whisperkittools-86c1a11b9398e0201bcfca4f9cdf2cb8adc41f73 generated files: openai_whisper-tiny.en
Browse files- openai_whisper-tiny.en/AudioEncoder.mlmodelc/analytics/coremldata.bin +1 -1
- openai_whisper-tiny.en/AudioEncoder.mlmodelc/coremldata.bin +2 -2
- openai_whisper-tiny.en/AudioEncoder.mlmodelc/metadata.json +2 -2
- openai_whisper-tiny.en/AudioEncoder.mlmodelc/model.mil +129 -105
- openai_whisper-tiny.en/MelSpectrogram.mlmodelc/analytics/coremldata.bin +1 -1
- openai_whisper-tiny.en/MelSpectrogram.mlmodelc/coremldata.bin +2 -2
- openai_whisper-tiny.en/MelSpectrogram.mlmodelc/metadata.json +2 -2
- openai_whisper-tiny.en/MelSpectrogram.mlmodelc/model.mil +1 -1
- openai_whisper-tiny.en/TextDecoder.mlmodelc/analytics/coremldata.bin +1 -1
- openai_whisper-tiny.en/TextDecoder.mlmodelc/coremldata.bin +2 -2
- openai_whisper-tiny.en/TextDecoder.mlmodelc/metadata.json +1 -1
- openai_whisper-tiny.en/TextDecoder.mlmodelc/model.mil +0 -0
openai_whisper-tiny.en/AudioEncoder.mlmodelc/analytics/coremldata.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 243
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:eaaaa6671a96a359a0bbd5e97885246dcc17f7435b6ffad8d871bb940964500b
|
3 |
size 243
|
openai_whisper-tiny.en/AudioEncoder.mlmodelc/coremldata.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:325b182d0a4266730a81795ae6b7a787b5111dd091500fc0c04dedf610015d46
|
3 |
+
size 347
|
openai_whisper-tiny.en/AudioEncoder.mlmodelc/metadata.json
CHANGED
@@ -46,8 +46,8 @@
|
|
46 |
},
|
47 |
"userDefinedMetadata" : {
|
48 |
"com.github.apple.coremltools.source_dialect" : "TorchScript",
|
49 |
-
"com.github.apple.coremltools.
|
50 |
-
"com.github.apple.coremltools.
|
51 |
},
|
52 |
"inputSchema" : [
|
53 |
{
|
|
|
46 |
},
|
47 |
"userDefinedMetadata" : {
|
48 |
"com.github.apple.coremltools.source_dialect" : "TorchScript",
|
49 |
+
"com.github.apple.coremltools.version" : "8.0",
|
50 |
+
"com.github.apple.coremltools.source" : "torch==2.4.1"
|
51 |
},
|
52 |
"inputSchema" : [
|
53 |
{
|
openai_whisper-tiny.en/AudioEncoder.mlmodelc/model.mil
CHANGED
@@ -1,25 +1,25 @@
|
|
1 |
program(1.0)
|
2 |
-
[buildInfo = dict<tensor<string, []>, tensor<string, []>>({{"coremlc-component-MIL", "3304.5.2"}, {"coremlc-version", "3304.6.2"}, {"coremltools-component-torch", "2.4.1"}, {"coremltools-source-dialect", "TorchScript"}, {"coremltools-version", "8.
