arminmrm93 commited on
Commit
60ac54e
1 Parent(s): c5c96c7

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v3
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v3
16
+ type: PandaReachDense-v3
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -0.19 +/- 0.12
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v3**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v3**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v3.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6815aed10ac010dc263b20bfe1ea6a7168884687e2827a50688b33998bf5e0fe
3
+ size 106834
a2c-PandaReachDense-v3/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0
a2c-PandaReachDense-v3/data ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7eb6933b57e0>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7eb6933b8500>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "num_timesteps": 743460,
23
+ "_total_timesteps": 1000000,
24
+ "_num_timesteps_at_start": 0,
25
+ "seed": null,
26
+ "action_noise": null,
27
+ "start_time": 1691564765937308292,
28
+ "learning_rate": 0.0007,
29
+ "tensorboard_log": null,
30
+ "_last_obs": {
31
+ ":type:": "<class 'collections.OrderedDict'>",
32
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAW6GCP2A6wL5sO3I+5MRsPuh1QLudcss+78Rcvieslz9NSoa/jVsbv6rFxz4vSZs+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAWPC+P8WMjr/A8xq/2OTSvisSmT+qu0m/hkkMP2dqvz8hkAS+sUlXvxpEWT8Ll9k/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABboYI/YDrAvmw7cj7dgco/M3PIv2Eqkb/kxGw+6HVAu51yyz5Zyu8+eMk/u96dwD7vxFy+J6yXP01Khr+Eoq0/63ReP9HsOr+NWxu/qsXHPi9Jmz5Nbke/P8HSP0z5XT+UaA5LBEsGhpRoEnSUUpR1Lg==",
33
+ "achieved_goal": "[[ 1.0205492 -0.37544537 0.2365548 ]\n [ 0.23121983 -0.00293672 0.3973588 ]\n [-0.21559499 1.1849412 -1.0491425 ]\n [-0.6068657 0.39017993 0.30329272]]",
34
+ "desired_goal": "[[ 1.4917097 -1.113671 -0.60528183]\n [-0.4119022 1.195867 -0.7880198 ]\n [ 0.5479969 1.4954346 -0.12945606]\n [-0.8409682 0.8486954 1.699922 ]]",
35
+ "observation": "[[ 1.0205492 -0.37544537 0.2365548 1.5820881 -1.5660156 -1.1341058 ]\n [ 0.23121983 -0.00293672 0.3973588 0.46834067 -0.00292644 0.37620443]\n [-0.21559499 1.1849412 -1.0491425 1.3565221 0.8689715 -0.73017603]\n [-0.6068657 0.39017993 0.30329272 -0.7790268 1.6465224 0.8670852 ]]"
