Upload 3 files
Browse files- SpaceGen_preprocessing.py +159 -0
- app.py +28 -0
- utils.py +71 -0
SpaceGen_preprocessing.py
ADDED
@@ -0,0 +1,159 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import numpy as np
|
3 |
+
from sklearn.preprocessing import OneHotEncoder
|
4 |
+
|
5 |
+
class SpaceGen_preprocessing:
|
6 |
+
def __init__(self, content = "helloworld", size= 10, past_capacity = 5 , future_capacity = 5):
|
7 |
+
self.size = size
|
8 |
+
self.content = content[:self.size]
|
9 |
+
self.past_capacity = past_capacity
|
10 |
+
self.future_capacity = future_capacity
|
11 |
+
self.num_features = self.past_capacity + self.future_capacity + 1 # 1 for letter
|
12 |
+
self.vocabulary = []
|
13 |
+
|
14 |
+
def create_vocabulary(self, correct_txt):
|
15 |
+
'''
|
16 |
+
Returns the unique letters of the given text + '-1'
|
17 |
+
'''
|
18 |
+
vocabulary = list({b for b in bytes(correct_txt, 'utf-8')})
|
19 |
+
vocabulary.append(-1)
|
20 |
+
vocabulary = sorted(vocabulary)
|
21 |
+
self.vocabulary = vocabulary
|
22 |
+
return None
|
23 |
+
|
24 |
+
@staticmethod
|
25 |
+
def create_decision_vector(W: list, C: list):
|
26 |
+
'''
|
27 |
+
Returns the Decision Vector(D),
|
28 |
+
given Wrong Vector(W) and Correct Vector(C)
|
29 |
+
'''
|
30 |
+
D = []
|
31 |
+
w_i = 0
|
32 |
+
c_i = 0
|
33 |
+
while w_i < len(W):
|
34 |
+
if W[w_i] == C[c_i]:
|
35 |
+
D.append('K')
|
36 |
+
w_i += 1
|
37 |
+
c_i += 1
|
38 |
+
elif W[w_i] == 32 and C[c_i] != 32 :
|
39 |
+
D.append('D')
|
40 |
+
w_i += 1
|
41 |
+
elif C[c_i] == 32 and W[w_i] != 32:
|
42 |
+
D.append('I')
|
43 |
+
c_i += 1
|
44 |
+
w_i += 1
|
45 |
+
else:
|
46 |
+
c_i += 1
|
47 |
+
return D
|
48 |
+
|
49 |
+
|
50 |
+
@staticmethod
|
51 |
+
def to_correct(W, D):
|
52 |
+
'''
|
53 |
+
Returns the correct text,
|
54 |
+
given Wrong Vector(W) and Decision Vector(D)
|
55 |
+
'''
|
56 |
+
output_vec = []
|
57 |
+
for i in range(0, len(D)):
|
58 |
+
if D[i] == 'K':
|
59 |
+
output_vec.append(W[i])
|
60 |
+
elif D[i] == 'I':
|
61 |
+
output_vec.append(32)
|
62 |
+
output_vec.append(W[i])
|
63 |
+
elif D[i] == 'D':
|
64 |
+
pass
|
65 |
+
decoded_text = bytes(output_vec).decode()
|
66 |
+
return decoded_text
|
67 |
+
|
68 |
+
|
69 |
+
@staticmethod
|
70 |
+
def to_bytes_list(text: str, encoding = 'UTF-8'):
|
71 |
+
'''
|
72 |
+
Returns the bytes list of a given text
|
73 |
+
'''
|
74 |
+
return [b for b in bytes(text, encoding)]
|
75 |
+
|
76 |
+
|
77 |
+
@staticmethod
|
78 |
+
def to_one_hot_df(wrong_txt, D):
|
79 |
+
'''
|
80 |
+
Returns the one hot encoded dataframe,
|
81 |
+
given Wrong Vector(W) and Decision Vector(D)
|
82 |
+
'''
|
83 |
+
df = pd.DataFrame({'letter':[l for l in wrong_txt],'decision':D})
|
84 |
+
encoding = OneHotEncoder()
|
85 |
+
y_matrix = encoding.fit_transform(df[['decision']])
|
86 |
+
onehot_df = pd.DataFrame(y_matrix.toarray(), columns = encoding.get_feature_names_out(['decision']) )
|
87 |
+
onehot_df = onehot_df.astype('int')
|
88 |
+