|
3 |
{
|
4 |
func main<ios16>(tensor<fp16, [1, 80, 1, 3000]> melspectrogram_features) {
|
5 |
-
tensor<int32, [2]> var_34 = const()[name = tensor<string, []>("op_34"), val = tensor<int32, [2]>([1, 1])];
|
6 |
-
tensor<int32, [2]> var_40 = const()[name = tensor<string, []>("op_40"), val = tensor<int32, [2]>([1, 1])];
|
7 |
-
tensor<int32, []> var_45 = const()[name = tensor<string, []>("op_45"), val = tensor<int32, []>(1)];
|
8 |
tensor<string, []> var_50_pad_type_0 = const()[name = tensor<string, []>("op_50_pad_type_0"), val = tensor<string, []>("custom")];
|
9 |
tensor<int32, [4]> var_50_pad_0 = const()[name = tensor<string, []>("op_50_pad_0"), val = tensor<int32, [4]>([0, 0, 1, 1])];
|
|
|
|
|
|
|
10 |
tensor<fp16, [384, 80, 1, 3]> var_25_to_fp16 = const()[name = tensor<string, []>("op_25_to_fp16"), val = tensor<fp16, [384, 80, 1, 3]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(64)))];
|
11 |
tensor<fp16, [384]> var_31_to_fp16 = const()[name = tensor<string, []>("op_31_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(184448)))];
|
12 |
-
tensor<fp16, [1, 384, 1, 3000]> var_50_cast_fp16 = conv(bias = var_31_to_fp16, dilations =
|
13 |
tensor<string, []> hidden_states_1_mode_0 = const()[name = tensor<string, []>("hidden_states_1_mode_0"), val = tensor<string, []>("EXACT")];
|
14 |
tensor<fp16, [1, 384, 1, 3000]> hidden_states_1_cast_fp16 = gelu(mode = hidden_states_1_mode_0, x = var_50_cast_fp16)[name = tensor<string, []>("hidden_states_1_cast_fp16")];
|
15 |
-
tensor<int32, [2]> var_74 = const()[name = tensor<string, []>("op_74"), val = tensor<int32, [2]>([2, 2])];
|
16 |
-
tensor<int32, [2]> var_80 = const()[name = tensor<string, []>("op_80"), val = tensor<int32, [2]>([1, 1])];
|
17 |
-
tensor<int32, []> var_85 = const()[name = tensor<string, []>("op_85"), val = tensor<int32, []>(1)];
|
18 |
tensor<string, []> var_90_pad_type_0 = const()[name = tensor<string, []>("op_90_pad_type_0"), val = tensor<string, []>("custom")];
|
19 |
tensor<int32, [4]> var_90_pad_0 = const()[name = tensor<string, []>("op_90_pad_0"), val = tensor<int32, [4]>([0, 0, 1, 1])];
|
|
|
|
|
|
|
20 |
tensor<fp16, [384, 384, 1, 3]> var_65_to_fp16 = const()[name = tensor<string, []>("op_65_to_fp16"), val = tensor<fp16, [384, 384, 1, 3]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(185280)))];
|
21 |
tensor<fp16, [384]> var_71_to_fp16 = const()[name = tensor<string, []>("op_71_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(1070080)))];
|
22 |
-
tensor<fp16, [1, 384, 1, 1500]> var_90_cast_fp16 = conv(bias = var_71_to_fp16, dilations =
|
23 |
tensor<string, []> hidden_states_3_mode_0 = const()[name = tensor<string, []>("hidden_states_3_mode_0"), val = tensor<string, []>("EXACT")];
|
24 |
tensor<fp16, [1, 384, 1, 1500]> hidden_states_3_cast_fp16 = gelu(mode = hidden_states_3_mode_0, x = var_90_cast_fp16)[name = tensor<string, []>("hidden_states_3_cast_fp16")];
|
25 |
tensor<fp16, [1, 384, 1, 1500]> var_108_to_fp16 = const()[name = tensor<string, []>("op_108_to_fp16"), val = tensor<fp16, [1, 384, 1, 1500]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(1070912)))];
|
@@ -35,26 +35,29 @@ program(1.0)
|
|
35 |
tensor<fp16, [384]> obj_1_beta_0_to_fp16 = const()[name = tensor<string, []>("obj_1_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(2225472)))];
|
36 |
tensor<fp16, []> obj_1_epsilon_0_to_fp16 = const()[name = tensor<string, []>("obj_1_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
37 |
