Create metrics.log
Browse files- metrics.log +98 -0
metrics.log
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Subset ('m0',) accuracies
|
2 |
+
{'m1': 0.6014, 'm2': 0.5859, 'm3': 0.5755, 'm4': 0.5534}
|
3 |
+
Mean subset ('m0',) accuracies : 0.57905
|
4 |
+
Subset ('m1',) accuracies
|
5 |
+
{'m0': 0.4711, 'm2': 0.7107, 'm3': 0.6988, 'm4': 0.6677}
|
6 |
+
Mean subset ('m1',) accuracies : 0.637075
|
7 |
+
Subset ('m2',) accuracies
|
8 |
+
{'m0': 0.4738, 'm1': 0.7181, 'm3': 0.6828, 'm4': 0.6576}
|
9 |
+
Mean subset ('m2',) accuracies : 0.6330749999999999
|
10 |
+
Subset ('m3',) accuracies
|
11 |
+
{'m0': 0.4751, 'm1': 0.7236, 'm2': 0.7194, 'm4': 0.6513}
|
12 |
+
Mean subset ('m3',) accuracies : 0.64235
|
13 |
+
Subset ('m4',) accuracies
|
14 |
+
{'m0': 0.4061, 'm1': 0.5879, 'm2': 0.5928, 'm3': 0.5571}
|
15 |
+
Mean subset ('m4',) accuracies : 0.535975
|
16 |
+
Subset ('m0', 'm1') accuracies
|
17 |
+
{'m2': 0.8675, 'm3': 0.835, 'm4': 0.772}
|
18 |
+
Mean subset ('m0', 'm1') accuracies : 0.8248333333333333
|
19 |
+
Subset ('m0', 'm2') accuracies
|
20 |
+
{'m1': 0.8611, 'm3': 0.8278, 'm4': 0.7557}
|
21 |
+
Mean subset ('m0', 'm2') accuracies : 0.8148666666666666
|
22 |
+
Subset ('m0', 'm3') accuracies
|
23 |
+
{'m1': 0.8746, 'm2': 0.882, 'm4': 0.7687}
|
24 |
+
Mean subset ('m0', 'm3') accuracies : 0.8417666666666667
|
25 |
+
Subset ('m0', 'm4') accuracies
|
26 |
+
{'m1': 0.808, 'm2': 0.8054, 'm3': 0.7694}
|
27 |
+
Mean subset ('m0', 'm4') accuracies : 0.7942666666666667
|
28 |
+
Subset ('m1', 'm2') accuracies
|
29 |
+
{'m0': 0.5956, 'm3': 0.879, 'm4': 0.8133}
|
30 |
+
Mean subset ('m1', 'm2') accuracies : 0.7626333333333334
|
31 |
+
Subset ('m1', 'm3') accuracies
|
32 |
+
{'m0': 0.5964, 'm2': 0.9099, 'm4': 0.8091}
|
33 |
+
Mean subset ('m1', 'm3') accuracies : 0.7717999999999999
|
34 |
+
Subset ('m1', 'm4') accuracies
|
35 |
+
{'m0': 0.5584, 'm2': 0.8687, 'm3': 0.8348}
|
36 |
+
Mean subset ('m1', 'm4') accuracies : 0.7539666666666666
|
37 |
+
Subset ('m2', 'm3') accuracies
|
38 |
+
{'m0': 0.5883, 'm1': 0.9083, 'm4': 0.7942}
|
39 |
+
Mean subset ('m2', 'm3') accuracies : 0.7636
|
40 |
+
Subset ('m2', 'm4') accuracies
|
41 |
+
{'m0': 0.5488, 'm1': 0.8577, 'm3': 0.8256}
|
42 |
+
Mean subset ('m2', 'm4') accuracies : 0.7440333333333333
|
43 |
+
Subset ('m3', 'm4') accuracies
|
44 |
+
{'m0': 0.5669, 'm1': 0.8745, 'm2': 0.8845}
|
45 |
+
Mean subset ('m3', 'm4') accuracies : 0.7753
|
46 |
+
Subset ('m0', 'm1', 'm2') accuracies
|
47 |
+
{'m3': 0.9282, 'm4': 0.8263}
|
48 |
+
Mean subset ('m0', 'm1', 'm2') accuracies : 0.8772500000000001
|
49 |
+
Subset ('m0', 'm1', 'm3') accuracies
|
50 |
+
