arpan-das-astrophysics commited on
Commit
d9dbba9
1 Parent(s): b2ced52

Initial commit

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1294.48 +/- 215.33
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a1cec16c345cd4e89421d9e3efdb2ec5d899197f8cba23bb1307d03882950500
3
+ size 129243
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.8.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x78df6cf568c0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x78df6cf56950>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x78df6cf569e0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x78df6cf56a70>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x78df6cf56b00>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x78df6cf56b90>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x78df6cf56c20>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x78df6cf56cb0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x78df6cf56d40>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x78df6cf56dd0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x78df6cf56e60>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x78df6cf56ef0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x78df6cf43ac0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "num_timesteps": 2000000,
36
+ "_total_timesteps": 2000000,
37
+ "_num_timesteps_at_start": 0,
38
+ "seed": null,
39
+ "action_noise": null,
40
+ "start_time": 1691260823862687996,
41
+ "learning_rate": 0.00096,
42
+ "tensorboard_log": null,
43
+ "lr_schedule": {
44
+ ":type:": "<class 'function'>",
45
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
46
+ },
47
+ "_last_obs": {
48
+ ":type:": "<class 'numpy.ndarray'>",
49
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAACv1Qb3e4do+DISqPtN8uj57FnQ/PiS9PiEpBD+yDhm+BjKUPzfhHTfPtdE+BU4wvlkJFD/VbGs/KF0VuzfoqD4OGLA/0HoqPypiMj9YHjk9gZglPzU4Gr29YS49gyLsPT5Wj7//ggw/5VObPhjPEz9QAQ+8wgKMP8okJ7/fQ7M/EdKgPuydoz2LanE/SMLJvc7KgT+qbglAu3S+P6ttC7+Koqy/e4XtPzj/gL+i+Jm+k8aDvrZWTj+KYTI/lgt0PNsAgb/LIly+Ma5Yv5UWbz65m2Q//4IMP+VTmz4YzxM/B4DovnbgMT8//R09HRBbPoWcA79yA3g+usCIPgoxFL7UpHA/YsZUvcLKFD9znF4+egABvQsZBD7iUmI+1owdvxPoIT4sgn2+QdU4P2NhIT2E4xC/Bhe6vg9b876nvDu+uZtkP/+CDD/lU5s+GM8TP7vVcr/mX4k/kBobv+t5Xz9EuAe/tzyhv5dbWr9dgpc+WhQsPwDKMEB5dAe/+v8APn9pmj/UB80+GTpiP+FDG0Amp7Y/PK+XP6/pYb2l25M/Fiu3vV/79D/Z6d6+EO71vj5Wj7//ggw/5VObPgqx3b+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
