upload models
Browse files- README.md +60 -0
- config.json +84 -0
- preprocessor_config.json +9 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +1 -0
- tokenizer_config.json +1 -0
- train.py +189 -0
- vocab.json +1 -0
README.md
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: Bengali
|
3 |
+
datasets:
|
4 |
+
- OpenSLR
|
5 |
+
metrics:
|
6 |
+
- wer
|
7 |
+
tags:
|
8 |
+
- audio
|
9 |
+
- automatic-speech-recognition
|
10 |
+
- speech
|
11 |
+
license: Attribution-ShareAlike 4.0 International
|
12 |
+
model-index:
|
13 |
+
- name: XLSR Wav2Vec2 Bengali by Arijit
|
14 |
+
results:
|
15 |
+
- task:
|
16 |
+
name: Speech Recognition
|
17 |
+
type: automatic-speech-recognition
|
18 |
+
dataset:
|
19 |
+
name: OpenSLR
|
20 |
+
type: OpenSLR
|
21 |
+
args: ben
|
22 |
+
metrics:
|
23 |
+
- name: Test WER
|
24 |
+
type: wer
|
25 |
+
value: 32.45
|
26 |
+
---
|
27 |
+
# Wav2Vec2-Large-XLSR-Bengali
|
28 |
+
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) Bengali using a subset of 40,000 utterances from [Bengali ASR training data set containing ~196K utterances](https://www.openslr.org/53/). Tested WER using ~4200 held out from training.
|
29 |
+
When using this model, make sure that your speech input is sampled at 16kHz.
|
30 |
+
Train Script can be Found at : train.py
|
31 |
+
## Usage
|
32 |
+
|
33 |
+
The model can be used directly (without a language model) as follows:
|
34 |
+
```python
|
35 |
+
import torch
|
36 |
+
import torchaudio
|
37 |
+
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
38 |
+
|
39 |
+
processor = Wav2Vec2Processor.from_pretrained("arijitx/wav2vec2-large-xlsr-bengali")
|
40 |
+
model = Wav2Vec2ForCTC.from_pretrained("arijitx/wav2vec2-large-xlsr-bengali")
|
41 |
+
model = model.to("cuda")
|
42 |
+
|
43 |
+
resampler = torchaudio.transforms.Resample(TEST_AUDIO_SR, 16_000)
|
44 |
+
def speech_file_to_array_fn(batch):
|
45 |
+
speech_array, sampling_rate = torchaudio.load(batch)
|
46 |
+
speech = resampler(speech_array).squeeze().numpy()
|
47 |
+
return speech
|
48 |
+
|
49 |
+
speech_array = speech_file_to_array_fn("test_file.wav")
|
50 |
+
inputs = processor(speech_array, sampling_rate=16_000, return_tensors="pt", padding=True)
|
51 |
+
with torch.no_grad():
|
52 |
+
logits = model(inputs.input_values.to('cuda')).logits
|
53 |
+
|
54 |
+
|
55 |
+
predicted_ids = torch.argmax(logits, dim=-1)
|
56 |
+
preds = processor.batch_decode(predicted_ids)[0]
|
57 |
+
print(preds.replace("[PAD]",""))
|
58 |
+
|
59 |
+
```
|
60 |
+
**Test Result**: 32.45 %
|
config.json
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "facebook/wav2vec2-large-xlsr-53",
|
3 |
+
"activation_dropout": 0.0,
|
4 |
+
"apply_spec_augment": true,
|
5 |
+
"architectures": [
|
6 |
+
"Wav2Vec2ForCTC"
|
7 |
+
],
|
8 |
+
"attention_dropout": 0.1,
|
9 |
+
"bos_token_id": 1,
|
10 |
+
"codevector_dim": 768,
|
11 |
+
"contrastive_logits_temperature": 0.1,
|
12 |
+
"conv_bias": true,
|
13 |
+
"conv_dim": [
|
14 |
+
512,
|
15 |
+
512,
|
16 |
