arubenruben commited on
Commit
a9ea066
1 Parent(s): 129f076

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +44 -1
README.md CHANGED
@@ -8,4 +8,47 @@ language:
8
  metrics:
9
  - f1
10
  pipeline_tag: token-classification
11
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
  metrics:
9
  - f1
10
  pipeline_tag: token-classification
11
+ ---
12
+ # Portuguese NER BERT-CRF Conll 2003
13
+
14
+ This model is a fine-tuned BERT model adapted for Named Entity Recognition (NER) tasks. It utilizes Conditional Random Fields (CRF) as the decoder.
15
+
16
+ The model follows the Conll 2003 labeling scheme for NER. Additionally, it provides options for HAREM Default and Selective labeling schemes.
17
+
18
+ ## How to Use
19
+
20
+ You can employ this model using the Transformers library's *pipeline* for NER, or incorporate it as a conventional Transformer in the HuggingFace ecosystem.
21
+
22
+ ```python
23
+ from transformers import pipeline
24
+ import torch
25
+ import nltk
26
+
27
+ ner_classifier = pipeline(
28
+ "ner",
29
+ model="arubenruben/{REPLACE WITH ONE OF THE PIPELINES}",
30
+ device=torch.device("cuda:0") if torch.cuda.is_available() else torch.device("cpu"),
31
+ trust_remote_code=True
32
+ )
33
+
34
+ text = "{INSERT TEXT TO BE CLASSIFIED HERE}"
35
+ tokens = nltk.wordpunct_tokenize(text)
36
+ result = ner_classifier(tokens)
37
+ ```
38
+
39
+ ## Evaluation
40
+
41
+ #### Testing Data
42
+
43
+ The model was tested on the Portuguese Wikineural Dataset.
44
+
45
+ ### Results
46
+
47
+ F1-Score: 0.951
48
+
49
+ ## Citation
50
+
51
+ Citation will be made available soon.
52
+
53
+ **BibTeX:**
54
+ :(