sdx4-upscaler / handler.py
asoderznik's picture
try something
6915ef8
raw
history blame
1.7 kB
from typing import Dict, List, Any
from PIL import Image
import torch
from torch import autocast
from diffusers import StableDiffusionPipeline
import base64
from io import BytesIO
from transformers.utils import logging
logging.set_verbosity_info()
logger = logging.get_logger("transformers")
logger.info("INFO")
logger.warning("WARN")
# set device
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
if device.type != 'cuda':
raise ValueError("need to run on GPU")
class EndpointHandler():
def __init__(self, path=""):
# load the optimized model
model_id = "stabilityai/stable-diffusion-x4-upscaler"
self.pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
self.pipe = self.pipe.to(device)
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
"""
Args:
images (:obj:`string`)
Return:
A :obj:`dict`:. base64 encoded image
"""
inputs = data.pop("inputs", data)
logger.info(f"Printing inputs {inputs}")
logger.info(f"Printing image {inputs['image']}")
# decode base64 image to PIL
decoded_image = Image.open(BytesIO(base64.b64decode(inputs['image'])))
logger.info(f"Printing loaded image into library {decoded_image}")
# run inference pipeline
upscaled_image = self.pipe(prompt="", image = decoded_image).images[0]
# encode image as base 64
buffered = BytesIO()
upscaled_image.save(buffered, format="JPEG")
img_str = base64.b64encode(buffered.getvalue())
# postprocess the prediction
return {"image": img_str}