arkadyark commited on
Commit
ae26331
·
1 Parent(s): a88434d

Push LunarLander-v2 model

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -187.77 +/- 60.28
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
arkadyark-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:996c5367eca6480c52a59ba03f6c25a80385e2b6d4a0d1d318d88b5fe1dd0703
3
+ size 147619
arkadyark-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
arkadyark-LunarLander-v2/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f803188ae50>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f803188aee0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f803188af70>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f803188f040>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f803188f0d0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f803188f160>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f803188f1f0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f803188f280>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f803188f310>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f803188f3a0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f803188f430>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f803188f4c0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f803188dec0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 16384,
47
+ "_total_timesteps": 100,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1678573047129652752,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVDwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMbi9ob21lL2Fyay8ubWluaWNvbmRhMy9lbnZzL2RlZXAtcmwtY291cnNlLXVuaXQtMS9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxuL2hvbWUvYXJrLy5taW5pY29uZGEzL2VudnMvZGVlcC1ybC1jb3Vyc2UtdW5pdC0xL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAANO+VT73sIw/RvtAP7CH3r6+/6C+SRmBvgAAAAAAAAAAfgCMvttgwT/mnVy/1XsUvkoYsz7L1xU+AAAAAAAAAAAA4B07nILBP6t0azuGK0g+ZEYOPZqDUD0AAAAAAAAAAGb48DwgcNU+mvh+vSLvpL97N3s+k/U3PgAAAAAAAAAAZvLQPEd3lz9FGj4+Oucnv3FmL76+DaG+AAAAAAAAAAANIE8+ArGePqgRpD5jzpe/h+nRvaFiDT4AAAAAAAAAAGbAozymobA/KAyJPtSVH75k/gq8XJcjugAAAAAAAAAAMzOtPM0otz/udQo/8gZLPnfL1rzQDiC+AAAAAAAAAACaaiU9vDG+P