example_df = pd.concat([df, onehot_df], axis=1)
|
89 |
+
example_df =example_df.drop(['decision'], axis=1)
|
90 |
+
return example_df
|
91 |
+
|
92 |
+
|
93 |
+
@staticmethod
|
94 |
+
def decode_vec(arr):
|
95 |
+
'''
|
96 |
+
Returns the decoded text,
|
97 |
+
given the bytes list
|
98 |
+
'''
|
99 |
+
return bytes(arr).decode()
|
100 |
+
|
101 |
+
|
102 |
+
@staticmethod
|
103 |
+
def sliding_window_past(arr, window_size = 5):
|
104 |
+
'''
|
105 |
+
Returns the past sliding window of the given array and window size
|
106 |
+
'''
|
107 |
+
arr = list(arr)
|
108 |
+
new_arr = []
|
109 |
+
for i in range(len(arr)):
|
110 |
+
start_window = max(0, i- window_size)
|
111 |
+
tmp_seq = arr[start_window:i]
|
112 |
+
if window_size - len(tmp_seq) ==0:
|
113 |
+
new_arr.append(tmp_seq)
|
114 |
+
else:
|
115 |
+
new_arr.append([-1] * (window_size - len(tmp_seq)) + tmp_seq)
|
116 |
+
return new_arr
|
117 |
+
|
118 |
+
|
119 |
+
@staticmethod
|
120 |
+
def sliding_window_future(arr, window_size = 5):
|
121 |
+
'''
|
122 |
+
Returns the future sliding window of the given array and window size
|
123 |
+
'''
|
124 |
+
arr = list(arr)
|
125 |
+
seq = []
|
126 |
+
for i in range(len(arr)):
|
127 |
+
p = arr[i+1:i+window_size+1]
|
128 |
+
if window_size - len(p) ==0:
|
129 |
+
seq.append(p)
|
130 |
+
else:
|
131 |
+
seq.append(p + [-1] * (window_size - len(p)))
|
132 |
+
return seq
|
133 |
+
|
134 |
+
@staticmethod
|
135 |
+
def insert_random_spaces(text, percent = .25):
|
136 |
+
'''
|
137 |
+
Returns the text with random spaces inserted
|
138 |
+
'''
|
139 |
+
l = list(text)
|
140 |
+
rand_indices = np.random.randint(0, len(l)+1, int(np.round(len(l) * percent)))
|
141 |
+
print(rand_indices)
|
142 |
+
t = 1
|
143 |
+
for i in range(len(l)+1):
|
144 |
+
if i in rand_indices:
|
145 |
+
l.insert(i + t, ' ')
|
146 |
+
t+=1
|
147 |
+
new_txt = ''.join(l).strip()
|
148 |
+
return new_txt
|
149 |
+
|
150 |
+
|
151 |
+
@staticmethod
|
152 |
+
def prob_to_decision(a):
|
153 |
+
'''
|
154 |
+
Return I or K given probability vector
|
155 |
+
'''
|
156 |
+
if a[0] > a[1]:
|
157 |
+
return 'I'
|
158 |
+
else:
|
159 |
+
return 'K'
|
app.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import tensorflow as tf
|
3 |
+
from SpaceGen_preprocessing import *
|
4 |
+
from utils import *
|
5 |
+
|
6 |
+
|
7 |
+
# Path to your Keras model
|
8 |
+
model_path = "SpaceGen_Large.keras"
|
9 |
+
|
10 |
+
# Load the model
|
11 |
+
model = tf.keras.models.load_model(model_path)
|
12 |
+
|
13 |
+
|
14 |
+
def fix_space(text):
|
15 |
+
text = clean_sentence(text)
|
16 |
+
X = text_to_X(text)
|
17 |
+
predictions = model.predict(X, verbose=0)
|
18 |
+
predicted_labels = []
|
19 |
+
for pred in predictions[0]:
|
20 |
+
predicted_labels.append(1 if pred[1] > .5 else 0)
|
21 |
+
fixed_text = insert_spaces(text.replace(' ',''), find_indices(predicted_labels))
|
22 |
+
return fixed_text
|
23 |
+
|
24 |
+
default_text = "T hel ittlegi rlra nthro ughth epa rkc has ing abut terfly."
