arijitx commited on
Commit
9a96f0d
·
1 Parent(s): 221a4f4

update training and eval code

Browse files
.ipynb_checkpoints/alphabet-checkpoint.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"labels": [" ", "_", "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "r", "s", "t", "u", "v", "w", "x", "y", "z", "।", "ঁ", "ং", "ঃ", "অ", "আ", "ই", "ঈ", "উ", "ঊ", "ঋ", "এ", "ঐ", "ও", "ঔ", "ক", "খ", "গ", "ঘ", "ঙ", "চ", "ছ", "জ", "ঝ", "ঞ", "ট", "ঠ", "ড", "ঢ", "ণ", "ত", "থ", "দ", "ধ", "ন", "প", "ফ", "ব", "ভ", "ম", "য", "র", "ল", "শ", "ষ", "স", "হ", "়", "া", "ি", "ী", "ু", "ূ", "ৃ", "ে", "ৈ", "ো", "ৌ", "্", "ৎ", "ৗ", "ড়", "ঢ়", "য়", "০", "১", "২", "৩", "৪", "৫", "৬", "৭", "৮", "৯", "ৰ", "\u200c", "\u200d", "\u200e", "[pad]", "<s>", "</s>"], "is_bpe": false}
.ipynb_checkpoints/eval-checkpoint.py ADDED
@@ -0,0 +1,149 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ import argparse
3
+ import re
4
+ from typing import Dict
5
+ import os
6
+
7
+ import torch
8
+ from datasets import Audio, Dataset, load_dataset, load_metric
9
+
10
+ from transformers import AutoFeatureExtractor, pipeline
11
+ import transformers
12
+
13
+ def log_results(result: Dataset, args: Dict[str, str]):
14
+ """DO NOT CHANGE. This function computes and logs the result metrics."""
15
+
16
+ log_outputs = args.log_outputs
17
+ dataset_id = "_".join(args.dataset.split("/") + [args.config, args.split])
18
+
19
+ # load metric
20
+ wer = load_metric("wer")
21
+ cer = load_metric("cer")
22
+
23
+ # compute metrics
24
+ wer_result = wer.compute(references=result["target"], predictions=result["prediction"])
25
+ cer_result = cer.compute(references=result["target"], predictions=result["prediction"])
26
+
27
+ # print & log results
28
+ result_str = f"WER: {wer_result}\n" f"CER: {cer_result}"
29
+ print(result_str)
30
+
31
+ with open(f"{dataset_id}_eval_results.txt", "w") as f:
32
+ f.write(result_str)
33
+
34
+ # log all results in text file. Possibly interesting for analysis
35
+ if log_outputs is not None:
36
+ pred_file = f"log_{dataset_id}_predictions.txt"
37
+ target_file = f"log_{dataset_id}_targets.txt"
38
+
39
+ with open(pred_file, "w") as p, open(target_file, "w") as t:
40
+
41
+ # mapping function to write output
42
+ def write_to_file(batch, i):
43
+ p.write(f"{i}" + "\n")
44
+ p.write(batch["prediction"] + "\n")
45
+ t.write(f"{i}" + "\n")
46
+ t.write(batch["target"] + "\n")
47
+
48
+ result.map(write_to_file, with_indices=True)
49
+
50
+
51
+ def normalize_text(text: str) -> str:
52
+ """DO ADAPT FOR YOUR USE CASE. this function normalizes the target text."""
53
+
54
+ chars_to_ignore_regex = '[,?.!\-\;\:"“%‘”�—’…–]' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training
55
+
56
+ text = re.sub(chars_to_ignore_regex, "", text.lower())
57
+
58
+ # In addition, we can normalize the target text, e.g. removing new lines characters etc...
59
+ # note that order is important here!
60
+ token_sequences_to_ignore = ["\n\n", "\n", " ", " "]
61
+
62
+ for t in token_sequences_to_ignore:
63
+ text = " ".join(text.split(t))
64
+
65
+ return text
66
+
67
+
68
+ def main(args):
69
+ # load dataset
70
+ dataset = load_dataset(args.dataset, args.config, split=args.split, use_auth_token=True)
71
+
72
+ # for testing: only process the first two examples as a test
73
+ # dataset = dataset.select(range(10))
74
+
75
+ # load processor
76
+ feature_extractor = AutoFeatureExtractor.from_pretrained(args.model_id)
77
+ sampling_rate = feature_extractor.sampling_rate
78
+
79
+ # resample audio
80
+ dataset = dataset.cast_column("audio", Audio(sampling_rate=sampling_rate))
81
+
82
+ # load eval pipeline
83
+ if args.device is None:
84
+ args.device = 0 if torch.cuda.is_available() else -1
85
+ # asr = pipeline("automatic-speech-recognition", model=args.model_id, device=args.device, use_auth=True)
86
+ config = transformers.PretrainedConfig.from_pretrained(args.model_id)
87
+ model = transformers.Wav2Vec2ForCTC.from_pretrained(args.model_id)
88
+ processor = transformers.AutoProcessor.from_pretrained(args.model_id)
89
+ vocab_dict = processor.tokenizer.get_vocab()
90
+ sorted_vocab_dict = {k.lower(): v for k, v in sorted(vocab_dict.items(), key=lambda item: item[1])}
91
+ print(list(sorted_vocab_dict))
92
+
93
+ #with lm
94
+ asr = pipeline("automatic-speech-recognition", config=config, model=model, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor, decoder=processor.decoder, device=args.device)
95
+ #without lm
96
+ #asr = pipeline("automatic-speech-recognition", config=config, model=model, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor, device=args.device)
97
+
98
+ # map function to decode audio
99
+ def map_to_pred(batch):
100
+ prediction = asr(
101
+ batch["audio"]["array"], chunk_length_s=args.chunk_length_s, stride_length_s=args.stride_length_s
102
+ )
103
+
104
+ batch["prediction"] = prediction["text"]
105
+ batch["target"] = normalize_text(batch["sentence"])
106
+ return batch
107
+
108
+ # run inference on all examples
109
+ result = dataset.map(map_to_pred, remove_columns=dataset.column_names)
110
+
111
+ # compute and log_results
112
+ # do not change function below
113
+ log_results(result, args)
114
+
115
+
116
+ if __name__ == "__main__":
117
+ parser = argparse.ArgumentParser()
118
+
119
+ parser.add_argument(
120
+ "--model_id", type=str, required=True, help="Model identifier. Should be loadable with 🤗 Transformers"
121
+ )
122
+ parser.add_argument(
123
+ "--dataset",
124
+ type=str,
125
+ required=True,
126
+ help="Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets",
127
+ )
128
+ parser.add_argument(
129
+ "--config", type=str, required=True, help="Config of the dataset. *E.g.* `'en'` for Common Voice"
130
+ )
131
+ parser.add_argument("--split", type=str, required=True, help="Split of the dataset. *E.g.* `'test'`")
132
+ parser.add_argument(
133
+ "--chunk_length_s", type=float, default=None, help="Chunk length in seconds. Defaults to 5 seconds."