tensor<fp16, [1, 384, 1, 1500]> obj_1_cast_fp16 = batch_norm(beta = obj_1_beta_0_to_fp16, epsilon = obj_1_epsilon_0_to_fp16, gamma = obj_1_gamma_0_to_fp16, mean = obj_1_mean_0_to_fp16, variance = obj_1_variance_0_to_fp16, x = out_1_cast_fp16)[name = tensor<string, []>("obj_1_cast_fp16")];
|
38 |
-
tensor<
|
39 |
-
tensor<int32, [2]>
|
40 |
-
tensor<string, []> query_1_pad_type_0 = const()[name = tensor<string, []>("query_1_pad_type_0"), val = tensor<string, []>("custom")];
|
41 |
tensor<int32, [4]> query_1_pad_0 = const()[name = tensor<string, []>("query_1_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
|
|
|
|
|
42 |
tensor<fp16, [384, 384, 1, 1]> layers_0_self_attn_q_proj_weight_to_fp16 = const()[name = tensor<string, []>("layers_0_self_attn_q_proj_weight_to_fp16"), val = tensor<fp16, [384, 384, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(2226304)))];
|
43 |
tensor<fp16, [384]> layers_0_self_attn_q_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_0_self_attn_q_proj_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(2521280)))];
|
44 |
-
tensor<fp16, [1, 384, 1, 1500]> query_1_cast_fp16 = conv(bias = layers_0_self_attn_q_proj_bias_to_fp16, dilations =
|
45 |
-
tensor<
|
46 |
-
tensor<int32, [2]>
|
47 |
-
tensor<string, []> key_1_pad_type_0 = const()[name = tensor<string, []>("key_1_pad_type_0"), val = tensor<string, []>("custom")];
|
48 |
tensor<int32, [4]> key_1_pad_0 = const()[name = tensor<string, []>("key_1_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
|
|
|
|
|
49 |
tensor<fp16, [384, 384, 1, 1]> layers_0_self_attn_k_proj_weight_to_fp16 = const()[name = tensor<string, []>("layers_0_self_attn_k_proj_weight_to_fp16"), val = tensor<fp16, [384, 384, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(2522112)))];
|
50 |
-
tensor<fp16, [1, 384, 1, 1500]> key_1_cast_fp16 = conv(dilations =
|
51 |
-
tensor<
|
52 |
-
tensor<int32, [2]>
|
53 |
-
tensor<string, []> value_1_pad_type_0 = const()[name = tensor<string, []>("value_1_pad_type_0"), val = tensor<string, []>("custom")];
|
54 |
tensor<int32, [4]> value_1_pad_0 = const()[name = tensor<string, []>("value_1_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
|
|
|
|
|
55 |
tensor<fp16, [384, 384, 1, 1]> layers_0_self_attn_v_proj_weight_to_fp16 = const()[name = tensor<string, []>("layers_0_self_attn_v_proj_weight_to_fp16"), val = tensor<fp16, [384, 384, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(2817088)))];
|
56 |
tensor<fp16, [384]> layers_0_self_attn_v_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_0_self_attn_v_proj_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(3112064)))];
|
57 |
-
tensor<fp16, [1, 384, 1, 1500]> value_1_cast_fp16 = conv(bias = layers_0_self_attn_v_proj_bias_to_fp16, dilations =
|
58 |
tensor<int32, [4]> var_184_begin_0 = const()[name = tensor<string, []>("op_184_begin_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
|
59 |
tensor<int32, [4]> var_184_end_0 = const()[name = tensor<string, []>("op_184_end_0"), val = tensor<int32, [4]>([1, 64, 1, 1500])];
|
60 |
tensor<bool, [4]> var_184_end_mask_0 = const()[name = tensor<string, []>("op_184_end_mask_0"), val = tensor<bool, [4]>([true, false, true, true])];
|
@@ -407,13 +410,14 @@ program(1.0)
|
|
407 |
tensor<fp16, [1, 64, 1, 1500]> var_603_cast_fp16 = concat(axis = var_118, interleave = var_603_interleave_0, values = (var_585_cast_fp16, var_587_cast_fp16, var_589_cast_fp16, var_591_cast_fp16))[name = tensor<string, []>("op_603_cast_fp16")];