4sbxj5CaJM+3ulsvSbLBL4AAAAAAAAAAF0b876DJpM/wJkJv/cRXr/dNRQ97m5RvgAAAAAAAAAAzW1MvSgUrj8ZhTe/CgCwvsZcPT3VSBo+AAAAAAAAAACAIVe+GHaCP2aX2L6CmUu/vLGHveE6tbwAAAAAAAAAAGZXiDzBmp8/IilyPft4276Qs5+9jfnlvAAAAAAAAAAAUwQMvpRarj+DISe/8DF0vsqP9T1A6rw9AAAAAAAAAAB6w1I+2dpQPgdWAT81Mpy/fqEFv8PTcr4AAAAAAAAAAJ1iyj5LTyo/qyhQP+Trgr8oiRS/70yRvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -162.84,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIsCDNWPRSesCUhpRSlIwBbJRLaYwBdJRHQAD59uxbB451fZQoaAZoCWgPQwhLP+HsVrBxwJSGlFKUaBVLcmgWR0ABFVNpM6BAdX2UKGgGaAloD0MI8bxUbEy8ZcCUhpRSlGgVS1ZoFkdAAThDPWxyGXV9lChoBmgJaA9DCCtR9pYyC3fAlIaUUpRoFUtsaBZHQAE9znzQNTd1fZQoaAZoCWgPQwjdmnRbIj1hwJSGlFKUaBVLRGgWR0ABPg3tKIzndX2UKGgGaAloD0MIL4Zyol3sV8CUhpRSlGgVS21oFkdAAXoOhCdBjXV9lChoBmgJaA9DCI/Ey9O5mVbAlIaUUpRoFUtSaBZHQAGAuyu6mO51fZQoaAZoCWgPQwhKz/QSYwpawJSGlFKUaBVLP2gWR0ABhvxYq5LAdX2UKGgGaAloD0MIW7BUF/AWT8CUhpRSlGgVS0FoFkdAAbutwJgLJHV9lChoBmgJaA9DCJoGRfMAoVbAlIaUUpRoFUtFaBZHQAHJFCswL3N1fZQoaAZoCWgPQwibV3VWCxRhwJSGlFKUaBVLaGgWR0AB1WMju8brdX2UKGgGaAloD0MITl5kAn7YXsCUhpRSlGgVS2BoFkdAAfoqTbFju3V9lChoBmgJaA9DCMzUJHiD7HXAlIaUUpRoFUtcaBZHQAH6QvHtF8Z1fZQoaAZoCWgPQwhDklm9QzpjwJSGlFKUaBVLQmgWR0ACObG3nZCfdX2UKGgGaAloD0MIw0ZZvxmjc8CUhpRSlGgVS1ZoFkdAAkgyM1jy4HV9lChoBmgJaA9DCGr3qwDfV2zAlIaUUpRoFUtuaBZHQAJQb+98JD51fZQoaAZoCWgPQwi9xcN7Tsx5wJSGlFKUaBVLXmgWR0ACT6Fdszl+dX2UKGgGaAloD0MI7blMTYJXW8CUhpRSlGgVS3NoFkdAAl38n/kvK3V9lChoBmgJaA9DCCU9DK1OxlzAlIaUUpRoFUtTaBZHQAJcLKFIuoR1fZQoaAZoCWgPQwj9SufDs5NVwJSGlFKUaBVLSmgWR0ACYZ0jkdWAdX2UKGgGaAloD0MI12zlJf/tZMCUhpRSlGgVS0ZoFkdAApbnoxHoYHV9lChoBmgJaA9DCBWRYRXvUmPAlIaUUpRoFUtEaBZHQALQ5eZ5Rj11fZQoaAZoCWgPQwiJJlDEIgNVwJSGlFKUaBVLQ2gWR0AC2dy1eBxxdX2UKGgGaAloD0MI9n6jHTdkZcCUhpRSlGgVS0poFkdAAt1BdD6WPnV9lChoBmgJaA9DCBFvnX+7y1nAlIaUUpRoFUtsaBZHQALiSaEzwc51fZQoaAZoCWgPQwjwMVhxakJzwJSGlFKUaBVLYmgWR0AC/hOxjawmdX2UKGgGaAloD0MIZCE6BI4JWcCUhpRSlGgVSzxoFkdAA0XbdrO7hHV9lChoBmgJaA9DCIYDIVnANFvAlIaUUpRoFUt2aBZHQANGBOHnEEV1fZQoaAZoCWgPQwjb+uk/awxjwJSGlFKUaBVLTGgWR0ADYkmhM8HOdX2UKGgGaAloD0MIKbAApozCccCUhpRSlGgVS1xoFkdAA2I5YHPeHnV9lChoBmgJaA9DCADK370j/2/AlIaUUpRoFUtIaBZHQAN0XYUWVNZ1fZQoaAZoCWgPQwhtUzwu6o11wJSGlFKUaBVLU2gWR0ADnXd0q6OHdX2UKGgGaAloD0MI3Xu45