB
from typing import Dict, List, Any
from PIL import Image
import torch
from torch import autocast
from diffusers import StableDiffusionPipeline
import base64
from io import BytesIO
# set device
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
if device.type != 'cuda':
raise ValueError("need to run on GPU")
class EndpointHandler():
def __init__(self, path=""):
# load the optimized model
self.pipe = StableDiffusionPipeline.from_pretrained(path, torch_dtype=torch.float16)
self.pipe = self.pipe.to(device)
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
"""
Args:
images (:obj:`string`)
Return:
A :obj:`dict`:. base64 encoded image
"""
inputs = data.pop("inputs", data)
print("Printing inputs")
print(inputs)
print("")
print("Printing image")
print(inputs['image'])
print("")
# decode base64 image to PIL
#image = Image.open(BytesIO(base64.b64decode(inputs['image'])))
#print("Printing loaded image into library")
#print(image)
#print("")
# run inference pipeline
#upscaled_image = self.pipe(prompt="", image = image).images[0]
# encode image as base 64
#buffered = BytesIO()
#upscaled_image.save(buffered, format="JPEG")
#img_str = base64.b64encode(buffered.getvalue())
# postprocess the prediction
return {"image": "img_str.decode()"}