ppo-LunarLander-v2 / config.json
asdasfsd's picture
Upload PPO LunarLander-v2 trained agent
4d6b226 verified
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x79fe0f48e0e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x79fe0f48e170>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x79fe0f48e200>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x79fe0f48e290>", "_build": "<function ActorCriticPolicy._build at 0x79fe0f48e320>", "forward": "<function ActorCriticPolicy.forward at 0x79fe0f48e3b0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x79fe0f48e440>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x79fe0f48e4d0>", "_predict": "<function ActorCriticPolicy._predict at 0x79fe0f48e560>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x79fe0f48e5f0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x79fe0f48e680>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x79fe0f48e710>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x79fe0f404800>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 100352, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1718989134588631754, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAEoy5b5udIU/gI03vqERx74yWb2+6338PQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0035199999999999676, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVAwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEZsV9F4LTiMAWyUS+yMAXSUR0Bj8rFjurp8dX2UKGgGR8BYoEdFOO81aAdLvWgIR0Bj/yZYxL00dX2UKGgGR8A1xz8P4EfUaAdL6GgIR0BkH1DfFaStdX2UKGgGR8BjUW3UhFEzaAdNTQFoCEdAZC5RoAXEZXV9lChoBkfAZ2ALNwBHTmgHTQUBaAhHQGQ6drGipNt1fZQoaAZHQEDgGB4D9wZoB0u1aAhHQGRC987ZFod1fZQoaAZHwFMCcpsoDxNoB00fAWgIR0BkUE8YAKfGdX2UKGgGRz//IRIz3yqdaAdL9WgIR0BkW+i+L3sYdX2UKGgGR0BDY93B55Z9aAdN6ANoCEdAZJ6cLBsQ/XV9lChoBkdAVCZ7XxvvSmgHTegDaAhHQGTMog3cYZV1fZQoaAZHwB56s2eg+QloB0vhaAhHQGTWr4vexfR1fZQoaAZHQDt6MBIWgvloB0uWaAhHQGTdU2DQJHB1fZQoaAZHwDXg+yJKraNoB0uhaAhHQGTkwXIlt0p1fZQoaAZHwE3Rt1IRRMxoB0vfaAhHQGTuvBrN4aB1fZQoaAZHwFHzY1YQrc1oB02rAmgIR0BlIodXDFZQdX2UKGgGR8BTYgqAjIJaaAdLh2gIR0BlKJAlfJFLdX2UKGgGR8A2g1vVEuxsaAdLk2gIR0BlLzp9qk/KdX2UKGgGR8AXA1Muez2OaAdLrGgIR0BlNwDNhVlxdX2UKGgGR8Bjxz81n/T9aAdLs2gIR0BlPxEYwZfldX2UKGgGR0AzDbvw3HaOaAdN6ANoCEdAZZbMfzSThnV9lChoBkfATl+8brC3w2gHS+NoCEdAZaE9ECvHLnV9lChoBkfAT4tDF6zE8GgHS/poCEdAZaz0U47zTXV9lChoBkdAN19oN/e+EmgHTegDaAhHQGXawIldC3R1fZQoaAZHwGYjgzpHI6toB0vbaAhHQGXkcPnSv1V1fZQoaAZHwBE6Vlf7aZhoB0u/aAhHQGYAxgZ0jkd1fZQoaAZHwEnTEqDsdDJoB00HAWgIR0BmDU4gieNDdX2UKGgGR8BQrjXnQpnZaAdLv2gIR0BmFjC+De0pdX2UKGgGR8BiG8/SpiqiaAdNIAFoCEdAZiM4rBj4H3V9lChoBkfAPmVNpM6BAmgHS9BoCEdAZizdKNAC4nV9lChoBkfASqFeQdS2pmgHS91oCEdAZjbV/+bVjXV9lChoBkfAZS4OGTLW7WgHS9NoCEdAZkBLzwtrbnV9lChoBkdAFYWsijcmB2gHS3VoCEdAZkWGCZnctXV9lChoBkfAQhoxnFo+OmgHS/toCEdAZlE4I8hcJXV9lChoBkfALoZtelbeM2gHTRwBaAhHQGZxyLIgeRx1fZQoaAZHQDhU0tRNyo5oB0tuaAhHQGZ2zAFgUlB1fZQoaAZHQCxM3IdU83doB0vEaAhHQGZ/zX8O09h1fZQoaAZHwD2f2ugYgq5oB00fAWgIR0BmjareZXuFdX2UKGgGR8BkcWvllsguaAdN1gFoCEdAZqNtrsSkCXV9lChoBkfAYu+rELpiZ2gHTeECaAhHQGbF4A0bcXZ1fZQoaAZHwGA3aOo5xR5oB0vxaAhHQGbq+u/1xsF1fZQoaAZHwFcWymALApNoB0vSaAhHQGb3WQOnVG11fZQoaAZHwFrMuCPIXCVoB0vtaAhHQGcGv4ubqhV1fZQoaAZHwBOC4J/oaDRoB0veaAhHQGcVFg+hXbN1fZQoaAZHQGSao5ggHNZoB03oA2gIR0BnSpUDMeOodX2UKGgGR0BVYBJul41QaAdN6ANoCEdAZ4uDvmYBvXV9lChoBkdAQ1Nr9ETg22gHS4hoCEdAZ5G2OyVv