HhsccCUhpRSlGgVS21oFkdAA6YWtU4rBnV9lChoBmgJaA9DCDBmS1ZFy1rAlIaUUpRoFUtdaBZHQAO7gsK9f1J1fZQoaAZoCWgPQwgfZcQF4JRywJSGlFKUaBVLSmgWR0ADu+VTrE9/dX2UKGgGaAloD0MIvHoVGR0mc8CUhpRSlGgVS19oFkdAA8Jtzjm0V3V9lChoBmgJaA9DCDPhl/p50U/AlIaUUpRoFUtCaBZHQAPXT/hl18t1fZQoaAZoCWgPQwhzTBb3H6dYwJSGlFKUaBVLZ2gWR0AD3BLwnYxtdX2UKGgGaAloD0MITdu/shLmccCUhpRSlGgVS2loFkdABHRMN+b3GnV9lChoBmgJaA9DCCeDo+TVn2jAlIaUUpRoFUtqaBZHQASAN5MURFt1fZQoaAZoCWgPQwiS6GUUy3dYwJSGlFKUaBVLWmgWR0AEqhvitJWedX2UKGgGaAloD0MI8+MvLeqYYcCUhpRSlGgVS1NoFkdABKmm+Cbtq3V9lChoBmgJaA9DCDfg88MIx13AlIaUUpRoFUtBaBZHQATDR2KVII51fZQoaAZoCWgPQwhv8IXJVLFqwJSGlFKUaBVLYmgWR0AEzEP1+RYBdX2UKGgGaAloD0MIa0Wb41xuecCUhpRSlGgVS3loFkdABN8HfMwDeXV9lChoBmgJaA9DCL6ItmPqsW3AlIaUUpRoFUtRaBZHQATpY1YQrc11fZQoaAZoCWgPQwiFQ2/x8GdgwJSGlFKUaBVLY2gWR0AE7jo6jnFHdX2UKGgGaAloD0MIdJXurrOtRsCUhpRSlGgVS2ZoFkdABQsny/bj+HV9lChoBmgJaA9DCPhRDfs93mHAlIaUUpRoFUtfaBZHQAU25hBqsU91fZQoaAZoCWgPQwhVEtkH2aBywJSGlFKUaBVLbGgWR0AFToIOYplSdX2UKGgGaAloD0MIpd3oY36ddcCUhpRSlGgVS6FoFkdABWAksz2vjnV9lChoBmgJaA9DCONsOgK4qVLAlIaUUpRoFUtiaBZHQAVmMn7YTTR1fZQoaAZoCWgPQwjHndLB+v5ewJSGlFKUaBVLZmgWR0AFcV8CxNZedX2UKGgGaAloD0MIRNycSgZyXMCUhpRSlGgVS09oFkdABbVwPy08eXV9lChoBmgJaA9DCB1YjpBB/3bAlIaUUpRoFUuJaBZHQAXdKujh1kl1fZQoaAZoCWgPQwgzpIriVX5VwJSGlFKUaBVLP2gWR0AF5J2+wkgPdX2UKGgGaAloD0MIcm2oGOdHVMCUhpRSlGgVS0poFkdABezw+dK/VXV9lChoBmgJaA9DCJLNVfMcB3nAlIaUUpRoFUtXaBZHQAYJg1FYuCh1fZQoaAZoCWgPQwgsD9JT5B5ZwJSGlFKUaBVLSGgWR0AGDXrdFfAsdX2UKGgGaAloD0MItB1Td2VuXsCUhpRSlGgVS2doFkdABiK0lZ5iVnV9lChoBmgJaA9DCFx0stQ683DAlIaUUpRoFUtVaBZHQAYikwevIOp1fZQoaAZoCWgPQwhFnbmHBLd3wJSGlFKUaBVLWGgWR0AGPkxREWqMdX2UKGgGaAloD0MIhCugUE81WMCUhpRSlGgVS0ZoFkdABkxREWqLj3V9lChoBmgJaA9DCHXpX5JKtWrAlIaUUpRoFUtpaBZHQAZN+LFXJYF1fZQoaAZoCWgPQwitTPilPjRwwJSGlFKUaBVLYWgWR0AGhooNNJvpdX2UKGgGaAloD0MIH0dzZOWmUsCUhpRSlGgVS1NoFkdABo/9Hc1wYXV9lChoBmgJaA9DCCPb+X5qhmvAlIaUUpRoFUtTaBZHQAalpoK2KEZ1fZQoaAZoCWgPQwgYWp2coZBXwJSGlFKUaBVLQ2gWR0AG4zYVZcLSdX2UKGgGaAloD0MIwtmtZTLBWcCUhpRSlGgVS1ZoFkdABwDyOJcgQ3V9lChoBmgJaA9DCK2lgLR/kGHAlIaUUpRoFUtwaBZHQAcQc5sCT2Z1fZQoaAZoCWgPQwhHOC140eVkwJSGlFKUaBVLU2gWR0AHHS2H+IdmdX2UKGgGaAloD0MIje+LS1U9V8CUhpRSlGgVS0VoFkdAB1cry1/lQ3V9lChoBmgJaA9DCFc+y/MgjHbAlIaUUpRoFUuCaBZHQAdqEnLJSzh1fZQoaAZoCWgPQwjnx19a1N8+wJSGlFKUaBVLWGgWR0AHdmHxjJ+2dX2UKGgGaAloD0MIOurouJr5bcCUhpRSlGgVS2VoFkdAB3XWe6I3znV9lChoBmgJaA9DCK/OMSB7bV7AlIaUUpRoFUtYaBZHQAeT0pVjqfR1fZQoaAZoCWgPQwj+uWjIeOJZwJSGlFKUaBVLWGgWR0AHooPTXrdFdX2UKGgGaAloD0MIR1fp7nq9c8CUhpRSlGgVS3hoFkdAB9z90ihWYHV9lChoBmgJaA9DCDl9PV+zlnHAlIaUUpRoFUtYaBZHQAfjEm6XjVB1fZQoaAZoCWgPQwixFwrYDmxkwJSGlFKUaBVLeGgWR0AH4g7o0Q9SdX2UKGgGaAloD0MIe6AVGDKhbsCUhpRSlGgVS3VoFkdAB+pZOi35OHV9lChoBmgJaA9DCPCFyVTBQ1fAlIaUUpRoFUtCaBZHQAfuHFglWwN1fZQoaAZoCWgPQwhwCcA/pd1bwJSGlFKUaBVLWmgWR0AICgZjx0+1dX2UKGgGaAloD0MIawvPS8VwVMCUhpRSlGgVSz1oFkdACBBu4wyqMnV9lChoBmgJaA9DCManABiP+3PAlIaUUpRoFUtPaBZHQAhF18stkFx1fZQoaAZoCWgPQwgMdVjhlktcwJSGlFKUaBVLcGgWR0AIRWgezUqhdX2UKGgGaAloD0MIe2mKAKfja8CUhpRSlGgVS0xoFkdACH0+1SflIXV9lChoBmgJaA9DCGSV0jM9LGHAlIaUUpRoFUs8aBZHQAiHmaH9FWp1fZQoaAZoCWgPQwgKn62DA9BhwJSGlFKUaBVLcWgWR0AIuhbnoxHodX2UKGgGaAloD0MIED0pkxpuV8CUhpRSlGgVS0FoFkdACNfbblA/s3V9lChoBmgJaA9DCFHdXPxt81fAlIaUUpRoFUtDaBZHQAkKQaJhvzh1fZQoaAZoCWgPQwjwarkzU3J2wJSGlFKUaBVLZWgWR0AJG5Dqnm7rdX2UKGgGaAloD0MIBvNXyFyuUsCUhpRSlGgVS1BoFkdACSJyhi9ZinV9lChoBmgJaA9DCFhYcD/g8mLAlIaUUpRoFUt3aBZHQAlHpB5X2dx1fZQoaAZoCWgPQwhY42w6gudjwJSGlFKUaBVLYWgWR0AJXl2eQMhHdX2UKGgGaAloD0MIchdhirKrdsCUhpRSlGgVS39oFkdACV6Ww/xDs3V9lChoBmgJaA9DCGK7e4AuHXDAlIaUUpRoFUtnaBZHQAlxU3n6l+F1fZQoaAZoCWgPQwgJMgIqnMh1wJSGlFKUaBVLhWgWR0AJgbwSamXPdX2UKGgGaAloD0MII/d0dUcGaMCUhpRSlGgVS2hoFkdACYHN5dGAkXV9lChoBmgJaA9DCK1OzlDci1zAlIaUUpRoFUthaBZHQAmNxdY4hll1ZS4="
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 4,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVDwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMbi9ob21lL2Fyay8ubWluaWNvbmRhMy9lbnZzL2RlZXAtcmwtY291cnNlLXVuaXQtMS9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxuL2hvbWUvYXJrLy5taW5pY29uZGEzL2VudnMvZGVlcC1ybC1jb3Vyc2UtdW5pdC0xL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
arkadyark-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4cef48c32ac1ac87e816f0babfd088e9eede21b25542cd3fc2a0f4ea3dbe0237
3
+ size 88057
arkadyark-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1739f47a5930882e4394b5032399bdc1f2a01151054991bb3f2cf87c83b7e3ca
3
+ size 43393