134
+ )
135
+ parser.add_argument(
136
+ "--stride_length_s", type=float, default=None, help="Stride of the audio chunks. Defaults to 1 second."
137
+ )
138
+ parser.add_argument(
139
+ "--log_outputs", action="store_true", help="If defined, write outputs to log file for analysis."
140
+ )
141
+ parser.add_argument(
142
+ "--device",
143
+ type=int,
144
+ default=None,
145
+ help="The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.",
146
+ )
147
+ args = parser.parse_args()
148
+
149
+ main(args)
alphabet.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"labels": [" ", "_", "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "r", "s", "t", "u", "v", "w", "x", "y", "z", "।", "ঁ", "ং", "ঃ", "অ", "আ", "ই", "ঈ", "উ", "ঊ", "ঋ", "এ", "ঐ", "ও", "ঔ", "ক", "খ", "গ", "ঘ", "ঙ", "চ", "ছ", "জ", "ঝ", "ঞ", "ট", "ঠ", "ড", "ঢ", "ণ", "ত", "থ", "দ", "ধ", "ন", "প", "ফ", "ব", "ভ", "ম", "য", "র", "ল", "শ", "ষ", "স", "হ", "়", "া", "ি", "ী", "ু", "ূ", "ৃ", "ে", "ৈ", "ো", "ৌ", "্", "ৎ", "ৗ", "ড়", "ঢ়", "য়", "০", "১", "২", "৩", "৪", "৫", "৬", "৭", "৮", "৯", "ৰ", "\u200c", "\u200d", "\u200e", "[pad]", "<s>", "</s>"], "is_bpe": false}
eval.py ADDED
@@ -0,0 +1,149 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ import argparse
3
+ import re
4
+ from typing import Dict
5
+ import os
6
+
7
+ import torch
8
+ from datasets import Audio, Dataset, load_dataset, load_metric
9
+
10
+ from transformers import AutoFeatureExtractor, pipeline
11
+ import transformers
12
+
13
+ def log_results(result: Dataset, args: Dict[str, str]):
14
+ """DO NOT CHANGE. This function computes and logs the result metrics."""
15
+
16
+ log_outputs = args.log_outputs
17
+ dataset_id = "_".join(args.dataset.split("/") + [args.config, args.split])
18
+
19
+ # load metric
20
+ wer = load_metric("wer")
21
+ cer = load_metric("cer")
22
+
23
+ # compute metrics
24
+ wer_result = wer.compute(references=result["target"], predictions=result["prediction"])
25
+ cer_result = cer.compute(references=result["target"], predictions=result["prediction"])
26
+
27
+ # print & log results
28
+ result_str = f"WER: {wer_result}\n" f"CER: {cer_result}"
29
+ print(result_str)
30
+
31
+ with open(f"{dataset_id}_eval_results.txt", "w") as f:
32
+ f.write(result_str)
33
+
34
+ # log all results in text file. Possibly interesting for analysis
35
+ if log_outputs is not None:
36
+ pred_file = f"log_{dataset_id}_predictions.txt"
37
+ target_file = f"log_{dataset_id}_targets.txt"
38
+
39
+ with open(pred_file, "w") as p, open(target_file, "w") as t:
40
+
41
+ # mapping function to write output
42
+ def write_to_file(batch, i):
43
+ p.write(f"{i}" + "\n")
44
+ p.write(batch["prediction"] + "\n")
45
+ t.write(f"{i}" + "\n")
46
+ t.write(batch["target"] + "\n")
47
+
48
+ result.map(write_to_file, with_indices=True)
49
+
50
+
51
+ def normalize_text(text: str) -> str:
52
+ """DO ADAPT FOR YOUR USE CASE. this function normalizes the target text."""
53
+
54
+ chars_to_ignore_regex = '[,?.!\-\;\:"“%‘”�—’…–]' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training
55
+
56
+ text = re.sub(chars_to_ignore_regex, "", text.lower())
57
+
58
+ # In addition, we can normalize the target text, e.g. removing new lines characters etc...
59
+ # note that order is important here!
