sim04ful
commited on
Commit
•
5e4143f
1
Parent(s):
1a6a41a
made narrator more dynamic
Browse files- arible_schema.json +39 -2
- handler.py +46 -7
- requirements.txt +1 -0
arible_schema.json
CHANGED
@@ -5,13 +5,50 @@
|
|
5 |
{
|
6 |
"name": "text",
|
7 |
"type": "text",
|
8 |
-
"description": "
|
9 |
"area": true,
|
10 |
"options": {
|
11 |
"min": 100,
|
12 |
-
"max":
|
13 |
},
|
14 |
"title": "Content"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
}
|
16 |
]
|
17 |
}
|
|
|
5 |
{
|
6 |
"name": "text",
|
7 |
"type": "text",
|
8 |
+
"description": "Text to be narrated",
|
9 |
"area": true,
|
10 |
"options": {
|
11 |
"min": 100,
|
12 |
+
"max": 50000
|
13 |
},
|
14 |
"title": "Content"
|
15 |
+
},
|
16 |
+
{
|
17 |
+
"name": "audio_urls",
|
18 |
+
"type": "constant",
|
19 |
+
"value": [
|
20 |
+
"https://pub-93685b189ac24b30839990a7d9a14391.r2.dev/attenborough_short.wav"
|
21 |
+
]
|
22 |
+
},
|
23 |
+
{
|
24 |
+
"name": "gpt_cond_len",
|
25 |
+
"type": "constant",
|
26 |
+
"value": 30
|
27 |
+
},
|
28 |
+
{
|
29 |
+
"name": "gpt_cond_chunk_len",
|
30 |
+
"type": "constant",
|
31 |
+
"value": 4
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"name": "max_ref_length",
|
35 |
+
"type": "constant",
|
36 |
+
"value": 16
|
37 |
+
},
|
38 |
+
{
|
39 |
+
"name": "temperature",
|
40 |
+
"type": "constant",
|
41 |
+
"value": 0.75
|
42 |
+
},
|
43 |
+
{
|
44 |
+
"name": "repetition_penalty",
|
45 |
+
"type": "constant",
|
46 |
+
"value": 2.5
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"name": "language",
|
50 |
+
"type": "constant",
|
51 |
+
"value": "en"
|
52 |
}
|
53 |
]
|
54 |
}
|
handler.py
CHANGED
@@ -11,6 +11,36 @@ import time
|
|
11 |
import torchaudio
|
12 |
import io
|
13 |
import base64
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
|
16 |
class EndpointHandler:
|
@@ -32,26 +62,28 @@ class EndpointHandler:
|
|
32 |
self.model = model
|
33 |
|
34 |
def __call__(self, model_input):
|
|
|
35 |
|
36 |
(
|
37 |
gpt_cond_latent,
|
38 |
speaker_embedding,
|
39 |
) = self.model.get_conditioning_latents(
|
40 |
-
audio_path=
|
41 |
-
gpt_cond_len=
|
42 |
-
gpt_cond_chunk_len=
|
43 |
-
max_ref_length=
|
44 |
)
|
45 |
|
46 |
print("Generating audio")
|
|
|
47 |
t0 = time.time()
|
48 |
out = self.model.inference(
|
49 |
text=model_input["text"],
|
50 |
speaker_embedding=speaker_embedding,
|
51 |
gpt_cond_latent=gpt_cond_latent,
|
52 |
-
temperature=
|
53 |
-
repetition_penalty=
|
54 |
-
language="
|
55 |
enable_text_splitting=True,
|
56 |
)
|
57 |
audio_file = io.BytesIO()
|
@@ -61,4 +93,11 @@ class EndpointHandler:
|
|
61 |
inference_time = time.time() - t0
|
62 |
print(f"I: Time to generate audio: {inference_time} seconds")
|
63 |
audio_str = base64.b64encode(audio_file.getvalue()).decode("utf-8")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
return {"data": audio_str, "format": "wav"}
|
|
|
11 |
import torchaudio
|
12 |
import io
|
13 |
import base64
|
14 |
+
import requests
|
15 |
+
import tempfile
|
16 |
+
|
17 |
+
|
18 |
+
def convert_audio_urls_to_paths(audio_urls):
|
19 |
+
temp_files = []
|
20 |
+
audio_paths = []
|
21 |
+
|
22 |
+
for url in audio_urls:
|
23 |
+
filename = url.split("/")[-1]
|
24 |
+
file_destination_path, file_object = download_tempfile(
|
25 |
+
file_url=url, filename=filename
|
26 |
+
)
|
27 |
+
temp_files.append(file_object)
|
28 |
+
audio_paths.append(file_destination_path)
|
29 |
+
|
30 |
+
return audio_paths, temp_files
|
31 |
+
|
32 |
+
|
33 |
+
def download_tempfile(file_url, filename):
|
34 |
+
try:
|
35 |
+
response = requests.get(file_url)
|
36 |
+
response.raise_for_status()
|
37 |
+
filetype = filename.split(".")[-1]
|
38 |
+
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=f".{filetype}")
|
39 |
+
temp_file.write(response.content)
|
40 |
+
return temp_file.name, temp_file
|
41 |
+
except Exception as e:
|
42 |
+
print(f"Error downloading file: {e}")
|
43 |
+
return None, None
|
44 |
|
45 |
|
46 |
class EndpointHandler:
|
|
|
62 |
self.model = model
|
63 |
|
64 |
def __call__(self, model_input):
|
65 |
+
audio_paths, temp_files = convert_audio_urls_to_paths(model_input["audio_urls"])
|
66 |
|
67 |
(
|
68 |
gpt_cond_latent,
|
69 |
speaker_embedding,
|
70 |
) = self.model.get_conditioning_latents(
|
71 |
+
audio_path=audio_paths,
|
72 |
+
gpt_cond_len=model_input["gpt_cond_len"],
|
73 |
+
gpt_cond_chunk_len=model_input["gpt_cond_chunk_len"],
|
74 |
+
max_ref_length=model_input["max_ref_length"],
|
75 |
)
|
76 |
|
77 |
print("Generating audio")
|
78 |
+
|
79 |
t0 = time.time()
|
80 |
out = self.model.inference(
|
81 |
text=model_input["text"],
|
82 |
speaker_embedding=speaker_embedding,
|
83 |
gpt_cond_latent=gpt_cond_latent,
|
84 |
+
temperature=model_input["temperature"],
|
85 |
+
repetition_penalty=model_input["repetition_penalty"],
|
86 |
+
language=model_input["language"],
|
87 |
enable_text_splitting=True,
|
88 |
)
|
89 |
audio_file = io.BytesIO()
|
|
|
93 |
inference_time = time.time() - t0
|
94 |
print(f"I: Time to generate audio: {inference_time} seconds")
|
95 |
audio_str = base64.b64encode(audio_file.getvalue()).decode("utf-8")
|
96 |
+
|
97 |
+
try:
|
98 |
+
for temp_file in temp_files:
|
99 |
+
os.remove(temp_file)
|
100 |
+
except Exception as e:
|
101 |
+
print(f"Error removing temp files: {e}")
|
102 |
+
|
103 |
return {"data": audio_str, "format": "wav"}
|
requirements.txt
CHANGED
@@ -3,5 +3,6 @@ torchvision
|
|
3 |
torchaudio
|
4 |
deepspeed
|
5 |
coqui-tts
|
|
|
6 |
# numpy
|
7 |
# scipy
|
|
|
3 |
torchaudio
|
4 |
deepspeed
|
5 |
coqui-tts
|
6 |
+
requests
|
7 |
# numpy
|
8 |
# scipy
|