arkadyark-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
arkadyark-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.0-60-generic-x86_64-with-glibc2.35 # 66-Ubuntu SMP Fri Jan 20 14:29:49 UTC 2023
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu117
5
+ - GPU Enabled: True
6
+ - Numpy: 1.24.2
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f803188ae50>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f803188aee0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f803188af70>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f803188f040>", "_build": "<function ActorCriticPolicy._build at 0x7f803188f0d0>", "forward": "<function ActorCriticPolicy.forward at 0x7f803188f160>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f803188f1f0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f803188f280>", "_predict": "<function ActorCriticPolicy._predict at 0x7f803188f310>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f803188f3a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f803188f430>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f803188f4c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f803188dec0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 16384, "_total_timesteps": 100, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678573047129652752, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVDwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMbi9ob21lL2Fyay8ubWluaWNvbmRhMy9lbnZzL2RlZXAtcmwtY291cnNlLXVuaXQtMS9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxuL2hvbWUvYXJrLy5taW5pY29uZGEzL2VudnMvZGVlcC1ybC1jb3Vyc2UtdW5pdC0xL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAANO+VT73sIw/RvtAP7CH3r6+/6C+SRmBvgAAAAAAAAAAfgCMvttgwT/mnVy/1XsUvkoYsz7L1xU+AAAAAAAAAAAA4B07nILBP6t0azuGK0g+ZEYOPZqDUD0AAAAAAAAAAGb48DwgcNU+mvh+vSLvpL97N3s+k/U3PgAAAAAAAAAAZvLQPEd3lz9FGj4+Oucnv3FmL76+DaG+AAAAAAAAAAANIE8+ArGePqgRpD5jzpe/h+nRvaFiDT4AAAAAAAAAAGbAozymobA/KAyJPtSVH75k/gq8XJcjugAAAAAAAAAAMzOtPM0otz/udQo/8gZLPnfL1rzQDiC+AAAAAAAAAACaaiU9vDG+P4sbxj5CaJM+3ulsvSbLBL4AAAAAAAAAAF0b876DJpM/wJkJv/cRXr/dNRQ97m5RvgAAAAAAAAAAzW1MvSgUrj8ZhTe/CgCwvsZcPT3VSBo+AAAAAAAAAACAIVe+GHaCP2aX