60
+ token_sequences_to_ignore = ["\n\n", "\n", " ", " "]
61
+
62
+ for t in token_sequences_to_ignore:
63
+ text = " ".join(text.split(t))
64
+
65
+ return text
66
+
67
+
68
+ def main(args):
69
+ # load dataset
70
+ dataset = load_dataset(args.dataset, args.config, split=args.split, use_auth_token=True)
71
+
72
+ # for testing: only process the first two examples as a test
73
+ # dataset = dataset.select(range(10))
74
+
75
+ # load processor
76
+ feature_extractor = AutoFeatureExtractor.from_pretrained(args.model_id)
77
+ sampling_rate = feature_extractor.sampling_rate
78
+
79
+ # resample audio
80
+ dataset = dataset.cast_column("audio", Audio(sampling_rate=sampling_rate))
81
+
82
+ # load eval pipeline
83
+ if args.device is None:
84
+ args.device = 0 if torch.cuda.is_available() else -1
85
+ # asr = pipeline("automatic-speech-recognition", model=args.model_id, device=args.device, use_auth=True)
86
+ config = transformers.PretrainedConfig.from_pretrained(args.model_id)
87
+ model = transformers.Wav2Vec2ForCTC.from_pretrained(args.model_id)
88
+ processor = transformers.AutoProcessor.from_pretrained(args.model_id)
89
+ vocab_dict = processor.tokenizer.get_vocab()
90
+ sorted_vocab_dict = {k.lower(): v for k, v in sorted(vocab_dict.items(), key=lambda item: item[1])}
91
+ print(list(sorted_vocab_dict))
92
+
93
+ #with lm
94
+ asr = pipeline("automatic-speech-recognition", config=config, model=model, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor, decoder=processor.decoder, device=args.device)
95
+ #without lm
96
+ #asr = pipeline("automatic-speech-recognition", config=config, model=model, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor, device=args.device)
97
+
98
+ # map function to decode audio
99
+ def map_to_pred(batch):
100
+ prediction = asr(
101
+ batch["audio"]["array"], chunk_length_s=args.chunk_length_s, stride_length_s=args.stride_length_s
102
+ )
103
+
104
+ batch["prediction"] = prediction["text"]
105
+ batch["target"] = normalize_text(batch["sentence"])
106
+ return batch
107
+
108
+ # run inference on all examples
109
+ result = dataset.map(map_to_pred, remove_columns=dataset.column_names)
110
+
111
+ # compute and log_results
112
+ # do not change function below
113
+ log_results(result, args)
114
+
115
+
116
+ if __name__ == "__main__":
117
+ parser = argparse.ArgumentParser()
118
+
119
+ parser.add_argument(
120
+ "--model_id", type=str, required=True, help="Model identifier. Should be loadable with 🤗 Transformers"
121
+ )
122
+ parser.add_argument(
123
+ "--dataset",
124
+ type=str,
125
+ required=True,
126
+ help="Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets",
127
+ )
128
+ parser.add_argument(
129
+ "--config", type=str, required=True, help="Config of the dataset. *E.g.* `'en'` for Common Voice"
130
+ )
131
+ parser.add_argument("--split", type=str, required=True, help="Split of the dataset. *E.g.* `'test'`")
132
+ parser.add_argument(
133
+ "--chunk_length_s", type=float, default=None, help="Chunk length in seconds. Defaults to 5 seconds."
134
+ )
135
+ parser.add_argument(
136
+ "--stride_length_s", type=float, default=None, help="Stride of the audio chunks. Defaults to 1 second."
137
+ )
138
+ parser.add_argument(
139
+ "--log_outputs", action="store_true", help="If defined, write outputs to log file for analysis."
140
+ )
141
+ parser.add_argument(
142
+ "--device",
143
+ type=int,
144
+ default=None,
145
+ help="The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.",
146
+ )
147
+ args = parser.parse_args()
148
+
149
+ main(args)
language_model/.ipynb_checkpoints/attrs-checkpoint.json CHANGED
@@ -1,3 +1 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:f5ffd02e1ceef6517476e72ebe7997ddef7e92d27cb5a23d6695d64c4317d6ad
3
- size 78
 
1
+ {"alpha": 0.5, "beta": 1.5, "unk_score_offset": -10.0, "score_boundary": true}
 
 
language_model/attrs.json CHANGED
@@ -1,3 +1 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:f5ffd02e1ceef6517476e72ebe7997ddef7e92d27cb5a23d6695d64c4317d6ad
3
- size 78
 
1
+ {"alpha": 0.5, "beta": 1.5, "unk_score_offset": -10.0, "score_boundary": true}
 
 
log_openslr_SLR53_train[95%:]_predictions.txt ADDED
The diff for this file is too large to render. See raw diff
 
log_openslr_SLR53_train[95%:]_targets.txt ADDED
The diff for this file is too large to render. See raw diff
 
openslr_SLR53_train[95%:]_eval_results.txt ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ WER: 0.21726385291857586
2
+ CER: 0.04725010353701041
run.sh ADDED
@@ -0,0 +1 @@
 
 
1
+ python run_speech_recognition_ctc.py --dataset_name="openslr" --model_name_or_path="facebook/wav2vec2-xls-r-300m" --dataset_config_name="SLR53" --output_dir="./wav2vec2-xls-r-300m-bengali" --overwrite_output_dir --num_train_epochs="50" --per_device_train_batch_size="32" --per_device_eval_batch_size="32" --gradient_accumulation_steps="1" --learning_rate="7.5e-5" --warmup_steps="2000" --length_column_name="input_length" --evaluation_strategy="steps" --text_column_name="sentence" --chars_to_ignore , ? . ! \- \; \: \" “ % ‘ ” � — ’ … – --save_steps="2000" --eval_steps="3000" --logging_steps="100" --layerdrop="0.0" --activation_dropout="0.1" --save_total_limit="3" --freeze_feature_encoder --feat_proj_dropout="0.0" --mask_time_prob="0.75" --mask_time_length="10" --mask_feature_prob="0.25" --mask_feature_length="64" --preprocessing_num_workers 32 --gradient_checkpointing --use_auth_token --fp16 --group_by_length --do_train --do_eval --report_to wandb --min_duration_in_seconds 0.5 --push_to_hub
run_speech_recognition_ctc.py ADDED
@@ -0,0 +1,760 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+ # coding=utf-8
3
+ # Copyright 2021 The HuggingFace Inc. team. All rights reserved.