36
+ },
37
+ "_last_episode_starts": {
38
+ ":type:": "<class 'numpy.ndarray'>",
39
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAABAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
40
+ },
41
+ "_last_original_obs": {
42
+ ":type:": "<class 'collections.OrderedDict'>",
43
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA8A50PcqqEz3+sNM87WSkPA85Xb3y5GA+AwKKPXKYhr10HWs+SAf5PdC8Wz1dp/c8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
44
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
45
+ "desired_goal": "[[ 0.05958456 0.03605155 0.02584123]\n [ 0.02006766 -0.05400949 0.21962336]\n [ 0.06738665 -0.06572045 0.22960454]\n [ 0.12159592 0.05364686 0.03023117]]",
46
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
47
+ },
48
+ "_episode_num": 0,
49
+ "use_sde": false,
50
+ "sde_sample_freq": -1,
51
+ "_current_progress_remaining": 0.25654,
52
+ "_stats_window_size": 100,
53
+ "ep_info_buffer": {
54
+ ":type:": "<class 'collections.deque'>",
55
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv9sBeXzDn/2MAWyUSwSMAXSUR0CedQEKmbb2dX2UKGgGR7/AoUi6g/TtaAdLAmgIR0Cec4aIN3GGdX2UKGgGR7/U8FINEw36aAdLA2gIR0CedJHIp6QedX2UKGgGR7+1cX3xnWauaAdLAmgIR0CedRD9fkWAdX2UKGgGR7+hUT+NtIkJaAdLAWgIR0CedJoB7u2JdX2UKGgGR7/YjYI0IkZ8aAdLBGgIR0CedBNI9TxYdX2UKGgGR7+ojY7JW/8EaAdLAWgIR0CedRn003wTdX2UKGgGR7/TgbIcR15jaAdLA2gIR0Cec5+MIeHSdX2UKGgGR7/B9NN8E3bVaAdLAmgIR0CedCQCSzPbdX2UKGgGR7/RcRUWEbo9aAdLA2gIR0CedLfWtlqbdX2UKGgGR7/T4rSVnmJWaAdLA2gIR0CedTfgaWHDdX2UKGgGR7++knCwbEP2aAdLAmgIR0CedMjawljWdX2UKGgGR7/TkJ8fFJg9aAdLA2gIR0CedEJ4SpR5dX2UKGgGR7/SCwbEP1+RaAdLBGgIR0Cec8alUIcBdX2UKGgGR7+jNliBoVVQaAdLAWgIR0CedEr08NhFdX2UKGgGR7/Nh5Pdl/YraAdLA2gIR0CedVF5OafBdX2UKGgGR7/OxGlQ/HHWaAdLA2gIR0CedOa4MF2WdX2UKGgGR7/AhgVoHs1LaAdLAmgIR0CedF/zasZHdX2UKGgGR7+55dGAkLQYaAdLAmgIR0CedWa8Hv+gdX2UKGgGR7/Xz8xbjcVQaAdLBGgIR0Cec+0sOG0vdX2UKGgGR7/QAJ9iMHbAaAdLA2gIR0CedQD4xk/bdX2UKGgGR7/Jwd8zAN5MaAdLA2gIR0CedHqTr3TNdX2UKGgGR7/R/qPfbblBaAdLA2gIR0CedYFgDzRQdX2UKGgGR7/NpoK2KEWZaAdLA2gIR0CedAdvKlpHdX2UKGgGR7+04o7V8Ti9aAdLAmgIR0CedRea8YhudX2UKGgGR7/C2P1ct5D7aAdLAmgIR0CedJESuhbodX2UKGgGR7+0Jng5zYEoaAdLAmgIR0CedB1cdHUddX2UKGgGR7/NwvxpcophaAdLA2gIR0CedaAwwj+rdX2UKGgGR7/CJ4SpR4yHaAdLAmgIR0CedKKaoddWdX2UKGgGR7/Tp3os7MgVaAdLA2gIR0CedTKIznA7dX2UKGgGR7/Apo9LYf4iaAdLAmgIR0CedC95Qgs9dX2UKGgGR7+1tQ9A5aNdaAdLAmgIR0CedbIyTINmdX2UKGgGR7/Dga3qiXY2aAdLAmgIR0CedLTA31jBdX2UKGgGR7/JqC6H0se5aAdLA2gIR0CedU/JeVs2dX2UKGgGR7/BZvDP4VRDaAdLAmgIR0CedMkmQbMpdX2UKGgGR7/Kee4Cp3otaAdLA2gIR0CedE0jkdWAdX2UKGgGR7/KS00FbFCLaAdLA2gIR0CeddAlv60qdX2UKGgGR7/RXPJJXhfjaAdLA2gIR0CedWd+G47SdX2UKGgGR7/VKOktVaOhaAdLA2gIR0CedODkELYxdX2UKGgGR7/MX0Gu9vjwaAdLA2gIR0CedGTc6/7BdX2UKGgGR7+kKkVN5+pgaAdLAWgIR0CedO1oxpL3dX2UKGgGR7/ZzZHuqm0maAdLBGgIR0CedfOTJQtSdX2UKGgGR7/PwG4ZuQ6qaAdLA2gIR0CedYTbFjusdX2UKGgGR7+8BU70WdmQaAdLAmgIR0CedP4Vh1DCdX2UKGgGR7/Lfsu3+dbxaAdLA2gIR0CedIIUrTYvdX2UKGgGR7/aN2C/XXiBaAdLBGgIR0CedhjI7vG7dX2UKGgGR7/N4AS39aUzaAdLA2gIR0CedaKF7D2rdX2UKGgGR7/M8K5TZQHiaAdLA2gIR0CedRu8K5TZdX2UKGgGR7/DaQFLWZqmaAdLA2gIR0CedJ+V1Oj7dX2UKGgGR7+YK6WgOBlMaAdLAWgIR0CediLv1DjSdX2UKGgGR7+nKGL1mJ3xaAdLAWgIR0Cedir8zhxYdX2UKGgGR7+5TIeYD1XeaAdLAmgIR0CedbPnjhkzdX2UKGgGR7/OEZiuuA7QaAdLA2gIR0CedTUo8ZDRdX2UKGgGR7+3QfIS13MZaAdLAmgIR0CedjuIyj59dX2UKGgGR7/Y704BFNL2aAdLBGgIR0CedMHf/FR6dX2UKGgGR7/MxB3Roh6jaAdLA2gIR0CeddHWSU1RdX2UKGgGR7/DMfRu0kWzaAdLAmgIR0CedUr56+nJdX2UKGgGR7/BaZhKDkELaAdLAmgIR0CedlHd43WGdX2UKGgGR7+TVQQ+UyHmaAdLAWgIR0Cedlnjhky2dX2UKGgGR7/M2Xsw+MZQaAdLA2gIR0CedN/A0sOHdX2UKGgGR7+PvfCQ9zOpaAdLAWgIR0CedmKG+K0ldX2UKGgGR7/Vxn3+MqBmaAdLBGgIR0CedfNTcZccdX2UKGgGR7/XqmCROk+HaAdLBGgIR0CedWyJsO5KdX2UKGgGR7+zsrupjtojaAdLAmgIR0CedPBOHnEEdX2UKGgGR7+Jgw482aUiaAdLAWgIR0CedgEORT0hdX2UKGgGR7/TW1twaR6oaAdLA2gIR0CedoKEFnqWdX2UKGgGR7/BFJg9eQdTaAdLAmgIR0CedhUY8+zMdX2UKGgGR7/S6UaAFxGUaAdLA2gIR0CedY5TqB3BdX2UKGgGR7/VLxI8QqZuaAdLBGgIR0CedRq4YrJ9dX2UKGgGR7/KWDYh+vyLaAdLA2gIR0Cedp3Lmp2mdX2UKGgGR7/LCQ9zOopAaAdLA2gIR0CedjMWGh24dX2UKGgGR7/E8PFvQ4S6aAdLA2gIR0CedaxpL26DdX2UKGgGR7/RLjghr30xaAdLA2gIR0CedTiGFi8WdX2UKGgGR7/Y5CWu5jH5aAdLBGgIR0CedsLzf779dX2UKGgGR7/L2bobGWD6aAdLA2gIR0CedkxPO6d2dX2UKGgGR7/RJTER8MNMaAdLA2gIR0CedcWDpTuOdX2UKGgGR7+cy8BdUsFuaAdLAWgIR0CedlShrWRSdX2UKGgGR7++nxaxHG0eaAdLAmgIR0Cedtj+rELqdX2UKGgGR7+glt0mtyPuaAdLAWgIR0CedmH80k4WdX2UKGgGR7+2n2qT8pCsaAdLAmgIR0Cedds+FDfFdX2UKGgGR7/YV6eGwiaBaAdLBGgIR0CedV+rELpidX2UKGgGR7/CyJKraM72aAdLAmgIR0Cedevf0mMPdX2UKGgGR7/JmSQo1DSgaAdLA2gIR0CedvJK8L8adX2UKGgGR7/KV2zOX3QEaAdLA2gIR0CedntMfzSUdX2UKGgGR7/JPwd8zAN5aAdLA2gIR0CedXgYxcmjdX2UKGgGR7+jsrupjtojaAdLAWgIR0CedoOwxFiKdX2UKGgGR7/Moy9EkSmJaAdLA2gIR0CedgjgAIY4dX2UKGgGR7+zMotthuwYaAdLAmgIR0CedYy9EkSmdX2UKGgGR7/L2NedCmdiaAdLA2gIR0Cedw+TeO4odX2UKGgGR7+2fRNRFZxJaAdLAmgIR0Cedx8IAwPAdX2UKGgGR7/g9KdxyXD4aAdLBGgIR0CedqgRbr1NdX2UKGgGR7/URdyDIzWPaAdLA2gIR0CediFgDzRQdX2UKGgGR7/XWom5UcXFaAdLBGgIR0Ceda7k4m1IdX2UKGgGR7+2YkVvddmhaAdLAmgIR0CedzXtShrWdX2UKGgGR7/RbmEGqxTsaAdLA2gIR0CedsbMottidX2UKGgGR7/ee0G/vfCRaAdLBGgIR0Cedkj0cwQEdX2UKGgGR7/SEytV7x/eaAdLA2gIR0Cedc1Ng0CSdX2UKGgGR7/Q/pt78ejmaAdLA2gIR0Ced1KIi1RcdX2UKGgGR7+mv0RODaoNaAdLAWgIR0CeddjH4oJBdX2UKGgGR7/Ns5XEIgNgaAdLA2gIR0CeduTo+wC9dWUu"
56
+ },
57
+ "ep_success_buffer": {
58
+ ":type:": "<class 'collections.deque'>",
59
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
60
+ },
61
+ "_n_updates": 37173,
62
+ "n_steps": 5,
63
+ "gamma": 0.99,
64
+ "gae_lambda": 1.0,
65
+ "ent_coef": 0.0,
66
+ "vf_coef": 0.5,
67
+ "max_grad_norm": 0.5,
68
+ "normalize_advantage": false,
69
+ "observation_space": {
70
+ ":type:": "<class 'gymnasium.spaces.dict.Dict'>",
71
+ ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==",
72
+ "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])",
73
+ "_shape": null,
74
+ "dtype": null,
75
+ "_np_random": null
76
+ },
77
+ "action_space": {
78
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
79
+ ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==",
80
+ "dtype": "float32",
81
+ "bounded_below": "[ True True True]",
82
+ "bounded_above": "[ True True True]",
83
+ "_shape": [
84
+ 3
85
+ ],
86
+ "low": "[-1. -1. -1.]",
87
+ "high": "[1. 1. 1.]",
88
+ "low_repr": "-1.0",
89
+ "high_repr": "1.0",
90
+ "_np_random": null
91
+ },
92
+ "n_envs": 4,
93
+ "lr_schedule": {
94
+ ":type:": "<class 'function'>",
95
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
96
+ }
97
+ }
a2c-PandaReachDense-v3/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ad805ffc34ffd3564d15ff7e7c3a1daffda7d0a33b3c76bc9562d75a93851c63
3
+ size 44734