+
512,
|
17 |
+
512,
|
18 |
+
512,
|
19 |
+
512,
|
20 |
+
512
|
21 |
+
],
|
22 |
+
"conv_kernel": [
|
23 |
+
10,
|
24 |
+
3,
|
25 |
+
3,
|
26 |
+
3,
|
27 |
+
3,
|
28 |
+
2,
|
29 |
+
2
|
30 |
+
],
|
31 |
+
"conv_stride": [
|
32 |
+
5,
|
33 |
+
2,
|
34 |
+
2,
|
35 |
+
2,
|
36 |
+
2,
|
37 |
+
2,
|
38 |
+
2
|
39 |
+
],
|
40 |
+
"ctc_loss_reduction": "mean",
|
41 |
+
"ctc_zero_infinity": false,
|
42 |
+
"diversity_loss_weight": 0.1,
|
43 |
+
"do_stable_layer_norm": true,
|
44 |
+
"eos_token_id": 2,
|
45 |
+
"feat_extract_activation": "gelu",
|
46 |
+
"feat_extract_dropout": 0.0,
|
47 |
+
"feat_extract_norm": "layer",
|
48 |
+
"feat_proj_dropout": 0.0,
|
49 |
+
"feat_quantizer_dropout": 0.0,
|
50 |
+
"final_dropout": 0.0,
|
51 |
+
"gradient_checkpointing": true,
|
52 |
+
"hidden_act": "gelu",
|
53 |
+
"hidden_dropout": 0.1,
|
54 |
+
"hidden_size": 1024,
|
55 |
+
"initializer_range": 0.02,
|
56 |
+
"intermediate_size": 4096,
|
57 |
+
"layer_norm_eps": 1e-05,
|
58 |
+
"layerdrop": 0.1,
|
59 |
+
"mask_channel_length": 10,
|
60 |
+
"mask_channel_min_space": 1,
|
61 |
+
"mask_channel_other": 0.0,
|
62 |
+
"mask_channel_prob": 0.0,
|
63 |
+
"mask_channel_selection": "static",
|
64 |
+
"mask_feature_length": 10,
|
65 |
+
"mask_feature_prob": 0.0,
|
66 |
+
"mask_time_length": 10,
|
67 |
+
"mask_time_min_space": 1,
|
68 |
+
"mask_time_other": 0.0,
|
69 |
+
"mask_time_prob": 0.05,
|
70 |
+
"mask_time_selection": "static",
|
71 |
+
"model_type": "wav2vec2",
|
72 |
+
"num_attention_heads": 16,
|
73 |
+
"num_codevector_groups": 2,
|
74 |
+
"num_codevectors_per_group": 320,
|
75 |
+
"num_conv_pos_embedding_groups": 16,
|
76 |
+
"num_conv_pos_embeddings": 128,
|
77 |
+
"num_feat_extract_layers": 7,
|
78 |
+
"num_hidden_layers": 24,
|
79 |
+
"num_negatives": 100,
|
80 |
+
"pad_token_id": 110,
|
81 |
+
"proj_codevector_dim": 768,
|
82 |
+
"transformers_version": "4.7.0",
|
83 |
+
"vocab_size": 111
|
84 |
+
}
|
preprocessor_config.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"do_normalize": true,
|
3 |
+
"feature_extractor_type": "Wav2Vec2FeatureExtractor",
|
4 |
+
"feature_size": 1,
|
5 |
+
"padding_side": "right",
|
6 |
+
"padding_value": 0.0,
|
7 |
+
"return_attention_mask": false,
|
8 |
+
"sampling_rate": 16000
|
9 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:870886d9870404d01896aa22539304dc5a3cfcf123efb65d90ef29eb93bac8bc
|
3 |
+
size 1262385856
|
special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"bos_token": "<s>", "eos_token": "</s>", "unk_token": "[UNK]", "pad_token": "[PAD]"}
|
tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"unk_token": "[UNK]", "bos_token": "<s>", "eos_token": "</s>", "pad_token": "[PAD]", "do_lower_case": false, "word_delimiter_token": "|"}
|
train.py
ADDED
@@ -0,0 +1,189 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# https://colab.research.google.com/drive/1NCoaTUx1ntjwO1ZgdvM0tlPFehBTBp7t?usp=sharing#scrollTo=J8E8pxJ9hgZS
|
2 |
+
import os
|
3 |
+
import argparse
|
4 |
+
import pickle