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+
16
+ """ Fine-tuning a 🤗 Transformers CTC model for automatic speech recognition"""
17
+
18
+ import functools
19
+ import json
20
+ import logging
21
+ from optparse import Option
22
+ import os
23
+ import re
24
+ import sys
25
+ import warnings
26
+ from dataclasses import dataclass, field
27
+ from typing import Dict, List, Optional, Union
28
+
29
+ import datasets
30
+ import numpy as np
31
+ import torch
32
+ from datasets import DatasetDict, load_dataset, load_metric
33
+
34
+
35
+ import transformers
36
+ from transformers import (
37
+ AutoConfig,
38
+ AutoFeatureExtractor,
39
+ AutoModelForCTC,
40
+ AutoProcessor,
41
+ AutoTokenizer,
42
+ HfArgumentParser,
43
+ Trainer,
44
+ TrainingArguments,
45
+ Wav2Vec2Processor,
46
+ set_seed,
47
+ )
48
+ from transformers.trainer_pt_utils import get_parameter_names
49
+ from transformers.trainer_utils import get_last_checkpoint, is_main_process
50
+ from transformers.utils import check_min_version
51
+ from transformers.utils.versions import require_version
52
+
53
+
54
+ import wandb
55
+ from transformers import TrainingArguments, Trainer
56
+
57
+ wandb.init(project="wav2vec2_bn_xlsr", entity="arijitx")
58
+
59
+ # Will error if the minimal version of Transformers is not installed. Remove at your own risks.
60
+ check_min_version("4.16.0.dev0")
61
+
62
+ require_version("datasets>=1.13.3", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt")
63
+
64
+
65
+ logger = logging.getLogger(__name__)
66
+
67
+
68
+ def list_field(default=None, metadata=None):
69
+ return field(default_factory=lambda: default, metadata=metadata)
70
+
71
+
72
+ @dataclass
73
+ class ModelArguments:
74
+ """
75
+ Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
76
+ """
77
+
78
+ model_name_or_path: str = field(
79
+ metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
80
+ )
81
+ tokenizer_name_or_path: Optional[str] = field(
82
+ default=None,
83
+ metadata={"help": "Path to pretrained tokenizer or tokenizer identifier from huggingface.co/models"},
84
+ )
85
+ cache_dir: Optional[str] = field(
86
+ default=None,
87
+ metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
88
+ )
89
+ freeze_feature_encoder: bool = field(
90
+ default=True, metadata={"help": "Whether to freeze the feature encoder layers of the model."}
91
+ )
92
+ attention_dropout: float = field(
93
+ default=0.0, metadata={"help": "The dropout ratio for the attention probabilities."}
94
+ )
95
+ activation_dropout: float = field(
96
+ default=0.0, metadata={"help": "The dropout ratio for activations inside the fully connected layer."}
97
+ )
98
+ feat_proj_dropout: float = field(default=0.0, metadata={"help": "The dropout ratio for the projected features."})
99
+ hidden_dropout: float = field(
100
+ default=0.0,
101
+ metadata={
102
+ "help": "The dropout probability for all fully connected layers in the embeddings, encoder, and pooler."
103
+ },
104
+ )
105
+ final_dropout: float = field(
106
+ default=0.0,
107
+ metadata={"help": "The dropout probability for the final projection layer."},
108
+ )
109
+ mask_time_prob: float = field(
110
+ default=0.05,
111
+ metadata={
112
+ "help": "Probability of each feature vector along the time axis to be chosen as the start of the vector"
113
+ "span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature"
114
+ "vectors will be masked along the time axis."
115
+ },
116
+ )
117
+ mask_time_length: int = field(
118
+ default=10,
119
+ metadata={"help": "Length of vector span to mask along the time axis."},
120
+ )
121
+ mask_feature_prob: float = field(
122
+ default=0.0,
123
+ metadata={
124
+ "help": "Probability of each feature vector along the feature axis to be chosen as the start of the vector"
125
+ "span to be masked. Approximately ``mask_feature_prob * sequence_length // mask_feature_length`` feature bins will be masked along the time axis."
126
+ },
127
+ )
128
+ mask_feature_length: int = field(
129
+ default=10,
130
+ metadata={"help": "Length of vector span to mask along the feature axis."},
131
+ )
132
+ layerdrop: float = field(default=0.0, metadata={"help": "The LayerDrop probability."})
133
+ ctc_loss_reduction: Optional[str] = field(
134
+ default="mean", metadata={"help": "The way the ctc loss should be reduced. Should be one of 'mean' or 'sum'."}
135
+ )
136
+
137
+
138
+ @dataclass
139
+ class DataTrainingArguments:
140
+ """
141
+ Arguments pertaining to what data we are going to input our model for training and eval.
142
+
143
+ Using `HfArgumentParser` we can turn this class
144
+ into argparse arguments to be able to specify them on
145
+ the command line.
146
+ """
147
+
148
+ dataset_name: str = field(
149
+ metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
150
+ )
151
+ dataset_config_name: str = field(
152
+ default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
153
+ )
154
+ train_split_name: str = field(
155
+ default="train+validation",
156
+ metadata={
157
+ "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'"
158
+ },
159
+ )
160
+ eval_split_name: str = field(
161
+ default="test",
162
+ metadata={
163
+ "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'"
164
+ },
165
+ )
166
+ audio_column_name: str = field(
167
+ default="audio",
168
+ metadata={"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"},
169
+ )
170
+ text_column_name: str = field(
171
+ default="text",
172
+ metadata={"help": "The name of the dataset column containing the text data. Defaults to 'text'"},
173
+ )
174
+ overwrite_cache: bool = field(
175
+ default=False, metadata={"help": "Overwrite the cached preprocessed datasets or not."}
176
+ )
177
+ preprocessing_num_workers: Optional[int] = field(
178
+ default=None,
179
+ metadata={"help": "The number of processes to use for the preprocessing."},
180
+ )
181
+ max_train_samples: Optional[int] = field(
182
+ default=None,
183
+ metadata={
184
+ "help": "For debugging purposes or quicker training, truncate the number of training examples to this "
185
+ "value if set."
186
+ },
187
+ )
188
+ max_eval_samples: Optional[int] = field(
189
+ default=None,
190
+ metadata={
191
+ "help": "For debugging purposes or quicker training, truncate the number of validation examples to this "
192
+ "value if set."