a2c-PandaReachDense-v3/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aa85328bfa898eac2ee0474c385adcfe46fba24984fe89ab16d1ad5bfbd12527
3
+ size 46014
a2c-PandaReachDense-v3/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v3/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7eb6933b57e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7eb6933b8500>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 743460, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1691564765937308292, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAW6GCP2A6wL5sO3I+5MRsPuh1QLudcss+78Rcvieslz9NSoa/jVsbv6rFxz4vSZs+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAWPC+P8WMjr/A8xq/2OTSvisSmT+qu0m/hkkMP2dqvz8hkAS+sUlXvxpEWT8Ll9k/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABboYI/YDrAvmw7cj7dgco/M3PIv2Eqkb/kxGw+6HVAu51yyz5Zyu8+eMk/u96dwD7vxFy+J6yXP01Khr+Eoq0/63ReP9HsOr+NWxu/qsXHPi9Jmz5Nbke/P8HSP0z5XT+UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 1.0205492 -0.37544537 0.2365548 ]\n [ 0.23121983 -0.00293672 0.3973588 ]\n [-0.21559499 1.1849412 -1.0491425 ]\n [-0.6068657 0.39017993 0.30329272]]", "desired_goal": "[[ 1.4917097 -1.113671 -0.60528183]\n [-0.4119022 1.195867 -0.7880198 ]\n [ 0.5479969 1.4954346 -0.12945606]\n [-0.8409682 0.8486954 1.699922 ]]", "observation": "[[ 1.0205492 -0.37544537 0.2365548 1.5820881 -1.5660156 -1.1341058 ]\n [ 0.23121983 -0.00293672 0.3973588 0.46834067 -0.00292644 0.37620443]\n [-0.21559499 1.1849412 -1.0491425 1.3565221 0.8689715 -0.73017603]\n [-0.6068657 0.39017993 0.30329272 -0.7790268 1.6465224 0.8670852 ]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAABAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA8A50PcqqEz3+sNM87WSkPA85Xb3y5GA+AwKKPXKYhr10HWs+SAf5PdC8Wz1dp/c8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.05958456 0.03605155 0.02584123]\n [ 0.02006766 -0.05400949 0.21962336]\n [ 0.06738665 -0.06572045 0.22960454]\n [ 0.12159592 0.05364686 