|
5 |
+
from tqdm import tqdm
|
6 |
+
|
7 |
+
import torch
|
8 |
+
from transformers import Wav2Vec2CTCTokenizer, Wav2Vec2FeatureExtractor, Wav2Vec2Processor, Wav2Vec2ForCTC
|
9 |
+
from transformers import TrainingArguments, Trainer
|
10 |
+
from datasets import load_dataset, load_metric, Dataset
|
11 |
+
|
12 |
+
from dataclasses import dataclass, field
|
13 |
+
from typing import Any, Dict, List, Optional, Union
|
14 |
+
import pandas as pd
|
15 |
+
import numpy as np
|
16 |
+
|
17 |
+
if __name__ == "__main__":
|
18 |
+
parser = argparse.ArgumentParser()
|
19 |
+
# parser.add_argument("-v",'--vocab',default='vocab.json')
|
20 |
+
parser.add_argument("-d",'--data',default='bin')
|
21 |
+
parser.add_argument("-m",'--model',default="facebook/wav2vec2-large-xlsr-53")
|
22 |
+
parser.add_argument("-o",'--outdir',default="outdir")
|
23 |
+
parser.add_argument("-b",'--batch_size',type=int,default=8)
|
24 |
+
parser.add_argument("-e",'--epoch',type=int,default=10)
|
25 |
+
args = parser.parse_args()
|
26 |
+
|
27 |
+
tokenizer = Wav2Vec2CTCTokenizer(os.path.join(args.data,'vocab.json'), unk_token="[UNK]", pad_token="[PAD]", word_delimiter_token="|")
|
28 |
+
feature_extractor = Wav2Vec2FeatureExtractor(feature_size=1, sampling_rate=16000, padding_value=0.0, do_normalize=True, return_attention_mask=False)
|
29 |
+
processor = Wav2Vec2Processor(feature_extractor=feature_extractor, tokenizer=tokenizer)
|
30 |
+
|
31 |
+
def prepare_dataset(batch):
|
32 |
+
# check that all files have the correct sampling rate
|
33 |
+
assert (
|
34 |
+
len(set(batch["sampling_rate"])) == 1
|
35 |
+
), f"Make sure all inputs have the same sampling rate of {processor.feature_extractor.sampling_rate}."
|
36 |
+
|
37 |
+
batch["input_values"] = processor(batch["speech"], sampling_rate=batch["sampling_rate"][0]).input_values
|
38 |
+
|
39 |
+
with processor.as_target_processor():
|
40 |
+
batch["labels"] = processor(batch["target_text"]).input_ids
|
41 |
+
return batch
|
42 |
+
|
43 |
+
train = []
|
44 |
+
valid = []
|
45 |
+
|
46 |
+
for fn in os.listdir(args.data):
|
47 |
+
print('loading ',os.path.join(args.data,fn))
|
48 |
+
with open (os.path.join(args.data,fn), 'rb') as fp:
|
49 |
+
if "train" in fn:
|
50 |
+
train += pickle.load(fp)
|
51 |
+
if "valid" in fn:
|
52 |
+
valid += pickle.load(fp)
|
53 |
+
|
54 |
+
train = Dataset.from_pandas(pd.DataFrame(train))
|
55 |
+
valid = Dataset.from_pandas(pd.DataFrame(valid))
|
56 |
+
|
57 |
+
print('train size',train.shape)
|
58 |
+
print('valid size',valid.shape)
|
59 |
+
|
60 |
+
print('preparing train data with vocab mapping')
|
61 |
+
train = train.map(prepare_dataset, batch_size=8, num_proc=1, batched=True)
|
62 |
+
|
63 |
+
print('preparing valid data with vocab mapping')
|
64 |
+
valid = valid.map(prepare_dataset, batch_size=8, num_proc=1, batched=True)
|
65 |
+
|
66 |
+
@dataclass
|
67 |
+
class DataCollatorCTCWithPadding:
|
68 |
+
"""
|
69 |
+
Data collator that will dynamically pad the inputs received.