/HV9lChoBkfAROBWtEG7jGgHS5JoCEdAZ5insLORknV9lChoBkdAR5/5gw482mgHS75oCEdAZ6GCGN70F3V9lChoBkdAWVwNI9TxXmgHTegDaAhHQGfkyCnP3SN1fZQoaAZHQEsA3NLUTctoB0vLaAhHQGfuQiiZfD11fZQoaAZHwFg0Moc7yQRoB0v+aAhHQGf6fBWPtD51fZQoaAZHQC7iMxXXAdpoB0vEaAhHQGgDjT8YQ8R1fZQoaAZHv/bQoTfzjFRoB0vvaAhHQGgObdJrcj91fZQoaAZHwFGvKw6hg3NoB00DAWgIR0BoGj04BFNMdX2UKGgGR8BIDVVHWjGlaAdLyGgIR0BoIy7mMfihdX2UKGgGR8AhfFOO801qaAdNEgFoCEdAaC9z7uUliXV9lChoBkfAVd3OW0JF9mgHTRsBaAhHQGg8kWZZ0S11fZQoaAZHQFRVOVgQYk5oB03oA2gIR0Bohcsg+yJLdX2UKGgGR0BapI6Kcd5qaAdN6ANoCEdAaMXVrAP/aXV9lChoBkfAWkm86FM7EGgHTRQBaAhHQGjm1z6rNnp1fZQoaAZHQERGauwHJLdoB008AWgIR0Bo9Wrfcer/dX2UKGgGR8AGDkuHvc8DaAdLzGgIR0Bo/vueBg/kdX2UKGgGR8BiTGSSvC/HaAdL62gIR0BpCdbTtsvadX2UKGgGR8BbGug6EJ0GaAdL5mgIR0BpFHXAdn01dX2UKGgGR8BXNStzS1E3aAdL4WgIR0BpHut6ol2NdX2UKGgGR8BiANq+JxecaAdNFQFoCEdAaSwT/Q0GeXV9lChoBkfASpctEofCAWgHS6RoCEdAaTOxY7q6fHV9lChoBkfAV3g8SwnpjmgHS9toCEdAaVE+10DEFXV9lChoBkdARaDmZE2HcmgHS+VoCEdAaVw9nK4hEHV9lChoBkfAVmCs4ku6E2gHS8toCEdAaWW89wFTvXV9lChoBkfARbtTvRZ2ZGgHS8xoCEdAaW+sWfseGXV9lChoBkfASWn8CPp6hWgHS7ZoCEdAaXgJ8fFJhHV9lChoBkdAWIa4SYgJTmgHTegDaAhHQGmnxywOe8R1fZQoaAZHwF7OndweeWhoB0uHaAhHQGmu2c8Tzup1fZQoaAZHwFWxXcgyM1loB00UAWgIR0BpzzYAbQ1KdX2UKGgGR0Bb8pvLowEhaAdN6ANoCEdAaf3mYBvJinV9lChoBkdAWgzw6QvHtGgHTZQCaAhHQGokfDk2gnN1fZQoaAZHwFVKmTTvy9VoB0vkaAhHQGpOEM9bHIZ1fZQoaAZHv8W5WilBQepoB0vfaAhHQGpdanaWX1J1fZQoaAZHwDP3H7xd6cBoB0u2aAhHQGpl2ZZ0Syt1fZQoaAZHQFl+4j8k2P1oB03oA2gIR0BqlZgPVd5ZdX2UKGgGR8BfeTsMRYigaAdL2mgIR0Bqn4I4VARkdX2UKGgGR7+6sKb8WKuTaAdNEQFoCEdAaqxaGHpKSXV9lChoBkdAGnu5SWJJoWgHS7VoCEdAasf1/2Cd0HV9lChoBkc/7LqW1MM7VGgHS85oCEdAatG5dWyTp3V9lChoBkdAQYsy+HrQgWgHS7RoCEdAatnqoqCpWHV9lChoBkdAKsGQ0XP7emgHS4loCEdAauAxM36yjnV9lChoBkdAWKHKZDzAe2gHTegDaAhHQGsPWjGkvbp1fZQoaAZHwCo53A2ycCpoB0vBaAhHQGsYQKa5PM11fZQoaAZHQERRQnhKlHloB0u9aAhHQGshSmqHXVd1fZQoaAZHQEqhAZbY9PloB0uGaAhHQGs7UL+glGB1fZQoaAZHwDP1KjBVMmFoB0uSaAhHQGtCDa4+bEx1fZQoaAZHQE1J71Iy0rtoB0vUaAhHQGtLzD4xk/d1fZQoaAZHwDBaMdcSoOxoB0uVaAhHQGtSuctoSL91fZQoaAZHQDyF/PPcBU9oB0uBaAhHQGtYeTmnwXt1fZQoaAZHQD5mg9Net0VoB0uhaAhHQGtfisXBP9F1fZQoaAZHwDePgl4TsY5oB0uiaAhHQGtm0LUkOZt1fZQoaAZHQGPmRiw0O3FoB03oA2gIR0BrlM8kleF+dX2UKGgGR0BYUrlzU7SzaAdN6ANoCEdAa+v8qnWJ8HV9lChoBkdAWhWUJOWSlmgHTegDaAhHQGwerYwqRU51ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 864, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVOwMAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJRoMowUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoPYoRWqXGvW45CTd25CEYVrN5hgCMA2luY5SKEfUTrPsJAKQDC67OJQvTQqwAdYwKaGFzX3VpbnQzMpRLAIwIdWludGVnZXKUSwB1YnViLg==", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": "Generator(PCG64)"}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWVogEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJRoG4wUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoJooRm87Bim9w9JA3jUVo+1datACMA2luY5SKEMWrPWV2XkeQ04lEY6BAVzB1jApoYXNfdWludDMylEsBjAh1aW50ZWdlcpRKIhSnPHVidWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": "Generator(PCG64)"}, "n_envs": 1, "n_steps": 2048, "gamma": 0.9999, "gae_lambda": 0.98, "ent_coef": 0.001, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 256, "n_epochs": 16, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Apr 28 14:29:16 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}