0.03023117]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.25654, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv9sBeXzDn/2MAWyUSwSMAXSUR0CedQEKmbb2dX2UKGgGR7/AoUi6g/TtaAdLAmgIR0Cec4aIN3GGdX2UKGgGR7/U8FINEw36aAdLA2gIR0CedJHIp6QedX2UKGgGR7+1cX3xnWauaAdLAmgIR0CedRD9fkWAdX2UKGgGR7+hUT+NtIkJaAdLAWgIR0CedJoB7u2JdX2UKGgGR7/YjYI0IkZ8aAdLBGgIR0CedBNI9TxYdX2UKGgGR7+ojY7JW/8EaAdLAWgIR0CedRn003wTdX2UKGgGR7/TgbIcR15jaAdLA2gIR0Cec5+MIeHSdX2UKGgGR7/B9NN8E3bVaAdLAmgIR0CedCQCSzPbdX2UKGgGR7/RcRUWEbo9aAdLA2gIR0CedLfWtlqbdX2UKGgGR7/T4rSVnmJWaAdLA2gIR0CedTfgaWHDdX2UKGgGR7++knCwbEP2aAdLAmgIR0CedMjawljWdX2UKGgGR7/TkJ8fFJg9aAdLA2gIR0CedEJ4SpR5dX2UKGgGR7/SCwbEP1+RaAdLBGgIR0Cec8alUIcBdX2UKGgGR7+jNliBoVVQaAdLAWgIR0CedEr08NhFdX2UKGgGR7/Nh5Pdl/YraAdLA2gIR0CedVF5OafBdX2UKGgGR7/OxGlQ/HHWaAdLA2gIR0CedOa4MF2WdX2UKGgGR7/AhgVoHs1LaAdLAmgIR0CedF/zasZHdX2UKGgGR7+55dGAkLQYaAdLAmgIR0CedWa8Hv+gdX2UKGgGR7/Xz8xbjcVQaAdLBGgIR0Cec+0sOG0vdX2UKGgGR7/QAJ9iMHbAaAdLA2gIR0CedQD4xk/bdX2UKGgGR7/Jwd8zAN5MaAdLA2gIR0CedHqTr3TNdX2UKGgGR7/R/qPfbblBaAdLA2gIR0CedYFgDzRQdX2UKGgGR7/NpoK2KEWZaAdLA2gIR0CedAdvKlpHdX2UKGgGR7+04o7V8Ti9aAdLAmgIR0CedRea8YhudX2UKGgGR7/C2P1ct5D7aAdLAmgIR0CedJESuhbodX2UKGgGR7+0Jng5zYEoaAdLAmgIR0CedB1cdHUddX2UKGgGR7/NwvxpcophaAdLA2gIR0CedaAwwj+rdX2UKGgGR7/CJ4SpR4yHaAdLAmgIR0CedKKaoddWdX2UKGgGR7/Tp3os7MgVaAdLA2gIR0CedTKIznA7dX2UKGgGR7/Apo9LYf4iaAdLAmgIR0CedC95Qgs9dX2UKGgGR7+1tQ9A5aNdaAdLAmgIR0CedbIyTINmdX2UKGgGR7/Dga3qiXY2aAdLAmgIR0CedLTA31jBdX2UKGgGR7/JqC6H0se5aAdLA2gIR0CedU/JeVs2dX2UKGgGR7/BZvDP4VRDaAdLAmgIR0CedMkmQbMpdX2UKGgGR7/Kee4Cp3otaAdLA2gIR0CedE0jkdWAdX2UKGgGR7/KS00FbFCLaAdLA2gIR0CeddAlv60qdX2UKGgGR7/RXPJJXhfjaAdLA2gIR0CedWd+G47SdX2UKGgGR7/VKOktVaOhaAdLA2gIR0CedODkELYxdX2UKGgGR7/MX0Gu9vjwaAdLA2gIR0CedGTc6/7BdX2UKGgGR7+kKkVN5+pgaAdLAWgIR0CedO1oxpL3dX2UKGgGR7/ZzZHuqm0maAdLBGgIR0CedfOTJQtSdX2UKGgGR7/PwG4ZuQ6qaAdLA2gIR0CedYTbFjusdX2UKGgGR7+8BU70WdmQaAdLAmgIR0CedP4Vh1DCdX2UKGgGR7/Lfsu3+dbxaAdLA2gIR0CedIIUrTYvdX2UKGgGR7/aN2C/XXiBaAdLBGgIR0CedhjI7vG7dX2UKGgGR7/N4AS39aUzaAdLA2gIR0CedaKF7D2rdX2UKGgGR7/M8K5TZQHiaAdLA2gIR0CedRu8K5TZdX2UKGgGR7/DaQFLWZqmaAdLA2gIR0CedJ+V1Oj7dX2UKGgGR7+YK6WgOBlMaAdLAWgIR0CediLv1DjSdX2UKGgGR7+nKGL1mJ3xaAdLAWgIR0Cedir8zhxYdX2UKGgGR7+5TIeYD1XeaAdLAmgIR0CedbPnjhkzdX2UKGgGR7/OEZiuuA7QaAdLA2gIR0CedTUo8ZDRdX2UKGgGR7+3QfIS13MZaAdLAmgIR0CedjuIyj59dX2UKGgGR7/Y704BFNL2aAdLBGgIR0CedMHf/FR6dX2UKGgGR7/MxB3Roh6jaAdLA2gIR0CeddHWSU1RdX2UKGgGR7/DMfRu0kWzaAdLAmgIR0CedUr56+nJdX2UKGgGR7/BaZhKDkELaAdLAmgIR0CedlHd43WGdX2UKGgGR7+TVQQ+UyHmaAdLAWgIR0Cedlnjhky2dX2UKGgGR7/M2Xsw+MZQaAdLA2gIR0CedN/A0sOHdX2UKGgGR7+PvfCQ9zOpaAdLAWgIR0CedmKG+K0ldX2UKGgGR7/Vxn3+MqBmaAdLBGgIR0CedfNTcZccdX2UKGgGR7/XqmCROk+HaAdLBGgIR0CedWyJsO5KdX2UKGgGR7+zsrupjtojaAdLAmgIR0CedPBOHnEEdX2UKGgGR7+Jgw482aUiaAdLAWgIR0CedgEORT0hdX2UKGgGR7/TW1twaR6oaAdLA2gIR0CedoKEFnqWdX2UKGgGR7/BFJg9eQdTaAdLAmgIR0CedhUY8+zMdX2UKGgGR7/S6UaAFxGUaAdLA2gIR0CedY5TqB3BdX2UKGgGR7/VLxI8QqZuaAdLBGgIR0CedRq4YrJ9dX2UKGgGR7/KWDYh+vyLaAdLA2gIR0Cedp3Lmp2mdX2UKGgGR7/LCQ9zOopAaAdLA2gIR0CedjMWGh24dX2UKGgGR7/E8PFvQ4S6aAdLA2gIR0CedaxpL26DdX2UKGgGR7/RLjghr30xaAdLA2gIR0CedTiGFi8WdX2UKGgGR7/Y5CWu5jH5aAdLBGgIR0CedsLzf779dX2UKGgGR7/L2bobGWD6aAdLA2gIR0CedkxPO6d2dX2UKGgGR7/RJTER8MNMaAdLA2gIR0CedcWDpTuOdX2UKGgGR7+cy8BdUsFuaAdLAWgIR0CedlShrWRSdX2UKGgGR7++nxaxHG0eaAdLAmgIR0Cedtj+rELqdX2UKGgGR7+glt0mtyPuaAdLAWgIR0CedmH80k4WdX2UKGgGR7+2n2qT8pCsaAdLAmgIR0Cedds+FDfFdX2UKGgGR7/YV6eGwiaBaAdLBGgIR0CedV+rELpidX2UKGgGR7/CyJKraM72aAdLAmgIR0Cedevf0mMPdX2UKGgGR7/JmSQo1DSgaAdLA2gIR0CedvJK8L8adX2UKGgGR7/KV2zOX3QEaAdLA2gIR0CedntMfzSUdX2UKGgGR7/JPwd8zAN5aAdLA2gIR0CedXgYxcmjdX2UKGgGR7+jsrupjtojaAdLAWgIR0CedoOwxFiKdX2UKGgGR7/Moy9EkSmJaAdLA2gIR0CedgjgAIY4dX2UKGgGR7+zMotthuwYaAdLAmgIR0CedYy9EkSmdX2UKGgGR7/L2NedCmdiaAdLA2gIR0Cedw+TeO4odX2UKGgGR7+2fRNRFZxJaAdLAmgIR0Cedx8IAwPAdX2UKGgGR7/g9KdxyXD4aAdLBGgIR0CedqgRbr1NdX2UKGgGR7/URdyDIzWPaAdLA2gIR0CediFgDzRQdX2UKGgGR7/XWom5UcXFaAdLBGgIR0Ceda7k4m1IdX2UKGgGR7+2YkVvddmhaAdLAmgIR0CedzXtShrWdX2UKGgGR7/RbmEGqxTsaAdLA2gIR0CedsbMottidX2UKGgGR7/ee0G/vfCRaAdLBGgIR0Cedkj0cwQEdX2UKGgGR7/SEytV7x/eaAdLA2gIR0Cedc1Ng0CSdX2UKGgGR7/Q/pt78ejmaAdLA2gIR0Ced1KIi1RcdX2UKGgGR7+mv0RODaoNaAdLAWgIR0CeddjH4oJBdX2UKGgGR7/Ns5XEIgNgaAdLA2gIR0CeduTo+wC9dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 37173, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
replay.mp4 ADDED
Binary file (659 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -0.19279725439846515, "std_reward": 0.11824635890072288, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-08-09T07:39:45.978431"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b8b85e3e2bf2c3c7b21613baf86265c3e2e129a875b59db87c125f77d0526196
3
+ size 2623