|
408 |
tensor<bool, []> input_1_interleave_0 = const()[name = tensor<string, []>("input_1_interleave_0"), val = tensor<bool, []>(false)];
|
409 |
tensor<fp16, [1, 384, 1, 1500]> input_1_cast_fp16 = concat(axis = var_129, interleave = input_1_interleave_0, values = (var_593_cast_fp16, var_595_cast_fp16, var_597_cast_fp16, var_599_cast_fp16, var_601_cast_fp16, var_603_cast_fp16))[name = tensor<string, []>("input_1_cast_fp16")];
|
410 |
-
tensor<
|
411 |
-
tensor<int32, [2]>
|
412 |
-
tensor<string, []> obj_3_pad_type_0 = const()[name = tensor<string, []>("obj_3_pad_type_0"), val = tensor<string, []>("custom")];
|
413 |
tensor<int32, [4]> obj_3_pad_0 = const()[name = tensor<string, []>("obj_3_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
|
|
|
|
|
414 |
tensor<fp16, [384, 384, 1, 1]> layers_0_self_attn_o_proj_weight_to_fp16 = const()[name = tensor<string, []>("layers_0_self_attn_o_proj_weight_to_fp16"), val = tensor<fp16, [384, 384, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(3112896)))];
|
415 |
tensor<fp16, [384]> layers_0_self_attn_o_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_0_self_attn_o_proj_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(3407872)))];
|
416 |
-
tensor<fp16, [1, 384, 1, 1500]> obj_3_cast_fp16 = conv(bias = layers_0_self_attn_o_proj_bias_to_fp16, dilations =
|
417 |
tensor<fp16, [1, 384, 1, 1500]> inputs_3_cast_fp16 = add(x = inputs_1_cast_fp16, y = obj_3_cast_fp16)[name = tensor<string, []>("inputs_3_cast_fp16")];
|
418 |
tensor<int32, [1]> out_3_axes_0 = const()[name = tensor<string, []>("out_3_axes_0"), val = tensor<int32, [1]>([1])];
|
419 |
tensor<fp16, []> var_622_to_fp16 = const()[name = tensor<string, []>("op_622_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
@@ -422,22 +426,24 @@ program(1.0)
|
|
422 |
tensor<fp16, [384]> input_3_beta_0_to_fp16 = const()[name = tensor<string, []>("input_3_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(3409536)))];
|
423 |
tensor<fp16, []> input_3_epsilon_0_to_fp16 = const()[name = tensor<string, []>("input_3_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
424 |
tensor<fp16, [1, 384, 1, 1500]> input_3_cast_fp16 = batch_norm(beta = input_3_beta_0_to_fp16, epsilon = input_3_epsilon_0_to_fp16, gamma = input_3_gamma_0_to_fp16, mean = obj_1_mean_0_to_fp16, variance = obj_1_variance_0_to_fp16, x = out_3_cast_fp16)[name = tensor<string, []>("input_3_cast_fp16")];
|
425 |
-
tensor<
|
426 |
-
tensor<int32, [2]>
|
427 |
-
tensor<string, []> input_5_pad_type_0 = const()[name = tensor<string, []>("input_5_pad_type_0"), val = tensor<string, []>("custom")];
|
428 |
tensor<int32, [4]> input_5_pad_0 = const()[name = tensor<string, []>("input_5_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
|
|
|
|
|
429 |
tensor<fp16, [1536, 384, 1, 1]> layers_0_fc1_weight_to_fp16 = const()[name = tensor<string, []>("layers_0_fc1_weight_to_fp16"), val = tensor<fp16, [1536, 384, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(3410368)))];
|
430 |
tensor<fp16, [1536]> layers_0_fc1_bias_to_fp16 = const()[name = tensor<string, []>("layers_0_fc1_bias_to_fp16"), val = tensor<fp16, [1536]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(4590080)))];
|
431 |
-
tensor<fp16, [1, 1536, 1, 1500]> input_5_cast_fp16 = conv(bias = layers_0_fc1_bias_to_fp16, dilations =
|
432 |
tensor<string, []> input_7_mode_0 = const()[name = tensor<string, []>("input_7_mode_0"), val = tensor<string, []>("EXACT")];
|