|
25 |
+
demo = gr.Interface(fn=fix_space,
|
26 |
+
inputs=gr.Textbox(label="Input Text", value=default_text),
|
27 |
+
outputs="text")
|
28 |
+
demo.launch()
|
utils.py
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pandas as pd
|
3 |
+
import string
|
4 |
+
import re
|
5 |
+
from SpaceGen_preprocessing import SpaceGen_preprocessing as sp
|
6 |
+
|
7 |
+
max_len = 853
|
8 |
+
|
9 |
+
def text_to_X(text):
|
10 |
+
test_text = text.replace(' ', '')
|
11 |
+
data = pd.DataFrame([test_text], columns=["correct_sentence"])
|
12 |
+
data['wrong_sentence'] = data['correct_sentence'].apply(lambda text: text.replace(' ',''))
|
13 |
+
data['bytes_correct'] = data['correct_sentence'].apply(lambda text: sp.to_bytes_list(text))
|
14 |
+
data['bytes_wrong'] = data['wrong_sentence'].apply(lambda text: sp.to_bytes_list(text))
|
15 |
+
data['decision'] = data[['bytes_wrong','bytes_correct']].apply(lambda row: sp.create_decision_vector(row['bytes_wrong'], row['bytes_correct']), axis=1)
|
16 |
+
dec_dict = {'K': 0, 'I': 1}
|
17 |
+
data['decision'] = data['decision'].apply(lambda dec: [dec_dict[d] for d in dec])
|
18 |
+
data = data[data.bytes_wrong.apply(lambda bytes_wrong: len(bytes_wrong) <= 1000)]
|
19 |
+
lngths = [len(bytes_wrong) for bytes_wrong in data.bytes_wrong.tolist()]
|
20 |
+
|
21 |
+
data['bytes_wrong_padded'] = data['bytes_wrong'].apply(lambda bytes_wrong: bytes_wrong + [0]*(max_len-len(bytes_wrong)))
|
22 |
+
data['decision_padded'] = data['decision'].apply(lambda decision: decision + [0]*(max_len-len(decision)))
|
23 |
+
data['bytes_wrong_padded'] = data['bytes_wrong_padded'].apply(lambda bytes_wrong: np.array(bytes_wrong))
|
24 |
+
data['decision_padded'] = data['decision_padded'].apply(lambda decision: np.array(decision))
|
25 |
+
data['wrong_sentence_padded'] = data['wrong_sentence'].apply(lambda wrong_sentence: wrong_sentence + '#'*(max_len-len(wrong_sentence)))
|
26 |
+
data['bytes_wrong_one_hot'] = data['wrong_sentence_padded'].apply(one_hot_encode)
|
27 |
+
data['bytes_wrong_one_hot'] = data['bytes_wrong_one_hot'].apply(lambda bytes_wrong: np.array(bytes_wrong))
|
28 |
+
X = np.stack(data.bytes_wrong_one_hot)
|
29 |
+
return X
|
30 |
+
|
31 |
+
def find_indices(lst):
|
32 |
+
indices = []
|
33 |
+
for idx, value in enumerate(lst):
|
34 |
+
if value == 1:
|
35 |
+
indices.append(idx)
|
36 |
+
return indices
|
37 |
+
|
38 |
+
def insert_spaces(text, indices):
|
39 |
+
result = []
|
40 |
+
for i, char in enumerate(text):
|
41 |
+
if i in indices:
|
42 |
+
result.append(" ")
|
43 |
+
result.append(char)
|
44 |
+
return "".join(result)
|
45 |
+
|
46 |
+
|
47 |
+
def clean_sentence(sentence):
|
48 |
+
pattern = r'[^A-Za-z#.\'!, ]'
|
49 |
+
return re.sub(pattern, '', sentence)
|
50 |
+
|
51 |
+
import numpy as np
|
52 |
+
|
53 |
+
def one_hot_encode(text):
|
54 |
+
# Define the vocabulary
|
55 |
+
vocab = list('abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ#.\'!,')
|
56 |
+
vocab_size = len(vocab)
|
57 |
+
|
58 |
+
# Create a mapping from character to index
|
59 |
+
char_to_index = {char: idx for idx, char in enumerate(vocab)}
|
60 |
+
|
61 |
+
# Initialize the one-hot encoded array
|
62 |
+
one_hot_encoded = np.zeros((len(text), vocab_size), dtype=int)
|
63 |
+
|
64 |
+
# Convert each character to one-hot encoded vector
|
65 |
+
for i, char in enumerate(text):
|
66 |
+
if char in char_to_index: # Ensure character is in the vocabulary
|
67 |
+
one_hot_encoded[i, char_to_index[char]] = 1
|
68 |
+
else:
|
69 |
+
raise ValueError(f"Character '{char}' not in vocabulary")
|
70 |
+
|
71 |
+
return one_hot_encoded
|