|
70 |
+
Args:
|
71 |
+
processor (:class:`~transformers.Wav2Vec2Processor`)
|
72 |
+
The processor used for proccessing the data.
|
73 |
+
padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`):
|
74 |
+
Select a strategy to pad the returned sequences (according to the model's padding side and padding index)
|
75 |
+
among:
|
76 |
+
* :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
|
77 |
+
sequence if provided).
|
78 |
+
* :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the
|
79 |
+
maximum acceptable input length for the model if that argument is not provided.
|
80 |
+
* :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of
|
81 |
+
different lengths).
|
82 |
+
max_length (:obj:`int`, `optional`):
|
83 |
+
Maximum length of the ``input_values`` of the returned list and optionally padding length (see above).
|
84 |
+
max_length_labels (:obj:`int`, `optional`):
|
85 |
+
Maximum length of the ``labels`` returned list and optionally padding length (see above).
|
86 |
+
pad_to_multiple_of (:obj:`int`, `optional`):
|
87 |
+
If set will pad the sequence to a multiple of the provided value.
|
88 |
+
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >=
|
89 |
+
7.5 (Volta).
|
90 |
+
"""
|
91 |
+
|
92 |
+
processor: Wav2Vec2Processor
|
93 |
+
padding: Union[bool, str] = True
|
94 |
+
max_length: Optional[int] = None
|
95 |
+
max_length_labels: Optional[int] = None
|
96 |
+
pad_to_multiple_of: Optional[int] = None
|
97 |
+
pad_to_multiple_of_labels: Optional[int] = None
|
98 |
+
|
99 |
+
def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:
|
100 |
+
# split inputs and labels since they have to be of different lenghts and need
|
101 |
+
# different padding methods
|
102 |
+
input_features = [{"input_values": feature["input_values"]} for feature in features]
|
103 |
+
label_features = [{"input_ids": feature["labels"]} for feature in features]
|
104 |
+
|
105 |
+
batch = self.processor.pad(
|
106 |
+
input_features,
|
107 |
+
padding=self.padding,
|
108 |
+
max_length=self.max_length,
|
109 |
+
pad_to_multiple_of=self.pad_to_multiple_of,
|
110 |
+
return_tensors="pt",
|
111 |
+
)
|
112 |
+
with self.processor.as_target_processor():
|
113 |
+
labels_batch = self.processor.pad(
|
114 |
+
label_features,
|
115 |
+
padding=self.padding,
|
116 |
+
max_length=self.max_length_labels,
|
117 |
+
pad_to_multiple_of=self.pad_to_multiple_of_labels,
|
118 |
+
return_tensors="pt",
|
119 |
+
)
|
120 |
+
|
121 |
+
# replace padding with -100 to ignore loss correctly
|
122 |
+
labels = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1), -100)
|
123 |
+
|
124 |
+
batch["labels"] = labels
|
125 |
+
|
126 |
+
return batch
|
127 |
+
|
128 |
+
def compute_metrics(pred):
|
129 |
+
pred_logits = pred.predictions
|
130 |
+
pred_ids = np.argmax(pred_logits, axis=-1)
|
131 |
+
|
132 |
+
pred.label_ids[pred.label_ids == -100] = processor.tokenizer.pad_token_id
|
133 |
+
|
134 |
+
pred_str = processor.batch_decode(pred_ids)
|
135 |
+
# we do not want to group tokens when computing the metrics
|
136 |
+
label_str = processor.batch_decode(pred.label_ids, group_tokens=False)
