a2c-AntBulletEnv-v0 / config.json
arhamk's picture
Initial commit
c45a40f
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7cf792b2c1f0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7cf792b2c280>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7cf792b2c310>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7cf792b2c3a0>", "_build": "<function ActorCriticPolicy._build at 0x7cf792b2c430>", "forward": "<function ActorCriticPolicy.forward at 0x7cf792b2c4c0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7cf792b2c550>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7cf792b2c5e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7cf792b2c670>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7cf792b2c700>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7cf792b2c790>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7cf792b2c820>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7cf792b24ec0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 500000, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1691258029839968953, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAFpvUUD2iMu+2Y4SPwYRNL+xgMy+VMuqPfgeer4NiH8+VuA6v3svEbyw0vu/60TmvEW8vb6N4QG6Gf8LQDKXGz3MgUo+1jexuCGbLECaQgc9mtsAP/7VtDt7hCHA2aDDvJmfy7/gAf+/uIdKwPp4A8Bab1FAqojLvtmOEj8GETS/sYDMvlTLqj34Hnq+DYh/PmimML97LxG81CQBwOtE5rzlbY2+jeEBuh55I0Aylxs91GtOPdY3sbiFrjFAmkIHPSP/vD7+1bQ79KMOwNmgw7yZn8u/4AH/v7iHSsD6eAPAWm9RQKiIy77ZjhI/BhE0v7GAzL5Uy6o9+B56vg2Ifz7gkUu/ey8RvPHkBcDrROa8Py19vo3hAbph0h9AMpcbPV7cMj3WN7G47UAsQJpCBz1lYe8+/tW0O6piD8DZoMO8mZ/Lv+AB/7+4h0rA+ngDwFpvUUAah8u+2Y4SPwYRNL+xgMy+VMuqPfgeer4NiH8+F4lVv3svEbyh6/q/60TmvAtPFr6N4QG6aiccQDKXGz3dVEc+1jexuI0mJUCaQgc9d8XIPv7VtDvdCRLA2aDDvJmfy7/gAf+/uIdKwPp4A8CUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAABQIA2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAk9GFPAAAAAB0CwHAAAAAAEuoAz4AAAAAPG/qPwAAAAAxuxK9AAAAAOS25T8AAAAAiKS8vQAAAAAKjPa/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAVajPNQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgHXrNr0AAAAA2ULtvwAAAACXFYq9AAAAANBS5j8AAAAALhinPQAAAAAnN/k/AAAAAF47TbwAAAAAmMXdvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHnnizYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAmRK+9AAAAAEB94L8AAAAAWx11vAAAAACGqfY/AAAAAMeJg7sAAAAAEtPmPwAAAACgqf29AAAAAPB84b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADid+S2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAi/OTPQAAAAB5Ht2/AAAAANG8GL0AAAAA7NjePwAAAACiP5O9AAAAAIIo/T8AAAAAvwT5PQAAAACdffe/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJJKBEc81XOMAWyUTegDjAF0lEdAlJLq9f1Hv3V9lChoBkdAiy2am4y44WgHTegDaAhHQJSS7RG+bmV1fZQoaAZHQJJW5aB7NStoB03oA2gIR0CUku9y925hdX2UKGgGR0CQyGsNDtw8aAdN6ANoCEdAlJLxciW3SnV9lChoBkdAkFccoc7yQWgHTegDaAhHQJStWIuXeFd1fZQoaAZHQI0URvP1L8JoB03oA2gIR0CUrVl4C6pYdX2UKGgGR0CIrEiW3Sa3aAdN6ANoCEdAlK1aYJE6UHV9lChoBkdAkFyd/8VHnWgHTegDaAhHQJStW2nbZe11fZQoaAZHQJNKQBGQSzxoB03oA2gIR0CUysUOuq3mdX2UKGgGR0CRiT7655JLaAdN6ANoCEdAlMrGH+Idl3V9lChoBkdAkOEq2a2F4GgHTegDaAhHQJTKxxLkCFN1fZQoaAZHQJCGWGSIP9VoB03oA2gIR0CUysgL7XQMdX2UKGgGR0CTWeVs1sLwaAdN6ANoCEdAlON7ExZdOnV9lChoBkdAkuCH7Hhjv2gHTegDaAhHQJTjfDAJswd1fZQoaAZHQJP7aLZSNwRoB03oA2gIR0CU431hb4ahdX2UKGgGR0CPyq+4b0e2aAdN6ANoCEdAlON+wgTyrnV9lChoBkdAkpy/8qFyrGgHTegDaAhHQJUAbHLidat1fZQoaAZHQJP5hEUj9n9oB03oA2gIR0CVAG1v2oNvdX2UKGgGR0CRmxP5pJwsaAdN6ANoCEdAlQBudK/VRXV9lChoBkdAkayI593KS2gHTegDaAhHQJUAb18LKFJ1fZQoaAZHQJIn9gYxcmloB03oA2gIR0CVGbpaiblSdX2UKGgGR0CRhUUG3WnTaAdN6ANoCEdAlRm7XHzYmXV9lChoBkdAkXq9TUAks2gHTegDaAhHQJUZvHggow51fZQoaAZHQJBc1ZW7vohoB03oA2gIR0CVGb2GZeAvdX2UKGgGR0CNbeAtnPE9aAdN6ANoCEdAlTar1h9b5nV9lChoBkdAkUA95D7ZWmgHTegDaAhHQJU2rOs1baB1fZQoaAZHQJERycNH6M1oB03oA2gIR0CVNq4Ds+mndX2UKGgGR0CSI3cvduYQaAdN6ANoCEdAlTavFzdUKnV9lChoBkdAkWScbBGhEmgHTegDaAhHQJVPZMwlByF1fZQoaAZHQJJd7Ov+wTxoB03oA2gIR0CVT2XwLE1mdX2UKGgGR0CTL7YO2AoYaAdN6ANoCEdAlU9nCO3lS3V9lChoBkdAkY0kC3gDR2gHTegDaAhHQJVPaBUaQ3h1fZQoaAZHQJEXZzaK1ohoB03oA2gIR0CVbJciGFi8dX2UKGgGR0CQAZ8FpwjuaAdN6ANoCEdAlWyYPTXrdHV9lChoBkdAkNtHaWX1J2gHTegDaAhHQJVsmVZ9uxd1fZQoaAZHQJLeXTUiILxoB03oA2gIR0CVbJpeNT99dX2UKGgGR0CSDZTXrdFfaAdN6ANoCEdAlYWJ6IFeOXV9lChoBkdAkVPJQpF1CGgHTegDaAhHQJWFiwkgOjJ1fZQoaAZHQIXDUCtA9mpoB03oA2gIR0CVhYwxFiKBdX2UKGgGR0CSNCdNnGsFaAdN6ANoCEdAlYWNPtUn5XV9lChoBkdAkDNcLORkmWgHTegDaAhHQJWjL2ys0YV1fZQoaAZHQJIs/arWAgBoB03oA2gIR0CVozCZ4Oc2dX2UKGgGR0CRLNxgy/KyaAdN6ANoCEdAlaMxwAEMb3V9lChoBkdAj7fyULUkOmgHTegDaAhHQJWjMtz0Yj11fZQoaAZHQJDNQVYZEUloB03oA2gIR0CVvA+MIeHSdX2UKGgGR0CSOmv5xiobaAdN6ANoCEdAlbwQdKdxyXV9lChoBkdAkXJiONo8IWgHTegDaAhHQJW8EYyfthN1fZQoaAZHQIrKnktEofFoB03oA2gIR0CVvBKkl/pddX2UKGgGR0CSjEmCiAUdaAdN6ANoCEdAldkyhnJ1aHV9lChoBkdAh3dLpqynk2gHTegDaAhHQJXZM4bS7Xh1fZQoaAZHQJCuBhnanJloB03oA2gIR0CV2TRpDeCTdX2UKGgGR0CQ0l/BFd9laAdN6ANoCEdAldk1dHDrJXV9lChoBkdAk8cnKW9lE2gHTegDaAhHQJXyHcxj8UF1fZQoaAZHQJLz3Z39rGloB03oA2gIR0CV8iCOWBz4dX2UKGgGR0CT2qg88s+WaAdN6ANoCEdAlfIixzJZGXV9lChoBkdAk2FbEk0JnmgHTegDaAhHQJXyJQl8gIR1fZQoaAZHQJXhM6cRUWFoB03oA2gIR0CWDw9t/FzddX2UKGgGR0CV3wnnuAqeaAdN6ANoCEdAlg8QVKwpv3V9lChoBkdAlg4GYa5wwWgHTegDaAhHQJYPEU+LWI51fZQoaAZHQJVfAa6z3RJoB03oA2gIR0CWDxJU5uIidX2UKGgGR0CTMbJo0ygxaAdN6ANoCEdAlioWRzRx+HV9lChoBkdAkawKAe7tiWgHTegDaAhHQJYqGI+GGmF1fZQoaAZHQJDZ2+fywwFoB03oA2gIR0CWKhrSE12rdX2UKGgGR0CSUBOW0JF9aAdN6ANoCEdAlioc4HX2/XV9lChoBkdAhkiPrv9cbGgHTegDaAhHQJZFQNmUW2x1fZQoaAZHQJGmpjZteldoB03oA2gIR0CWRUHuJDVpdX2UKGgGR0CScNSOinHeaAdN6ANoCEdAlkVC3b212XV9lChoBkdAkgE6/Zdv9GgHTegDaAhHQJZFQ9ic5Kh1fZQoaAZHQI8/fOjZcs1oB03oA2gIR0CWYWRs/IKddX2UKGgGR0CUZwWq94/vaAdN6ANoCEdAlmFm0eEIxHV9lChoBkdAkogzzqbBoGgHTegDaAhHQJZhaS3b2151fZQoaAZHQItg8sxwhntoB03oA2gIR0CWYWuYQarFdX2UKGgGR0CUvIWf9P1taAdN6ANoCEdAlnnvs7dSEXV9lChoBkdAlKXTTBqKxmgHTegDaAhHQJZ58LApKBd1fZQoaAZHQJOpVxeb/fhoB03oA2gIR0CWefGfPHDKdX2UKGgGR0CUUFm3OObRaAdN6ANoCEdAlnnyk0rK/3V9lChoBkdAlIp1DKHO8mgHTegDaAhHQJaW970Fr2x1fZQoaAZHQJXT69VWCEpoB03oA2gIR0CWlvjEvTPTdX2UKGgGR0CVg/LkS26TaAdN6ANoCEdAlpb52hZha3V9lChoBkdAlbiuY+jdpWgHTegDaAhHQJaW+u5jH4p1fZQoaAZHQJYuLZzxPO9oB03oA2gIR0CWr9nuAqd6dX2UKGgGR0CWG6iBXjlxaAdN6ANoCEdAlq/a9K28ZnV9lChoBkdAk+q67dznzWgHTegDaAhHQJav2+qR2bJ1fZQoaAZHQJS9AQSSNfhoB03oA2gIR0CWr9za9K28dX2UKGgGR0CSaroLofSyaAdN6ANoCEdAls2584Pwu3V9lChoBkdAlStXSa3I/GgHTegDaAhHQJbNvC9AX2x1fZQoaAZHQJJxeYjSofloB03oA2gIR0CWzb7el9BsdX2UKGgGR0CRN4F+/gzhaAdN6ANoCEdAls3BUBGQS3V9lChoBkdAk97Z4Oc2BWgHTegDaAhHQJbm40UGmk51fZQoaAZHQJXE70163RZoB03oA2gIR0CW5uRfWtlqdX2UKGgGR0CWY01GLDQ7aAdN6ANoCEdAlublgc94eXV9lChoBkdAlkVy+xnnMmgHTegDaAhHQJbm5pPAO8V1fZQoaAZHQJOhGjqOcUdoB03oA2gIR0CXBjhF3IMjdX2UKGgGR0CRk4jLjghsaAdN6ANoCEdAlwY5g1FYuHV9lChoBkdAjkuj+R5kb2gHTegDaAhHQJcGOsQumJp1fZQoaAZHQJQCJufmLcdoB03oA2gIR0CXBjv4/NaAdX2UKGgGR0CPN5Onl4keaAdN6ANoCEdAlyClFDv3J3V9lChoBkdAkAPNyksSTWgHTegDaAhHQJcgpvDP4VR1fZQoaAZHQJHj+GJvYOFoB03oA2gIR0CXIKiXY150dX2UKGgGR0CQBf9Nvfj0aAdN6ANoCEdAlyCqVD8cdnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 24834, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}