{'m2': 0.9454, 'm4': 0.8316}
|
51 |
+
Mean subset ('m0', 'm1', 'm3') accuracies : 0.8885000000000001
|
52 |
+
Subset ('m0', 'm1', 'm4') accuracies
|
53 |
+
{'m2': 0.9248, 'm3': 0.9037}
|
54 |
+
Mean subset ('m0', 'm1', 'm4') accuracies : 0.91425
|
55 |
+
Subset ('m0', 'm2', 'm3') accuracies
|
56 |
+
{'m1': 0.9501, 'm4': 0.8255}
|
57 |
+
Mean subset ('m0', 'm2', 'm3') accuracies : 0.8877999999999999
|
58 |
+
Subset ('m0', 'm2', 'm4') accuracies
|
59 |
+
{'m1': 0.9223, 'm3': 0.8991}
|
60 |
+
Mean subset ('m0', 'm2', 'm4') accuracies : 0.9107000000000001
|
61 |
+
Subset ('m0', 'm3', 'm4') accuracies
|
62 |
+
{'m1': 0.937, 'm2': 0.9376}
|
63 |
+
Mean subset ('m0', 'm3', 'm4') accuracies : 0.9373
|
64 |
+
Subset ('m1', 'm2', 'm3') accuracies
|
65 |
+
{'m0': 0.6131, 'm4': 0.8494}
|
66 |
+
Mean subset ('m1', 'm2', 'm3') accuracies : 0.73125
|
67 |
+
Subset ('m1', 'm2', 'm4') accuracies
|
68 |
+
{'m0': 0.6109, 'm3': 0.928}
|
69 |
+
Mean subset ('m1', 'm2', 'm4') accuracies : 0.76945
|
70 |
+
Subset ('m1', 'm3', 'm4') accuracies
|
71 |
+
{'m0': 0.6118, 'm2': 0.949}
|
72 |
+
Mean subset ('m1', 'm3', 'm4') accuracies : 0.7804
|
73 |
+
Subset ('m2', 'm3', 'm4') accuracies
|
74 |
+
{'m0': 0.6059, 'm1': 0.9495}
|
75 |
+
Mean subset ('m2', 'm3', 'm4') accuracies : 0.7777000000000001
|
76 |
+
Subset ('m0', 'm1', 'm2', 'm3') accuracies
|
77 |
+
{'m4': 0.8571}
|
78 |
+
Mean subset ('m0', 'm1', 'm2', 'm3') accuracies : 0.8571
|
79 |
+
Subset ('m0', 'm1', 'm2', 'm4') accuracies
|
80 |
+
{'m3': 0.9495}
|
81 |
+
Mean subset ('m0', 'm1', 'm2', 'm4') accuracies : 0.9495
|
82 |
+
Subset ('m0', 'm1', 'm3', 'm4') accuracies
|
83 |
+
{'m2': 0.964}
|
84 |
+
Mean subset ('m0', 'm1', 'm3', 'm4') accuracies : 0.964
|
85 |
+
Subset ('m0', 'm2', 'm3', 'm4') accuracies
|
86 |
+
{'m1': 0.9671}
|
87 |
+
Mean subset ('m0', 'm2', 'm3', 'm4') accuracies : 0.9671
|
88 |
+
Subset ('m1', 'm2', 'm3', 'm4') accuracies
|
89 |
+
{'m0': 0.6186}
|
90 |
+
Mean subset ('m1', 'm2', 'm3', 'm4') accuracies : 0.6186
|
91 |
+
Conditional accuracies for 1 modalities : 0.605505 +- 0.04158993087274851
|
92 |
+
Conditional accuracies for 2 modalities : 0.7847066666666666 +- 0.03107100041303252
|
93 |
+
Conditional accuracies for 3 modalities : 0.8474600000000001 +- 0.0704870867606259
|
94 |
+
Conditional accuracies for 4 modalities : 0.87126 +- 0.13262359669380105
|
95 |
+
Joint coherence : 0.0031999999191612005
|
96 |
+
Uploading MVTCAE model to asenella/mmnistMVTCAE_config2_ repo in HF hub...
|
97 |
+
Creating mmnistMVTCAE_config2_ in the HF hub since it does not exist...
|
98 |
+
Successfully created mmnistMVTCAE_config2_ in the HF hub!
|