193
+ },
194
+ )
195
+ chars_to_ignore: Optional[List[str]] = list_field(
196
+ default=None,
197
+ metadata={"help": "A list of characters to remove from the transcripts."},
198
+ )
199
+ eval_metrics: List[str] = list_field(
200
+ default=["wer"],
201
+ metadata={"help": "A list of metrics the model should be evaluated on. E.g. `'wer cer'`"},
202
+ )
203
+ max_duration_in_seconds: float = field(
204
+ default=20.0,
205
+ metadata={
206
+ "help": "Filter audio files that are longer than `max_duration_in_seconds` seconds to 'max_duration_in_seconds`"
207
+ },
208
+ )
209
+ min_duration_in_seconds: float = field(
210
+ default=0.0, metadata={"help": "Filter audio files that are shorter than `min_duration_in_seconds` seconds"}
211
+ )
212
+ preprocessing_only: bool = field(
213
+ default=False,
214
+ metadata={
215
+ "help": "Whether to only do data preprocessing and skip training. "
216
+ "This is especially useful when data preprocessing errors out in distributed training due to timeout. "
217
+ "In this case, one should run the preprocessing in a non-distributed setup with `preprocessing_only=True` "
218
+ "so that the cached datasets can consequently be loaded in distributed training"
219
+ },
220
+ )
221
+ use_auth_token: bool = field(
222
+ default=False,
223
+ metadata={
224
+ "help": "If :obj:`True`, will use the token generated when running"
225
+ ":obj:`transformers-cli login` as HTTP bearer authorization for remote files."
226
+ },
227
+ )
228
+ unk_token: str = field(
229
+ default="[UNK]",
230
+ metadata={"help": "The unk token for the tokenizer"},
231
+ )
232
+ pad_token: str = field(
233
+ default="[PAD]",
234
+ metadata={"help": "The padding token for the tokenizer"},
235
+ )
236
+ word_delimiter_token: str = field(
237
+ default="|",
238
+ metadata={"help": "The word delimiter token for the tokenizer"},
239
+ )
240
+ phoneme_language: Optional[str] = field(
241
+ default=None,
242
+ metadata={
243
+ "help": "The target language that should be used be"
244
+ " passed to the tokenizer for tokenization. Note that"
245
+ " this is only relevant if the model classifies the"
246
+ " input audio to a sequence of phoneme sequences."
247
+ },
248
+ )
249
+
250
+ @dataclass
251
+ class DataCollatorCTCWithPadding:
252
+ """
253
+ Data collator that will dynamically pad the inputs received.
254
+ Args:
255
+ processor (:class:`~transformers.AutoProcessor`)
256
+ The processor used for proccessing the data.
257
+ padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`):
258
+ Select a strategy to pad the returned sequences (according to the model's padding side and padding index)
259
+ among:
260
+ * :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
261
+ sequence if provided).
262
+ * :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the
263
+ maximum acceptable input length for the model if that argument is not provided.
264
+ * :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of
265
+ different lengths).
266
+ max_length (:obj:`int`, `optional`):
267
+ Maximum length of the ``input_values`` of the returned list and optionally padding length (see above).
268
+ max_length_labels (:obj:`int`, `optional`):
269
+ Maximum length of the ``labels`` returned list and optionally padding length (see above).
270
+ pad_to_multiple_of (:obj:`int`, `optional`):
271
+ If set will pad the sequence to a multiple of the provided value.
272
+ This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >=
273
+ 7.5 (Volta).
274
+ """
275
+
276
+ processor: AutoProcessor
277
+ padding: Union[bool, str] = "longest"
278
+ pad_to_multiple_of: Optional[int] = None
279
+ pad_to_multiple_of_labels: Optional[int] = None
280
+
281
+ def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:
282
+ # split inputs and labels since they have to be of different lenghts and need
283
+ # different padding methods
284
+ input_features = [{"input_values": feature["input_values"]} for feature in features]
285
+ label_features = [{"input_ids": feature["labels"]} for feature in features]
286
+
287
+ batch = self.processor.pad(
288
+ input_features,
289
+ padding=self.padding,
290
+ pad_to_multiple_of=self.pad_to_multiple_of,
291
+ return_tensors="pt",
292
+ )
293
+
294
+ with self.processor.as_target_processor():
295
+ labels_batch = self.processor.pad(
296
+ label_features,
297
+ padding=self.padding,
298
+ pad_to_multiple_of=self.pad_to_multiple_of_labels,
299
+ return_tensors="pt",
300
+ )
301
+
302
+ # replace padding with -100 to ignore loss correctly
303
+ labels = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1), -100)
304
+
305
+ batch["labels"] = labels
306
+
307
+ return batch
308
+
309
+
310
+ def create_vocabulary_from_data(
311
+ datasets: DatasetDict,
312
+ word_delimiter_token: Optional[str] = None,
313
+ unk_token: Optional[str] = None,
314
+ pad_token: Optional[str] = None,
315
+ ):
316
+ # Given training and test labels create vocabulary
317
+ def extract_all_chars(batch):
318
+ all_text = " ".join(batch["target_text"])
319
+ vocab = list(set(all_text))
320
+ return {"vocab": [vocab], "all_text": [all_text]}
321
+
322
+ vocabs = datasets.map(
323
+ extract_all_chars,
324
+ batched=True,
325
+ batch_size=-1,
326
+ keep_in_memory=True,
327
+ remove_columns=datasets["train"].column_names,
328
+ )
329
+
330
+ # take union of all unique characters in each dataset
331
+ vocab_set = functools.reduce(
332
+ lambda vocab_1, vocab_2: set(vocab_1["vocab"][0]) | set(vocab_2["vocab"][0]), vocabs.values()
333
+ )
334
+
335
+ vocab_dict = {v: k for k, v in enumerate(sorted(list(vocab_set)))}
336
+
337
+ # replace white space with delimiter token
338
+ if word_delimiter_token is not None:
339
+ vocab_dict[word_delimiter_token] = vocab_dict[" "]
340
+ del vocab_dict[" "]
341
+
342
+ # add unk and pad token
343
+ if unk_token is not None:
344
+ vocab_dict[unk_token] = len(vocab_dict)
345
+
346
+ if pad_token is not None:
347
+ vocab_dict[pad_token] = len(vocab_dict)
348
+
349
+ return vocab_dict
350
+
351
+
352
+ def main():
353
+ # See all possible arguments in src/transformers/training_args.py
354
+ # or by passing the --help flag to this script.
