asadfgglie
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -1,70 +1,93 @@
|
|
1 |
-
---
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
-
|
25 |
-
|
26 |
-
-
|
27 |
-
-
|
28 |
-
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
-
|
54 |
-
-
|
55 |
-
-
|
56 |
-
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- accuracy
|
7 |
+
model-index:
|
8 |
+
- name: mDeBERTa-v3-base-xnli-multilingual-nli-2mil7
|
9 |
+
results: []
|
10 |
+
datasets:
|
11 |
+
- asadfgglie/nli-zh-tw-all
|
12 |
+
language:
|
13 |
+
- zh
|
14 |
+
pipeline_tag: zero-shot-classification
|
15 |
+
---
|
16 |
+
|
17 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
18 |
+
should probably proofread and complete it, then remove this comment. -->
|
19 |
+
|
20 |
+
# mDeBERTa-v3-base-xnli-multilingual-zeroshot-v4.0-only-nli-downsample
|
21 |
+
|
22 |
+
This model use same dataset with [asadfgglie/mDeBERTa-v3-base-xnli-multilingual-zeroshot-v1.0](https://huggingface.co/asadfgglie/mDeBERTa-v3-base-xnli-multilingual-zeroshot-v1.0), but training set was downsampled as 80% size of non-nli dataset [asadfgglie/BanBan_2024-10-17-facial_expressions-nli](https://huggingface.co/datasets/asadfgglie/BanBan_2024-10-17-facial_expressions-nli).
|
23 |
+
|
24 |
+
This model is a fine-tuned version of [MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7](https://huggingface.co/MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7) on the None dataset.
|
25 |
+
It achieves the following results on the evaluation set:
|
26 |
+
- Loss: 0.4486
|
27 |
+
- F1 Macro: 0.8264
|
28 |
+
- F1 Micro: 0.8274
|
29 |
+
- Accuracy Balanced: 0.8270
|
30 |
+
- Accuracy: 0.8274
|
31 |
+
- Precision Macro: 0.8260
|
32 |
+
- Recall Macro: 0.8270
|
33 |
+
- Precision Micro: 0.8274
|
34 |
+
- Recall Micro: 0.8274
|
35 |
+
|
36 |
+
## Model description
|
37 |
+
|
38 |
+
More information needed
|
39 |
+
|
40 |
+
## Intended uses & limitations
|
41 |
+
|
42 |
+
More information needed
|
43 |
+
|
44 |
+
## Training and evaluation data
|
45 |
+
|
46 |
+
More information needed
|
47 |
+
|
48 |
+
## Training procedure
|
49 |
+
|
50 |
+
### Training hyperparameters
|
51 |
+
|
52 |
+
The following hyperparameters were used during training:
|
53 |
+
- learning_rate: 2e-05
|
54 |
+
- train_batch_size: 16
|
55 |
+
- eval_batch_size: 128
|
56 |
+
- seed: 20241201
|
57 |
+
- gradient_accumulation_steps: 2
|
58 |
+
- total_train_batch_size: 32
|
59 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
60 |
+
- lr_scheduler_type: linear
|
61 |
+
- lr_scheduler_warmup_ratio: 0.06
|
62 |
+
- num_epochs: 3
|
63 |
+
|
64 |
+
### Training results
|
65 |
+
|
66 |
+
| Training Loss | Epoch | Step | Validation Loss | F1 Macro | F1 Micro | Accuracy Balanced | Accuracy | Precision Macro | Recall Macro | Precision Micro | Recall Micro |
|
67 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:-----------------:|:--------:|:---------------:|:------------:|:---------------:|:------------:|
|
68 |
+
| 0.3242 | 1.69 | 200 | 0.4044 | 0.8308 | 0.8312 | 0.8322 | 0.8312 | 0.8306 | 0.8322 | 0.8312 | 0.8312 |
|
69 |
+
|
70 |
+
### Eval results
|
71 |
+
|Datasets|asadfgglie/nli-zh-tw-all/test|asadfgglie/BanBan_2024-10-17-facial_expressions-nli/test|eval_dataset|test_dataset|
|
72 |
+
| :---: | :---: | :---: | :---: | :---: |
|
73 |
+
|eval_loss|0.445|1.142|0.429|0.449|
|
74 |
+
|eval_f1_macro|0.827|0.505|0.83|0.826|
|
75 |
+
|eval_f1_micro|0.828|0.55|0.831|0.827|
|
76 |
+
|eval_accuracy_balanced|0.828|0.548|0.831|0.827|
|
77 |
+
|eval_accuracy|0.828|0.55|0.831|0.827|
|
78 |
+
|eval_precision_macro|0.827|0.575|0.83|0.826|
|
79 |
+
|eval_recall_macro|0.828|0.548|0.831|0.827|
|
80 |
+
|eval_precision_micro|0.828|0.55|0.831|0.827|
|
81 |
+
|eval_recall_micro|0.828|0.55|0.831|0.827|
|
82 |
+
|eval_runtime|275.581|4.734|54.573|209.065|
|
83 |
+
|eval_samples_per_second|30.844|199.853|31.151|32.526|
|
84 |
+
|eval_steps_per_second|0.243|1.69|0.257|0.258|
|
85 |
+
|epoch|2.99|2.99|2.99|2.99|
|
86 |
+
|Size of dataset|8500|946|1700|6800|
|
87 |
+
|
88 |
+
### Framework versions
|
89 |
+
|
90 |
+
- Transformers 4.33.3
|
91 |
+
- Pytorch 2.5.1+cu121
|
92 |
+
- Datasets 2.14.7
|
93 |
+
- Tokenizers 0.13.3
|