2L6CmUu/vLGHveE6tbwAAAAAAAAAAGZXiDzBmp8/IilyPft4276Qs5+9jfnlvAAAAAAAAAAAUwQMvpRarj+DISe/8DF0vsqP9T1A6rw9AAAAAAAAAAB6w1I+2dpQPgdWAT81Mpy/fqEFv8PTcr4AAAAAAAAAAJ1iyj5LTyo/qyhQP+Trgr8oiRS/70yRvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -162.84, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIsCDNWPRSesCUhpRSlIwBbJRLaYwBdJRHQAD59uxbB451fZQoaAZoCWgPQwhLP+HsVrBxwJSGlFKUaBVLcmgWR0ABFVNpM6BAdX2UKGgGaAloD0MI8bxUbEy8ZcCUhpRSlGgVS1ZoFkdAAThDPWxyGXV9lChoBmgJaA9DCCtR9pYyC3fAlIaUUpRoFUtsaBZHQAE9znzQNTd1fZQoaAZoCWgPQwjdmnRbIj1hwJSGlFKUaBVLRGgWR0ABPg3tKIzndX2UKGgGaAloD0MIL4Zyol3sV8CUhpRSlGgVS21oFkdAAXoOhCdBjXV9lChoBmgJaA9DCI/Ey9O5mVbAlIaUUpRoFUtSaBZHQAGAuyu6mO51fZQoaAZoCWgPQwhKz/QSYwpawJSGlFKUaBVLP2gWR0ABhvxYq5LAdX2UKGgGaAloD0MIW7BUF/AWT8CUhpRSlGgVS0FoFkdAAbutwJgLJHV9lChoBmgJaA9DCJoGRfMAoVbAlIaUUpRoFUtFaBZHQAHJFCswL3N1fZQoaAZoCWgPQwibV3VWCxRhwJSGlFKUaBVLaGgWR0AB1WMju8brdX2UKGgGaAloD0MITl5kAn7YXsCUhpRSlGgVS2BoFkdAAfoqTbFju3V9lChoBmgJaA9DCMzUJHiD7HXAlIaUUpRoFUtcaBZHQAH6QvHtF8Z1fZQoaAZoCWgPQwhDklm9QzpjwJSGlFKUaBVLQmgWR0ACObG3nZCfdX2UKGgGaAloD0MIw0ZZvxmjc8CUhpRSlGgVS1ZoFkdAAkgyM1jy4HV9lChoBmgJaA9DCGr3qwDfV2zAlIaUUpRoFUtuaBZHQAJQb+98JD51fZQoaAZoCWgPQwi9xcN7Tsx5wJSGlFKUaBVLXmgWR0ACT6Fdszl+dX2UKGgGaAloD0MI7blMTYJXW8CUhpRSlGgVS3NoFkdAAl38n/kvK3V9lChoBmgJaA9DCCU9DK1OxlzAlIaUUpRoFUtTaBZHQAJcLKFIuoR1fZQoaAZoCWgPQwj9SufDs5NVwJSGlFKUaBVLSmgWR0ACYZ0jkdWAdX2UKGgGaAloD0MI12zlJf/tZMCUhpRSlGgVS0ZoFkdAApbnoxHoYHV9lChoBmgJaA9DCBWRYRXvUmPAlIaUUpRoFUtEaBZHQALQ5eZ5Rj11fZQoaAZoCWgPQwiJJlDEIgNVwJSGlFKUaBVLQ2gWR0AC2dy1eBxxdX2UKGgGaAloD0MI9n6jHTdkZcCUhpRSlGgVS0poFkdAAt1BdD6WPnV9lChoBmgJaA9DCBFvnX+7y1nAlIaUUpRoFUtsaBZHQALiSaEzwc51fZQoaAZoCWgPQwjwMVhxakJzwJSGlFKUaBVLYmgWR0AC/hOxjawmdX2UKGgGaAloD0MIZCE6BI4JWcCUhpRSlGgVSzxoFkdAA0XbdrO7hHV9lChoBmgJaA9DCIYDIVnANFvAlIaUUpRoFUt2aBZHQANGBOHnEEV1fZQoaAZoCWgPQwjb+uk/awxjwJSGlFKUaBVLTGgWR0ADYkmhM8HOdX2UKGgGaAloD0MIKbAApozCccCUhpRSlGgVS1xoFkdAA2I5YHPeHnV9lChoBmgJaA9DCADK370j/2/AlIaUUpRoFUtIaBZHQAN0XYUWVNZ1fZQoaAZoCWgPQwhtUzwu6o11wJSGlFKUaBVLU2gWR0ADnXd0q6OHdX2UKGgGaAloD0MI3Xu45HhsccCUhpRSlGgVS21oFkdAA6YWtU4rBnV9lChoBmgJaA9DCDBmS1ZFy1rAlIaUUpRoFUtdaBZHQAO7gsK9f1J1fZQoaAZoCWgPQwgfZcQF4JRywJSGlFKUaBVLSmgWR0ADu