355
+ # We now keep distinct sets of args, for a cleaner separation of concerns.
356
+
357
+ parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
358
+ if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
359
+ # If we pass only one argument to the script and it's the path to a json file,
360
+ # let's parse it to get our arguments.
361
+ model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
362
+ else:
363
+ model_args, data_args, training_args = parser.parse_args_into_dataclasses()
364
+
365
+ # Detecting last checkpoint.
366
+ last_checkpoint = None
367
+ if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
368
+ last_checkpoint = get_last_checkpoint(training_args.output_dir)
369
+ if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
370
+ raise ValueError(
371
+ f"Output directory ({training_args.output_dir}) already exists and is not empty. "
372
+ "Use --overwrite_output_dir to overcome."
373
+ )
374
+ elif last_checkpoint is not None:
375
+ logger.info(
376
+ f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
377
+ "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
378
+ )
379
+
380
+ # Setup logging
381
+ logging.basicConfig(
382
+ format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
383
+ datefmt="%m/%d/%Y %H:%M:%S",
384
+ handlers=[logging.StreamHandler(sys.stdout)],
385
+ )
386
+ logger.setLevel(logging.INFO if is_main_process(training_args.local_rank) else logging.WARN)
387
+
388
+ # Log on each process the small summary:
389
+ logger.warning(
390
+ f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
391
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
392
+ )
393
+ # Set the verbosity to info of the Transformers logger (on main process only):
394
+ if is_main_process(training_args.local_rank):
395
+ transformers.utils.logging.set_verbosity_info()
396
+ logger.info("Training/evaluation parameters %s", training_args)
397
+
398
+ # Set seed before initializing model.
399
+ set_seed(training_args.seed)
400
+
401
+ # 1. First, let's load the dataset
402
+ raw_datasets = DatasetDict()
403
+
404
+ if training_args.do_train:
405
+ raw_datasets["train"] = load_dataset(
406
+ data_args.dataset_name,
407
+ data_args.dataset_config_name,
408
+ split='train[:95%]',
409
+ use_auth_token=data_args.use_auth_token,
410
+
411
+ )
412
+
413
+ if data_args.audio_column_name not in raw_datasets["train"].column_names:
414
+ raise ValueError(
415
+ f"--audio_column_name '{data_args.audio_column_name}' not found in dataset '{data_args.dataset_name}'. "
416
+ "Make sure to set `--audio_column_name` to the correct audio column - one of "
417
+ f"{', '.join(raw_datasets['train'].column_names)}."
418
+ )
419
+
420
+ if data_args.text_column_name not in raw_datasets["train"].column_names:
421
+ raise ValueError(
422
+ f"--text_column_name {data_args.text_column_name} not found in dataset '{data_args.dataset_name}'. "
423
+ "Make sure to set `--text_column_name` to the correct text column - one of "
424
+ f"{', '.join(raw_datasets['train'].column_names)}."
425
+ )
426
+
427
+ if data_args.max_train_samples is not None:
428
+ raw_datasets["train"] = raw_datasets["train"].select(range(data_args.max_train_samples))
429
+
430
+ if training_args.do_eval:
431
+ raw_datasets["eval"] = load_dataset(
432
+ data_args.dataset_name,
433
+ data_args.dataset_config_name,
434
+ split='train[95%:]',
435
+ use_auth_token=data_args.use_auth_token,
436
+ )
437
+
438
+ if data_args.max_eval_samples is not None:
439
+ raw_datasets["eval"] = raw_datasets["eval"].select(range(data_args.max_eval_samples))
440
+
441
+ # 2. We remove some special characters from the datasets
442
+ # that make training complicated and do not help in transcribing the speech
443
+ # E.g. characters, such as `,` and `.` do not really have an acoustic characteristic
444
+ # that could be easily picked up by the model
445
+ chars_to_ignore_regex = (
446
+ f'[{"".join(data_args.chars_to_ignore)}]' if data_args.chars_to_ignore is not None else None
447
+ )
448
+ text_column_name = data_args.text_column_name
449
+
450
+ def remove_special_characters(batch):
451
+ if chars_to_ignore_regex is not None:
452
+ batch["target_text"] = re.sub(chars_to_ignore_regex, "", batch[text_column_name]).lower() + " "
453
+ else:
454
+ batch["target_text"] = batch[text_column_name].lower() + " "
455
+ return batch
456
+
457
+ with training_args.main_process_first(desc="dataset map special characters removal"):
458
+ raw_datasets = raw_datasets.map(
459
+ remove_special_characters,
460
+ remove_columns=[text_column_name],
461
+ desc="remove special characters from datasets",
462
+ )
463
+
464
+ # save special tokens for tokenizer
465
+ word_delimiter_token = data_args.word_delimiter_token
466
+ unk_token = data_args.unk_token
467
+ pad_token = data_args.pad_token
468
+
469
+ # 3. Next, let's load the config as we might need it to create
470
+ # the tokenizer
471
+ # load config
472
+ config = AutoConfig.from_pretrained(
473
+ model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_auth_token=data_args.use_auth_token
474
+ )
475
+
476
+ # 4. Next, if no tokenizer file is defined,
477
+ # we create the vocabulary of the model by extracting all unique characters from
478
+ # the training and evaluation datasets
479
+ # We need to make sure that only first rank saves vocabulary
480
+ # make sure all processes wait until vocab is created
481
+ tokenizer_name_or_path = model_args.tokenizer_name_or_path
482
+ tokenizer_kwargs = {}
483
+ if tokenizer_name_or_path is None:
484
+ # save vocab in training output dir
485
+ tokenizer_name_or_path = training_args.output_dir
486
+
487
+ vocab_file = os.path.join(tokenizer_name_or_path, "vocab.json")
488
+
489
+ with training_args.main_process_first():
490
+ if training_args.overwrite_output_dir and os.path.isfile(vocab_file):
491
+ os.remove(vocab_file)
492
+
493
+ with training_args.main_process_first(desc="dataset map vocabulary creation"):
494
+ if not os.path.isfile(vocab_file):
495
+ os.makedirs(tokenizer_name_or_path, exist_ok=True)
496
+ vocab_dict = create_vocabulary_from_data(
497
+ raw_datasets,
498
+ word_delimiter_token=word_delimiter_token,
499
+ unk_token=unk_token,
500
+ pad_token=pad_token,
501
+ )
502
+
503
+ # save vocab dict to be loaded into tokenizer
504
+ with open(vocab_file, "w") as file:
505
+ json.dump(vocab_dict, file)
506
+
507
+ # if tokenizer has just been created
508
+ # it is defined by `tokenizer_class` if present in config else by `model_type`
509
+ tokenizer_kwargs = {
510
+ "config": config if config.tokenizer_class is not None else None,
511
+ "tokenizer_type": config.model_type if config.tokenizer_class is None else None,
512
+ "unk_token": unk_token,
513
+ "pad_token": pad_token,
514
+ "word_delimiter_token": word_delimiter_token,
515
+ }
516
+
517
+ # 5. Now we can instantiate the feature extractor, tokenizer and model
518
+ # Note for distributed training, the .from_pretrained methods guarantee that only
519
+ # one local process can concurrently download model & vocab.