|
137 |
+
|
138 |
+
wer = wer_metric.compute(predictions=pred_str, references=label_str)
|
139 |
+
|
140 |
+
return {"wer": wer}
|
141 |
+
|
142 |
+
data_collator = DataCollatorCTCWithPadding(processor=processor, padding=True)
|
143 |
+
wer_metric = load_metric("wer")
|
144 |
+
|
145 |
+
print('loading pretrained model')
|
146 |
+
|
147 |
+
model = Wav2Vec2ForCTC.from_pretrained(
|
148 |
+
args.model,
|
149 |
+
attention_dropout=0.1,
|
150 |
+
hidden_dropout=0.1,
|
151 |
+
feat_proj_dropout=0.0,
|
152 |
+
mask_time_prob=0.05,
|
153 |
+
layerdrop=0.1,
|
154 |
+
gradient_checkpointing=True,
|
155 |
+
ctc_loss_reduction="mean",
|
156 |
+
pad_token_id=processor.tokenizer.pad_token_id,
|
157 |
+
vocab_size=len(processor.tokenizer)
|
158 |
+
)
|
159 |
+
|
160 |
+
model.freeze_feature_extractor()
|
161 |
+
|
162 |
+
training_args = TrainingArguments(
|
163 |
+
output_dir=args.outdir,
|
164 |
+
group_by_length=True,
|
165 |
+
per_device_train_batch_size=args.batch_size,
|
166 |
+
gradient_accumulation_steps=2,
|
167 |
+
evaluation_strategy="steps",
|
168 |
+
num_train_epochs=args.epoch,
|
169 |
+
fp16=True,
|
170 |
+
save_steps=400,
|
171 |
+
eval_steps=400,
|
172 |
+
logging_steps=400,
|
173 |
+
learning_rate=3e-4,
|
174 |
+
warmup_steps=500,
|
175 |
+
save_total_limit=2,
|
176 |
+
)
|
177 |
+
|
178 |
+
trainer = Trainer(
|
179 |
+
model=model,
|
180 |
+
data_collator=data_collator,
|
181 |
+
args=training_args,
|
182 |
+
compute_metrics=compute_metrics,
|
183 |
+
train_dataset=train,
|
184 |
+
eval_dataset=valid,
|
185 |
+
tokenizer=processor.feature_extractor,
|
186 |
+
)
|
187 |
+
|
188 |
+
print("starting training ...")
|
189 |
+
trainer.train()
|
vocab.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"%": 1, "0": 2, "1": 3, "2": 4, "3": 5, "4": 6, "5": 7, "8": 8, "9": 9, "a": 10, "b": 11, "c": 12, "d": 13, "e": 14, "f": 15, "g": 16, "h": 17, "i": 18, "j": 19, "k": 20, "l": 21, "m": 22, "n": 23, "o": 24, "p": 25, "r": 26, "s": 27, "t": 28, "u": 29, "v": 30, "w": 31, "x": 32, "y": 33, "z": 34, "\u0981": 35, "\u0982": 36, "\u0983": 37, "\u0985": 38, "\u0986": 39, "\u0987": 40, "\u0988": 41, "\u0989": 42, "\u098a": 43, "\u098b": 44, "\u098f": 45, "\u0990": 46, "\u0993": 47, "\u0994": 48, "\u0995": 49, "\u0996": 50, "\u0997": 51, "\u0998": 52, "\u0999": 53, "\u099a": 54, "\u099b": 55, "\u099c": 56, "\u099d": 57, "\u099e": 58, "\u099f": 59, "\u09a0": 60, "\u09a1": 61, "\u09a2": 62, "\u09a3": 63, "\u09a4": 64, "\u09a5": 65, "\u09a6": 66, "\u09a7": 67, "\u09a8": 68, "\u09aa": 69, "\u09ab": 70, "\u09ac": 71, "\u09ad": 72, "\u09ae": 73, "\u09af": 74, "\u09b0": 75, "\u09b2": 76, "\u09b6": 77, "\u09b7": 78, "\u09b8": 79, "\u09b9": 80, "\u09bc": 81, "\u09be": 82, "\u09bf": 83, "\u09c0": 84, "\u09c1": 85, "\u09c2": 86, "\u09c3": 87, "\u09c7": 88, "\u09c8": 89, "\u09cb": 90, "\u09cc": 91, "\u09cd": 92, "\u09ce": 93, "\u09d7": 94, "\u09dc": 95, "\u09dd": 96, "\u09df": 97, "\u09e6": 98, "\u09e7": 99, "\u09e8": 100, "\u09e9": 101, "\u09ea": 102, "\u09eb": 103, "\u09ec": 104, "\u09ed": 105, "\u09ee": 106, "\u09ef": 107, "\u09f0": 108, "|": 0, "[UNK]": 109, "[PAD]": 110}
|