50
+ },
51
+ "_last_episode_starts": {
52
+ ":type:": "<class 'numpy.ndarray'>",
53
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
54
+ },
55
+ "_last_original_obs": {
56
+ ":type:": "<class 'numpy.ndarray'>",
57
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAD5GMy1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA5tXsPQAAAAAeDfG/AAAAAMybozwAAAAACTHyPwAAAACc0l69AAAAAH679z8AAAAA/nitvQAAAADaMvy/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAylvgNAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgJAIuj0AAAAAdlTtvwAAAAA84BE+AAAAABSf4T8AAAAAC+8YPQAAAABXiOE/AAAAAIKanT0AAAAAsyLdvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPL/0DQAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIC+vNq9AAAAACbZ6b8AAAAA2+a/PQAAAAC7euI/AAAAAAVeu70AAAAA+u3hPwAAAADx1749AAAAANHy878AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACt9Ik2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACALMHgvQAAAABF7fm/AAAAAPPwh70AAAAAwwv6PwAAAADJbcA8AAAAACt2AEAAAAAAE1nfvQAAAACBtPG/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
58
+ },
59
+ "_episode_num": 0,
60
+ "use_sde": true,
61
+ "sde_sample_freq": -1,
62
+ "_current_progress_remaining": 0.0,
63
+ "_stats_window_size": 100,
64
+ "ep_info_buffer": {
65
+ ":type:": "<class 'collections.deque'>",
66
+ ":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJSEo8ZDRdCMAWyUTegDjAF0lEdArEqfEXLvC3V9lChoBkdAl2Dq6STyKGgHTegDaAhHQKxKpZha1Tl1fZQoaAZHQIxvHVbzK9xoB03oA2gIR0CsS+3ocJdCdX2UKGgGR0CWD+O5J9RaaAdN6ANoCEdArFFYIppeu3V9lChoBkdAlAsM1wYLs2gHTegDaAhHQKxX975VOsV1fZQoaAZHQJSkcxFiKBNoB03oA2gIR0CsWAHsLORldX2UKGgGR0CShVrWiDdyaAdN6ANoCEdArFnw73fygHV9lChoBkdAkZqMZP2wmmgHTegDaAhHQKxhHSjQAuJ1fZQoaAZHQJO7iyyD7IloB03oA2gIR0CsZ5NkWhysdX2UKGgGR0CRKXDvE0iyaAdN6ANoCEdArGeZ9LHuJHV9lChoBkdAlf6dnPE872gHTegDaAhHQKxo5BNVR1p1fZQoaAZHQJe1+ys0YTFoB03oA2gIR0CsbnjZL7GedX2UKGgGR0CQ+FjUutfYaAdN6ANoCEdArHXVkOI683V9lChoBkdAlpANhAnlXGgHTegDaAhHQKx13fD1oQF1fZQoaAZHQJTApY8uBc1oB03oA2gIR0Csd8gXdj5LdX2UKGgGR0CRiLBvaURnaAdN6ANoCEdArH4EMd92HXV9lChoBkdAkAzqQJXyRWgHTegDaAhHQKyEfcXWOIZ1fZQoaAZHQJEQKvmozepoB03oA2gIR0CshIU70WdmdX2UKGgGR0CTTbzwMH8kaAdN6ANoCEdArIXCu+yquXV9lChoBkdAkNyh2fTTfGgHTegDaAhHQKyLH+8XenB1fZQoaAZHQJFm4yxiXppoB03oA2gIR0Csk0Xa8Hv+dX2UKGgGR0CTKbUornTzaAdN6ANoCEdArJNPlMh5gXV9lChoBkdAjHTrSNOuaGgHTegDaAhHQKyVOjnFHax1fZQoaAZHQJYXswfyPMloB03oA2gIR0CsmrBMajvedX2UKGgGR0CO7OLjxTbWaAdN6ANoCEdArKECsEJSi3V9lChoBkdAkl0S8nNPg2gHTegDaAhHQKyhCSamXPZ1fZQoaAZHQJWE1CkXUH9oB03oA2gIR0Csokx9oexOdX2UKGgGR0CPOwupS75EaAdN6ANoCEdArKe2cjJMg3V9lChoBkdAkMnIgV45cWgHTegDaAhHQKywdeenQ6Z1fZQoaAZHQJNVQYEW69VoB03oA2gIR0CssHvmYBvKdX2UKGgGR0CMHb2zOX3QaAdN6ANoCEdArLHJjMFEA3V9lChoBkdAkE8tsBQvYmgHTegDaAhHQKy3LeLNwBJ1fZQoaAZHQI+zFkBjnV5oB03oA2gIR0CsvZzNliBodX2UKGgGR0CGVJQNTcZcaAdN6ANoCEdArL2jsrupj3V9lChoBkdAlI45sfq5b2gHTegDaAhHQKy+5bCaZx91fZQoaAZHQI7WW+23KCBoB03oA2gIR0CsxE8nuy/sdX2UKGgGR0CSxTQBxPweaAdN6ANoCEdArMzqt5le4XV9lChoBkdAlhe57gKnemgHTegDaAhHQKzM8Z1FH8V1fZQoaAZHQJLDJK02LpBoB03oA2gIR0CszjmVzIV/dX2UKGgGR0CXS4k/KQq7aAdN6ANoCEdArNOtjkMkQnV9lChoBkdAlBEn5rP+oGgHTegDaAhHQKzZ6eEqUeN1fZQoaAZHQJY45gmZ3LVoB03oA2gIR0Cs2e//NqxkdX2UKGgGR0CYYBn6Eal2aAdN6ANoCEdArNs3JFLFoHV9lChoBkdAk73JEDyOJmgHTegDaAhHQKzhSDOC5Et1fZQoaAZHQJTbc3rD631oB03oA2gIR0Cs6TAlfJFLdX2UKGgGR0CWC6oC+10DaAdN6ANoCEdArOk2luWKM3V9lChoBkdAlAx9DIBBA2gHTegDaAhHQKzqiGA08/51fZQoaAZHQJLbQMrmQsBoB03oA2gIR0Cs7/tqpLmIdX2UKGgGR0CWplVMVUMoaAdN6ANoCEdArPZwmzByj3V9lChoBkdAjopAX/HYH2gHTegDaAhHQKz2dxusLfF1fZQoaAZHQJNrip4rz5JoB03oA2gIR0Cs98U163RYdX2UKGgGR0CQWa2TxG2DaAdN6ANoCEdArP7HKW9lE3V9lChoBkdAkRmk34sVcmgHTegDaAhHQK0GAxubZvl1fZQoaAZHQJDah5a/yoZoB03oA2gIR0CtBgnDJlredX2UKGgGR0CUiUrrPdEcaAdN6ANoCEdArQddhZyMk3V9lChoBkdAkmNSyMUAUGgHTegDaAhHQK0My/k/8l51fZQoaAZHQJHlAlolD4RoB03oA2gIR0CtE11lXiiqdX2UKGgGR0CQ5fZeRgZ1aAdN6ANoCEdArRNkKJEYwnV9lChoBkdAkvmvcnE2pGgHTegDaAhHQK0UwFB6a9d1fZQoaAZHQJBMy3iJfploB03oA2gIR0CtHI+CbtqpdX2UKGgGR0CRsd/NJOFhaAdN6ANoCEdArSLwZjx0+3V9lChoBkdAkXBqa1Cw8mgHTegDaAhHQK0i9mrbQC11fZQoaAZHQI/k0otthuxoB03oA2gIR0CtJEgtOEdvdX2UKGgGR0CQDBYODrZ8aAdN6ANoCEdArSmmmce8w3V9lChoBkdAlI6wlnh86WgHTegDaAhHQK0wCzLOiWV1fZQoaAZHQJGKqA+Y+jdoB03oA2gIR0CtMBFJxvNvdX2UKGgGR0CT+Exn3+MqaAdN6ANoCEdArTHf+uNgjXV9lChoBkdAkjI+OXE61mgHTegDaAhHQK05LglWwNd1fZQoaAZHQI9f1gv114hoB03oA2gIR0CtP8B+F10UdX2UKGgGR0CSF9LbHp8naAdN6ANoCEdArT/GucMEzXV9lChoBkdAkaZ15WzWw2gHTegDaAhHQK1BDohY/3Z1fZQoaAZHQI9wZPCVKPJoB03oA2gIR0CtRnhMJx//dX2UKGgGR0CYCaZfD1oQaAdN6ANoCEdArU2lAzHjqHV9lChoBkdAmVKxYJVsDWgHTegDaAhHQK1NrdSEUTN1fZQoaAZHQJMw9YxL0z1oB03oA2gIR0CtT46qsEJTdX2UKGgGR0CXqcce8wpOaAdN6ANoCEdArVXx6dDpknV9lChoBkdAkELvhESdv2gHTegDaAhHQK1cUhFEy+J1fZQoaAZHQJKl8tlI3BJoB03oA2gIR0CtXFqtozvadX2UKGgGR0CQK7OUMXrMaAdN6ANoCEdArV2gKneiz3V9lChoBkdAlweJ5iVjZ2gHTegDaAhHQK1jBYSQHRl1fZQoaAZHQJbbbhgmZ3NoB03oA2gIR0CtatCF0xM4dX2UKGgGR0CaKDbMHKOlaAdN6ANoCEdArWrZ+jM3ZXV9lChoBkdAkrsjOLR8dGgHTegDaAhHQK1s1yksSTR1fZQoaAZHQJaq9LQHAypoB03oA2gIR0CtcnP/BFd+dX2UKGgGR0CUyKUN8VpLaAdN6ANoCEdArXjLWbwz+HV9lChoBkdAkk4hgVoHs2gHTegDaAhHQK140YMvysl1fZQoaAZHQJeQoQTVUddoB03oA2gIR0CtehShzvJBdX2UKGgGR0CVe/3cHnloaAdN6ANoCEdArX+C1NQCS3V9lChoBkdAkMVkETxoZmgHTegDaAhHQK2IOWC2+f11fZQoaAZHQJQdB7D2rXFoB03oA2gIR0CtiEN5t3wDdX2UKGgGR0CU/CKCg9NfaAdN6ANoCEdArYmeJrLyMHV9lChoBkdAljHAHeJpFmgHTegDaAhHQK2PIPUaybB1fZQoaAZHQER+zP8hs69oB0uRaAhHQK2RAd3B55Z1fZQoaAZHQJeKkSOBDohoB03oA2gIR0CtlXCb+cYqdX2UKGgGR0CT5kT6i0v5aAdN6ANoCEdArZV2e4Cp33V9lChoBkdAlWWqTOgQH2gHTegDaAhHQK2WwsH0K7Z1fZQoaAZHQJMSsjLSuyNoB03oA2gIR0CtnuJ4SpR5dX2UKGgGR0CQpxFId2gWaAdN6ANoCEdAraTJE+gUUXV9lChoBkdAlkiWY8dPtWgHTegDaAhHQK2kz05EMLF1fZQoaAZHQJJdeeumrKhoB03oA2gIR0Ctphtm16VudWUu"
67
+ },
68
+ "ep_success_buffer": {
69
+ ":type:": "<class 'collections.deque'>",
70
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
71
+ },
72
+ "_n_updates": 62500,
73
+ "n_steps": 8,
74
+ "gamma": 0.99,
75
+ "gae_lambda": 0.9,
76
+ "ent_coef": 0.0,
77
+ "vf_coef": 0.4,
78
+ "max_grad_norm": 0.5,
79
+ "normalize_advantage": false,
80
+ "observation_space": {
81
+ ":type:": "<class 'gym.spaces.box.Box'>",
82
+ ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
83
+ "dtype": "float32",
84
+ "_shape": [
85
+ 28
86
+ ],
87
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
88
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
89
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
90
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
91
+ "_np_random": null
92
+ },
93
+ "action_space": {
94
+ ":type:": "<class 'gym.spaces.box.Box'>",
95
+ ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu",
96
+ "dtype": "float32",
97
+ "_shape": [
98
+ 8
99
+ ],
100
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
101
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
102
+ "bounded_below": "[ True True True True True True True True]",
103
+ "bounded_above": "[ True True True True True True True True]",
104
+ "_np_random": null
105
+ },
106
+ "n_envs": 4
107
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2269c82aa90dad6c4ff349f778416d13ff53f689b32d82da8fcaeee36d3fbb3a
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cf3b4967525e087d804dfbe97b29340d3c52431277c663c2fe7667f0e13abc80
3
+ size 56894