520
+
521
+ # load feature_extractor and tokenizer
522
+ tokenizer = AutoTokenizer.from_pretrained(
523
+ tokenizer_name_or_path,
524
+ use_auth_token=data_args.use_auth_token,
525
+ **tokenizer_kwargs,
526
+ )
527
+ feature_extractor = AutoFeatureExtractor.from_pretrained(
528
+ model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_auth_token=data_args.use_auth_token
529
+ )
530
+
531
+ # adapt config
532
+ config.update(
533
+ {
534
+ "feat_proj_dropout": model_args.feat_proj_dropout,
535
+ "attention_dropout": model_args.attention_dropout,
536
+ "hidden_dropout": model_args.hidden_dropout,
537
+ "final_dropout": model_args.final_dropout,
538
+ "mask_time_prob": model_args.mask_time_prob,
539
+ "mask_time_length": model_args.mask_time_length,
540
+ "mask_feature_prob": model_args.mask_feature_prob,
541
+ "mask_feature_length": model_args.mask_feature_length,
542
+ "gradient_checkpointing": training_args.gradient_checkpointing,
543
+ "layerdrop": model_args.layerdrop,
544
+ "ctc_loss_reduction": model_args.ctc_loss_reduction,
545
+ "pad_token_id": tokenizer.pad_token_id,
546
+ "vocab_size": len(tokenizer),
547
+ "activation_dropout": model_args.activation_dropout,
548
+ }
549
+ )
550
+
551
+ # create model
552
+ model = AutoModelForCTC.from_pretrained(
553
+ model_args.model_name_or_path,
554
+ cache_dir=model_args.cache_dir,
555
+ config=config,
556
+ use_auth_token=data_args.use_auth_token,
557
+ )
558
+
559
+ # freeze encoder
560
+ if model_args.freeze_feature_encoder:
561
+ model.freeze_feature_encoder()
562
+
563
+ # 6. Now we preprocess the datasets including loading the audio, resampling and normalization
564
+ # Thankfully, `datasets` takes care of automatically loading and resampling the audio,
565
+ # so that we just need to set the correct target sampling rate and normalize the input
566
+ # via the `feature_extractor`
567
+
568
+ # make sure that dataset decodes audio with correct sampling rate
569
+ dataset_sampling_rate = next(iter(raw_datasets.values())).features[data_args.audio_column_name].sampling_rate
570
+ if dataset_sampling_rate != feature_extractor.sampling_rate:
571
+ raw_datasets = raw_datasets.cast_column(
572
+ data_args.audio_column_name, datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate)
573
+ )
574
+
575
+ # derive max & min input length for sample rate & max duration
576
+ max_input_length = data_args.max_duration_in_seconds * feature_extractor.sampling_rate
577
+ min_input_length = data_args.min_duration_in_seconds * feature_extractor.sampling_rate
578
+ audio_column_name = data_args.audio_column_name
579
+ num_workers = data_args.preprocessing_num_workers
580
+
581
+ # `phoneme_language` is only relevant if the model is fine-tuned on phoneme classification
582
+ phoneme_language = data_args.phoneme_language
583
+
584
+ # Preprocessing the datasets.
585
+ # We need to read the audio files as arrays and tokenize the targets.
586
+ def prepare_dataset(batch):
587
+ # load audio
588
+ sample = batch[audio_column_name]
589
+
590
+ inputs = feature_extractor(sample["array"], sampling_rate=sample["sampling_rate"])
591
+ batch["input_values"] = inputs.input_values[0]
592
+ batch["input_length"] = len(batch["input_values"])
593
+
594
+ # encode targets
595
+ additional_kwargs = {}
596
+ if phoneme_language is not None:
597
+ additional_kwargs["phonemizer_lang"] = phoneme_language
598
+
599
+ batch["labels"] = tokenizer(batch["target_text"], **additional_kwargs).input_ids
600
+ return batch
601
+
602
+ with training_args.main_process_first(desc="dataset map preprocessing"):
603
+ vectorized_datasets = raw_datasets.map(
604
+ prepare_dataset,
605
+ remove_columns=next(iter(raw_datasets.values())).column_names,
606
+ num_proc=num_workers,
607
+ desc="preprocess datasets",
608
+ )
609
+
610
+ def is_audio_in_length_range(length):
611
+ return length > min_input_length and length < max_input_length
612
+
613
+ # filter data that is shorter than min_input_length
614
+ vectorized_datasets = vectorized_datasets.filter(
615
+ is_audio_in_length_range,
616
+ num_proc=num_workers,
617
+ input_columns=["input_length"],
618
+ )
619
+
620
+ # 7. Next, we can prepare the training.
621
+ # Let's use word error rate (WER) as our evaluation metric,
622
+ # instantiate a data collator and the trainer
623
+
624
+ # Define evaluation metrics during training, *i.e.* word error rate, character error rate
625
+ eval_metrics = {metric: load_metric(metric) for metric in data_args.eval_metrics}
626
+
627
+ # for large datasets it is advised to run the preprocessing on a
628
+ # single machine first with ``args.preprocessing_only`` since there will mostly likely
629
+ # be a timeout when running the script in distributed mode.
630
+ # In a second step ``args.preprocessing_only`` can then be set to `False` to load the
631
+ # cached dataset
632
+ if data_args.preprocessing_only:
633
+ logger.info(f"Data preprocessing finished. Files cached at {vectorized_datasets.cache_files}")
634
+ return
635
+
636
+ def compute_metrics(pred):
637
+ pred_logits = pred.predictions
638
+ pred_ids = np.argmax(pred_logits, axis=-1)
639
+
640
+ pred.label_ids[pred.label_ids == -100] = tokenizer.pad_token_id
641
+
642
+ pred_str = tokenizer.batch_decode(pred_ids)
643
+ # we do not want to group tokens when computing the metrics
644
+ label_str = tokenizer.batch_decode(pred.label_ids, group_tokens=False)
645
+
646
+ metrics = {k: v.compute(predictions=pred_str, references=label_str) for k, v in eval_metrics.items()}
647
+
648
+ return metrics
649
+
650
+ # Now save everything to be able to create a single processor later
651
+ if is_main_process(training_args.local_rank):
652
+ # save feature extractor, tokenizer and config
653
+ feature_extractor.save_pretrained(training_args.output_dir)
654
+ tokenizer.save_pretrained(training_args.output_dir)
655
+ config.save_pretrained(training_args.output_dir)
656
+
657
+ try:
658
+ processor = AutoProcessor.from_pretrained(training_args.output_dir)
659
+ except (OSError, KeyError):
660
+ warnings.warn(
661
+ "Loading a processor from a feature extractor config that does not"
662
+ " include a `processor_class` attribute is deprecated and will be removed in v5. Please add the following "
663
+ " attribute to your `preprocessor_config.json` file to suppress this warning: "
664
+ " `'processor_class': 'Wav2Vec2Processor'`",
665
+ FutureWarning,
666
+ )
667
+ processor = Wav2Vec2Processor.from_pretrained(training_args.output_dir)
668
+
669
+ # Instantiate custom data collator
670
+ data_collator = DataCollatorCTCWithPadding(processor=processor)
671
+
672
+ decay_parameters = get_parameter_names(model, [torch.nn.LayerNorm])
673
+ decay_parameters = [name for name in decay_parameters if "bias" not in name]
674
+ optimizer_grouped_parameters = [
675
+ {
676
+ "params": [p for n, p in model.named_parameters() if n in decay_parameters],
677
+ "weight_decay": training_args.weight_decay,
678
+ },
679
+ {
680
+ "params": [p for n, p in model.named_parameters() if n not in decay_parameters],
681
+ "weight_decay": 0.0,
682
+ },
683
+ ]
684
+
685
+
686
+
687
+ # Initialize Trainer
688
+ trainer = Trainer(
689
+ model=model,
690
+ data_collator=data_collator,
691
+ args=training_args,
692
+ compute_metrics=compute_metrics,
693
+ train_dataset=vectorized_datasets["train"] if training_args.do_train else None,
694
+ eval_dataset=vectorized_datasets["eval"] if training_args.do_eval else None,
695
+ tokenizer=feature_extractor
696
+ )
697
+
698
+ # 8. Finally, we can start training
699
+
700
+ # Training
701
+ if training_args.do_train:
702
+
703
+ # use last checkpoint if exist
704
+ if last_checkpoint is not None:
705
+ checkpoint = last_checkpoint
706
+ elif os.path.isdir(model_args.model_name_or_path):
707
+ checkpoint = model_args.model_name_or_path
708
+ else:
709
+ checkpoint = None
710
+
711
+ train_result = trainer.train(resume_from_checkpoint=checkpoint)
712
+ trainer.save_model()
713
+
714
+ metrics = train_result.metrics
715
+ max_train_samples = (
716
+ data_args.max_train_samples
717
+ if data_args.max_train_samples is not None
718
+ else len(vectorized_datasets["train"])
719
+ )
720
+ metrics["train_samples"] = min(max_train_samples, len(vectorized_datasets["train"]))
721
+
722
+ trainer.log_metrics("train", metrics)
723
+ trainer.save_metrics("train", metrics)
724
+ trainer.save_state()
725
+
726
+ # Evaluation
727
+ results = {}
728
+ if training_args.do_eval:
729
+ logger.info("*** Evaluate ***")
730
+ metrics = trainer.evaluate()
731
+ max_eval_samples = (
732
+ data_args.max_eval_samples if data_args.max_eval_samples is not None else len(vectorized_datasets["eval"])
733
+ )
734
+ metrics["eval_samples"] = min(max_eval_samples, len(vectorized_datasets["eval"]))
735
+
736
+ trainer.log_metrics("eval", metrics)
737
+ trainer.save_metrics("eval", metrics)
738
+
739
+ # Write model card and (optionally) push to hub
740
+ config_name = data_args.dataset_config_name if data_args.dataset_config_name is not None else "na"
741
+ kwargs = {
742
+ "finetuned_from": model_args.model_name_or_path,
743
+ "tasks": "speech-recognition",
744
+ "tags": ["automatic-speech-recognition", data_args.dataset_name,"robust-speech-event","bn"],
745
+ "dataset_args": f"Config: {config_name}, Training split: {data_args.train_split_name}, Eval split: {data_args.eval_split_name}",
746
+ "dataset": f"{data_args.dataset_name.upper()} - {config_name.upper()}",
747
+ }
748
+ if "common_voice" in data_args.dataset_name:
749
+ kwargs["language"] = config_name
750
+
751
+ if training_args.push_to_hub:
752
+ trainer.push_to_hub(**kwargs)
753
+ else:
754
+ trainer.create_model_card(**kwargs)
755
+
756
+ return results
757
+
758
+
759
+ if __name__ == "__main__":
760
+ main()