+VTrE9/dX2UKGgGaAloD0MIvHoVGR0mc8CUhpRSlGgVS19oFkdAA8Jtzjm0V3V9lChoBmgJaA9DCDPhl/p50U/AlIaUUpRoFUtCaBZHQAPXT/hl18t1fZQoaAZoCWgPQwhzTBb3H6dYwJSGlFKUaBVLZ2gWR0AD3BLwnYxtdX2UKGgGaAloD0MITdu/shLmccCUhpRSlGgVS2loFkdABHRMN+b3GnV9lChoBmgJaA9DCCeDo+TVn2jAlIaUUpRoFUtqaBZHQASAN5MURFt1fZQoaAZoCWgPQwiS6GUUy3dYwJSGlFKUaBVLWmgWR0AEqhvitJWedX2UKGgGaAloD0MI8+MvLeqYYcCUhpRSlGgVS1NoFkdABKmm+Cbtq3V9lChoBmgJaA9DCDfg88MIx13AlIaUUpRoFUtBaBZHQATDR2KVII51fZQoaAZoCWgPQwhv8IXJVLFqwJSGlFKUaBVLYmgWR0AEzEP1+RYBdX2UKGgGaAloD0MIa0Wb41xuecCUhpRSlGgVS3loFkdABN8HfMwDeXV9lChoBmgJaA9DCL6ItmPqsW3AlIaUUpRoFUtRaBZHQATpY1YQrc11fZQoaAZoCWgPQwiFQ2/x8GdgwJSGlFKUaBVLY2gWR0AE7jo6jnFHdX2UKGgGaAloD0MIdJXurrOtRsCUhpRSlGgVS2ZoFkdABQsny/bj+HV9lChoBmgJaA9DCPhRDfs93mHAlIaUUpRoFUtfaBZHQAU25hBqsU91fZQoaAZoCWgPQwhVEtkH2aBywJSGlFKUaBVLbGgWR0AFToIOYplSdX2UKGgGaAloD0MIpd3oY36ddcCUhpRSlGgVS6FoFkdABWAksz2vjnV9lChoBmgJaA9DCONsOgK4qVLAlIaUUpRoFUtiaBZHQAVmMn7YTTR1fZQoaAZoCWgPQwjHndLB+v5ewJSGlFKUaBVLZmgWR0AFcV8CxNZedX2UKGgGaAloD0MIRNycSgZyXMCUhpRSlGgVS09oFkdABbVwPy08eXV9lChoBmgJaA9DCB1YjpBB/3bAlIaUUpRoFUuJaBZHQAXdKujh1kl1fZQoaAZoCWgPQwgzpIriVX5VwJSGlFKUaBVLP2gWR0AF5J2+wkgPdX2UKGgGaAloD0MIcm2oGOdHVMCUhpRSlGgVS0poFkdABezw+dK/VXV9lChoBmgJaA9DCJLNVfMcB3nAlIaUUpRoFUtXaBZHQAYJg1FYuCh1fZQoaAZoCWgPQwgsD9JT5B5ZwJSGlFKUaBVLSGgWR0AGDXrdFfAsdX2UKGgGaAloD0MItB1Td2VuXsCUhpRSlGgVS2doFkdABiK0lZ5iVnV9lChoBmgJaA9DCFx0stQ683DAlIaUUpRoFUtVaBZHQAYikwevIOp1fZQoaAZoCWgPQwhFnbmHBLd3wJSGlFKUaBVLWGgWR0AGPkxREWqMdX2UKGgGaAloD0MIhCugUE81WMCUhpRSlGgVS0ZoFkdABkxREWqLj3V9lChoBmgJaA9DCHXpX5JKtWrAlIaUUpRoFUtpaBZHQAZN+LFXJYF1fZQoaAZoCWgPQwitTPilPjRwwJSGlFKUaBVLYWgWR0AGhooNNJvpdX2UKGgGaAloD0MIH0dzZOWmUsCUhpRSlGgVS1NoFkdABo/9Hc1wYXV9lChoBmgJaA9DCCPb+X5qhmvAlIaUUpRoFUtTaBZHQAalpoK2KEZ1fZQoaAZoCWgPQwgYWp2coZBXwJSGlFKUaBVLQ2gWR0AG4zYVZcLSdX2UKGgGaAloD0MIwtmtZTLBWcCUhpRSlGgVS1ZoFkdABwDyOJcgQ3V9lChoBmgJaA9DCK2lgLR/kGHAlIaUUpRoFUtwaBZHQAcQc5sCT2Z1fZQoaAZoCWgPQwhHOC140eVkwJSGlFKUaBVLU2gWR0AHHS2H+IdmdX2UKGgGaAloD0MIje+LS1U9V8CUhpRSlGgVS0VoFkdAB1cry1/lQ3V9lChoBmgJaA9DCFc+y/MgjHbAlIaUUpRoFUuCaBZHQAdqEnLJSzh1fZQoaAZoCWgPQwjnx19a1N8+wJSGlFKUaBVLWGgWR0AHdmHxjJ+2dX2UKGgGaAloD0MIOurouJr5bcCUhpRSlGgVS2VoFkdAB3XWe6I3znV9lChoBmgJaA9DCK/OMSB7bV7AlIaUUpRoFUtYaBZHQAeT0pVjqfR1fZQoaAZoCWgPQwj+uWjIeOJZwJSGlFKUaBVLWGgWR0AHooPTXrdFdX2UKGgGaAloD0MIR1fp7nq9c8CUhpRSlGgVS3hoFkdAB9z90ihWYHV9lChoBmgJaA9DCDl9PV+zlnHAlIaUUpRoFUtYaBZHQAfjEm6XjVB1fZQoaAZoCWgPQwixFwrYDmxkwJSGlFKUaBVLeGgWR0AH4g7o0Q9SdX2UKGgGaAloD0MIe6AVGDKhbsCUhpRSlGgVS3VoFkdAB+pZOi35OHV9lChoBmgJaA9DCPCFyVTBQ1fAlIaUUpRoFUtCaBZHQAfuHFglWwN1fZQoaAZoCWgPQwhwCcA/pd1bwJSGlFKUaBVLWmgWR0AICgZjx0+1dX2UKGgGaAloD0MIawvPS8VwVMCUhpRSlGgVSz1oFkdACBBu4wyqMnV9lChoBmgJaA9DCManABiP+3PAlIaUUpRoFUtPaBZHQAhF18stkFx1fZQoaAZoCWgPQwgMdVjhlktcwJSGlFKUaBVLcGgWR0AIRWgezUqhdX2UKGgGaAloD0MIe2mKAKfja8CUhpRSlGgVS0xoFkdACH0+1SflIXV9lChoBmgJaA9DCGSV0jM9LGHAlIaUUpRoFUs8aBZHQAiHmaH9FWp1fZQoaAZoCWgPQwgKn62DA9BhwJSGlFKUaBVLcWgWR0AIuhbnoxHodX2UKGgGaAloD0MIED0pkxpuV8CUhpRSlGgVS0FoFkdACNfbblA/s3V9lChoBmgJaA9DCFHdXPxt81fAlIaUUpRoFUtDaBZHQAkKQaJhvzh1fZQoaAZoCWgPQwjwarkzU3J2wJSGlFKUaBVLZWgWR0AJG5Dqnm7rdX2UKGgGaAloD0MIBvNXyFyuUsCUhpRSlGgVS1BoFkdACSJyhi9ZinV9lChoBmgJaA9DCFhYcD/g8mLAlIaUUpRoFUt3aBZHQAlHpB5X2dx1fZQoaAZoCWgPQwhY42w6gudjwJSGlFKUaBVLYWgWR0AJXl2eQMhHdX2UKGgGaAloD0MIchdhirKrdsCUhpRSlGgVS39oFkdACV6Ww/xDs3V9lChoBmgJaA9DCGK7e4AuHXDAlIaUUpRoFUtnaBZHQAlxU3n6l+F1fZQoaAZoCWgPQwgJMgIqnMh1wJSGlFKUaBVLhWgWR0AJgbwSamXPdX2UKGgGaAloD0MII/d0dUcGaMCUhpRSlGgVS2hoFkdACYHN5dGAkXV9lChoBmgJaA9DCK1OzlDci1zAlIaUUpRoFUthaBZHQAmNxdY4hll1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 4, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVDwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMbi9ob21lL2Fyay8ubWluaWNvbmRhMy9lbnZzL2RlZXAtcmwtY291cnNlLXVuaXQtMS9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxuL2hvbWUvYXJrLy5taW5pY29uZGEzL2VudnMvZGVlcC1ybC1jb3Vyc2UtdW5pdC0xL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.15.0-60-generic-x86_64-with-glibc2.35 # 66-Ubuntu SMP Fri Jan 20 14:29:49 UTC 2023", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu117", "GPU Enabled": "True", "Numpy": "1.24.2", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (254 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -187.76933389876504, "std_reward": 60.28134841347281, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-11T17:24:14.816493"}