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 1.8.0
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x78df6cf568c0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x78df6cf56950>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x78df6cf569e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x78df6cf56a70>", "_build": "<function ActorCriticPolicy._build at 0x78df6cf56b00>", "forward": "<function ActorCriticPolicy.forward at 0x78df6cf56b90>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x78df6cf56c20>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x78df6cf56cb0>", "_predict": "<function ActorCriticPolicy._predict at 0x78df6cf56d40>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x78df6cf56dd0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x78df6cf56e60>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x78df6cf56ef0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x78df6cf43ac0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1691260823862687996, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAACv1Qb3e4do+DISqPtN8uj57FnQ/PiS9PiEpBD+yDhm+BjKUPzfhHTfPtdE+BU4wvlkJFD/VbGs/KF0VuzfoqD4OGLA/0HoqPypiMj9YHjk9gZglPzU4Gr29YS49gyLsPT5Wj7//ggw/5VObPhjPEz9QAQ+8wgKMP8okJ7/fQ7M/EdKgPuydoz2LanE/SMLJvc7KgT+qbglAu3S+P6ttC7+Koqy/e4XtPzj/gL+i+Jm+k8aDvrZWTj+KYTI/lgt0PNsAgb/LIly+Ma5Yv5UWbz65m2Q//4IMP+VTmz4YzxM/B4DovnbgMT8//R09HRBbPoWcA79yA3g+usCIPgoxFL7UpHA/YsZUvcLKFD9znF4+egABvQsZBD7iUmI+1owdvxPoIT4sgn2+QdU4P2NhIT2E4xC/Bhe6vg9b876nvDu+uZtkP/+CDD/lU5s+GM8TP7vVcr/mX4k/kBobv+t5Xz9EuAe/tzyhv5dbWr9dgpc+WhQsPwDKMEB5dAe/+v8APn9pmj/UB80+GTpiP+FDG0Amp7Y/PK+XP6/pYb2l25M/Fiu3vV/79D/Z6d6+EO71vj5Wj7//ggw/5VObPgqx3b+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAD5GMy1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA5tXsPQAAAAAeDfG/AAAAAMybozwAAAAACTHyPwAAAACc0l69AAAAAH679z8AAAAA/nitvQAAAADaMvy/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAylvgNAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgJAIuj0AAAAAdlTtvwAAAAA84BE+AAAAABSf4T8AAAAAC+8YPQAAAABXiOE/AAAAAIKanT0AAAAAsyLdvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPL/0DQAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIC+vNq9AAAAACbZ6b8AAAAA2+a/PQAAAAC7euI/AAAAAAVeu70AAAAA+u3hPwAAAADx1749AAAAANHy878AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACt9Ik2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACALMHgvQAAAABF7fm/AAAAAPPwh70AAAAAwwv6PwAAAADJbcA8AAAAACt2AEAAAAAAE1nfvQAAAACBtPG/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJSEo8ZDRdCMAWyUTegDjAF0lEdArEqfEXLvC3V9lChoBkdAl2Dq6STyKGgHTegDaAhHQKxKpZha1Tl1fZQoaAZHQIxvHVbzK9xoB03oA2gIR0CsS+3ocJdCdX2UKGgGR0CWD+O5J9RaaAdN6ANoCEdArFFYIppeu3V9lChoBkdAlAsM1wYLs2gHTegDaAhHQKxX975VOsV1fZQoaAZHQJSkcxFiKBNoB03oA2gIR0CsWAHsLORldX2UKGgGR0CShVrWiDdyaAdN6ANoCEdArFnw73fygHV9lChoBkdAkZqMZP2wmmgHTegDaAhHQKxhHSjQAuJ1fZQoaAZHQJO7iyyD7IloB03oA2gIR0CsZ5NkWhysdX2UKGgGR0CRKXDvE0iyaAdN6ANoCEdArGeZ9LHuJHV9lChoBkdAlf6dnPE872gHTegDaAhHQKxo5BNVR1p1fZQoaAZHQJe1+ys0YTFoB03oA2gIR0CsbnjZL7GedX2UKGgGR0CQ+FjUutfYaAdN6ANoCEdArHXVkOI683V9lChoBkdAlpANhAnlXGgHTegDaAhHQKx13fD1oQF1fZQoaAZHQJTApY8uBc1oB03oA2gIR0Csd8gXdj5LdX2UKGgGR0CRiLBvaURnaAdN6ANoCEdArH4EMd92HXV9lChoBkdAkAzqQJXyRWgHTegDaAhHQKyEfcXWOIZ1fZQoaAZHQJEQKvmozepoB03oA2gIR0CshIU70WdmdX2UKGgGR0CTTbzwMH8kaAdN6ANoCEdArIXCu+yquXV9lChoBkdAkNyh2fTTfGgHTegDaAhHQKyLH+8XenB1fZQoaAZHQJFm4yxiXppoB03oA2gIR0Csk0Xa8Hv+dX2UKGgGR0CTKbUornTzaAdN6ANoCEdArJNPlMh5gXV9lChoBkdAjHTrSNOuaGgHTegDaAhHQKyVOjnFHax1fZQoaAZHQJYXswfyPMloB03oA2gIR0CsmrBMajvedX2UKGgGR0CO7OLjxTbWaAdN6ANoCEdArKECsEJSi3V9lChoBkdAkl0S8nNPg2gHTegDaAhHQKyhCSamXPZ1fZQoaAZHQJWE1CkXUH9oB03oA2gIR0Csokx9oexOdX2UKGgGR0CPOwupS75EaAdN6ANoCEdArKe2cjJMg3V9lChoBkdAkMnIgV45cWgHTegDaAhHQKywdeenQ6Z1fZQoaAZHQJNVQYEW69VoB03oA2gIR0CssHvmYBvKdX2UKGgGR0CMHb2zOX3QaAdN6ANoCEdArLHJjMFEA3V9lChoBkdAkE8tsBQvYmgHTegDaAhHQKy3LeLNwBJ1fZQoaAZHQI+zFkBjnV5oB03oA2gIR0CsvZzNliBodX2UKGgGR0CGVJQNTcZcaAdN6ANoCEdArL2jsrupj3V9lChoBkdAlI45sfq5b2gHTegDaAhHQKy+5bCaZx91fZQoaAZHQI7WW+23KCBoB03oA2gIR0CsxE8nuy/sdX2UKGgGR0CSxTQBxPweaAdN6ANoCEdArMzqt5le4XV9lChoBkdAlhe57gKnemgHTegDaAhHQKzM8Z1FH8V1fZQoaAZHQJLDJK02LpBoB03oA2gIR0CszjmVzIV/dX2UKGgGR0CXS4k/KQq7aAdN6ANoCEdArNOtjkMkQnV9lChoBkdAlBEn5rP+oGgHTegDaAhHQKzZ6eEqUeN1fZQoaAZHQJY45gmZ3LVoB03oA2gIR0Cs2e//NqxkdX2UKGgGR0CYYBn6Eal2aAdN6ANoCEdArNs3JFLFoHV9lChoBkdAk73JEDyOJmgHTegDaAhHQKzhSDOC5Et1fZQoaAZHQJTbc3rD631oB03oA2gIR0Cs6TAlfJFLdX2UKGgGR0CWC6oC+10DaAdN6ANoCEdArOk2luWKM3V9lChoBkdAlAx9DIBBA2gHTegDaAhHQKzqiGA08/51fZQoaAZHQJLbQMrmQsBoB03oA2gIR0Cs7/tqpLmIdX2UKGgGR0CWplVMVUMoaAdN6ANoCEdArPZwmzByj3V9lChoBkdAjopAX/HYH2gHTegDaAhHQKz2dxusLfF1fZQoaAZHQJNrip4rz5JoB03oA2gIR0Cs98U163RYdX2UKGgGR0CQWa2TxG2DaAdN6ANoCEdArP7HKW9lE3V9lChoBkdAkRmk34sVcmgHTegDaAhHQK0GAxubZvl1fZQoaAZHQJDah5a/yoZoB03oA2gIR0CtBgnDJlredX2UKGgGR0CUiUrrPdEcaAdN6ANoCEdArQddhZyMk3V9lChoBkdAkmNSyMUAUGgHTegDaAhHQK0My/k/8l51fZQoaAZHQJHlAlolD4RoB03oA2gIR0CtE11lXiiqdX2UKGgGR0CQ5fZeRgZ1aAdN6ANoCEdArRNkKJEYwnV9lChoBkdAkvmvcnE2pGgHTegDaAhHQK0UwFB6a9d1fZQoaAZHQJBMy3iJfploB03oA2gIR0CtHI+CbtqpdX2UKGgGR0CRsd/NJOFhaAdN6ANoCEdArSLwZjx0+3V9lChoBkdAkXBqa1Cw8mgHTegDaAhHQK0i9mrbQC11fZQoaAZHQI/k0otthuxoB03oA2gIR0CtJEgtOEdvdX2UKGgGR0CQDBYODrZ8aAdN6ANoCEdArSmmmce8w3V9lChoBkdAlI6wlnh86WgHTegDaAhHQK0wCzLOiWV1fZQoaAZHQJGKqA+Y+jdoB03oA2gIR0CtMBFJxvNvdX2UKGgGR0CT+Exn3+MqaAdN6ANoCEdArTHf+uNgjXV9lChoBkdAkjI+OXE61mgHTegDaAhHQK05LglWwNd1fZQoaAZHQI9f1gv114hoB03oA2gIR0CtP8B+F10UdX2UKGgGR0CSF9LbHp8naAdN6ANoCEdArT/GucMEzXV9lChoBkdAkaZ15WzWw2gHTegDaAhHQK1BDohY/3Z1fZQoaAZHQI9wZPCVKPJoB03oA2gIR0CtRnhMJx//dX2UKGgGR0CYCaZfD1oQaAdN6ANoCEdArU2lAzHjqHV9lChoBkdAmVKxYJVsDWgHTegDaAhHQK1NrdSEUTN1fZQoaAZHQJMw9YxL0z1oB03oA2gIR0CtT46qsEJTdX2UKGgGR0CXqcce8wpOaAdN6ANoCEdArVXx6dDpknV9lChoBkdAkELvhESdv2gHTegDaAhHQK1cUhFEy+J1fZQoaAZHQJKl8tlI3BJoB03oA2gIR0CtXFqtozvadX2UKGgGR0CQK7OUMXrMaAdN6ANoCEdArV2gKneiz3V9lChoBkdAlweJ5iVjZ2gHTegDaAhHQK1jBYSQHRl1fZQoaAZHQJbbbhgmZ3NoB03oA2gIR0CtatCF0xM4dX2UKGgGR0CaKDbMHKOlaAdN6ANoCEdArWrZ+jM3ZXV9lChoBkdAkrsjOLR8dGgHTegDaAhHQK1s1yksSTR1fZQoaAZHQJaq9LQHAypoB03oA2gIR0CtcnP/BFd+dX2UKGgGR0CUyKUN8VpLaAdN6ANoCEdArXjLWbwz+HV9lChoBkdAkk4hgVoHs2gHTegDaAhHQK140YMvysl1fZQoaAZHQJeQoQTVUddoB03oA2gIR0CtehShzvJBdX2UKGgGR0CVe/3cHnloaAdN6ANoCEdArX+C1NQCS3V9lChoBkdAkMVkETxoZmgHTegDaAhHQK2IOWC2+f11fZQoaAZHQJQdB7D2rXFoB03oA2gIR0CtiEN5t3wDdX2UKGgGR0CU/CKCg9NfaAdN6ANoCEdArYmeJrLyMHV9lChoBkdAljHAHeJpFmgHTegDaAhHQK2PIPUaybB1fZQoaAZHQER+zP8hs69oB0uRaAhHQK2RAd3B55Z1fZQoaAZHQJeKkSOBDohoB03oA2gIR0CtlXCb+cYqdX2UKGgGR0CT5kT6i0v5aAdN6ANoCEdArZV2e4Cp33V9lChoBkdAlWWqTOgQH2gHTegDaAhHQK2WwsH0K7Z1fZQoaAZHQJMSsjLSuyNoB03oA2gIR0CtnuJ4SpR5dX2UKGgGR0CQpxFId2gWaAdN6ANoCEdAraTJE+gUUXV9lChoBkdAlkiWY8dPtWgHTegDaAhHQK2kz05EMLF1fZQoaAZHQJJdeeumrKhoB03oA2gIR0Ctphtm16VudWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1e18aa09876135a2ba4b298bf7c387f9b6dd2ef379444f94426a83c2f7c44fe3
3
+ size 1010554
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1294.4820219457383, "std_reward": 215.332608994484, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-08-05T19:51:00.867439"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:41042dc69507fec68cefcb9fffcd25e45b175ea594813744cbf698f0138480b6
3
+ size 2176