433 |
tensor<fp16, [1, 1536, 1, 1500]> input_7_cast_fp16 = gelu(mode = input_7_mode_0, x = input_5_cast_fp16)[name = tensor<string, []>("input_7_cast_fp16")];
|
434 |
-
tensor<
|
435 |
-
tensor<int32, [2]>
|
436 |
-
tensor<string, []> hidden_states_5_pad_type_0 = const()[name = tensor<string, []>("hidden_states_5_pad_type_0"), val = tensor<string, []>("custom")];
|
437 |
tensor<int32, [4]> hidden_states_5_pad_0 = const()[name = tensor<string, []>("hidden_states_5_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
|
|
|
|
|
438 |
tensor<fp16, [384, 1536, 1, 1]> layers_0_fc2_weight_to_fp16 = const()[name = tensor<string, []>("layers_0_fc2_weight_to_fp16"), val = tensor<fp16, [384, 1536, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(4593216)))];
|
439 |
tensor<fp16, [384]> layers_0_fc2_bias_to_fp16 = const()[name = tensor<string, []>("layers_0_fc2_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(5772928)))];
|
440 |
-
tensor<fp16, [1, 384, 1, 1500]> hidden_states_5_cast_fp16 = conv(bias = layers_0_fc2_bias_to_fp16, dilations =
|
441 |
tensor<fp16, [1, 384, 1, 1500]> inputs_5_cast_fp16 = add(x = inputs_3_cast_fp16, y = hidden_states_5_cast_fp16)[name = tensor<string, []>("inputs_5_cast_fp16")];
|
442 |
tensor<int32, []> var_651 = const()[name = tensor<string, []>("op_651"), val = tensor<int32, []>(3)];
|
443 |
tensor<int32, []> var_662 = const()[name = tensor<string, []>("op_662"), val = tensor<int32, []>(1)];
|
@@ -448,26 +454,29 @@ program(1.0)
|
|
448 |
tensor<fp16, [384]> obj_5_beta_0_to_fp16 = const()[name = tensor<string, []>("obj_5_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(5774592)))];
|
449 |
tensor<fp16, []> obj_5_epsilon_0_to_fp16 = const()[name = tensor<string, []>("obj_5_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
450 |
tensor<fp16, [1, 384, 1, 1500]> obj_5_cast_fp16 = batch_norm(beta = obj_5_beta_0_to_fp16, epsilon = obj_5_epsilon_0_to_fp16, gamma = obj_5_gamma_0_to_fp16, mean = obj_1_mean_0_to_fp16, variance = obj_1_variance_0_to_fp16, x = out_5_cast_fp16)[name = tensor<string, []>("obj_5_cast_fp16")];
|
451 |
-
tensor<
|
452 |
-
tensor<int32, [2]>
|
453 |
-
tensor<string, []> query_3_pad_type_0 = const()[name = tensor<string, []>("query_3_pad_type_0"), val = tensor<string, []>("custom")];
|
454 |
tensor<int32, [4]> query_3_pad_0 = const()[name = tensor<string, []>("query_3_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
|
|
|
|
|
455 |
tensor<fp16, [384, 384, 1, 1]> layers_1_self_attn_q_proj_weight_to_fp16 = const()[name = tensor<string, []>("layers_1_self_attn_q_proj_weight_to_fp16"), val = tensor<fp16, [384, 384, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(5775424)))];
|
456 |
tensor<fp16, [384]> layers_1_self_attn_q_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_1_self_attn_q_proj_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(6070400)))];
|
457 |
-
tensor<fp16, [1, 384, 1, 1500]> query_3_cast_fp16 = conv(bias = layers_1_self_attn_q_proj_bias_to_fp16, dilations =
|
458 |
-
tensor<
|
459 |
-
tensor<int32, [2]>
|
460 |
-
tensor<string, []> key_3_pad_type_0 = const()[name = tensor<string, []>("key_3_pad_type_0"), val = tensor<string, []>("custom")];
|
461 |
tensor<int32, [4]> key_3_pad_0 = const()[name = tensor<string, []>("key_3_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
|
|
|
|
|
462 |
tensor<fp16, [384, 384, 1, 1]> layers_1_self_attn_k_proj_weight_to_fp16 = const()[name = tensor<string, []>("layers_1_self_attn_k_proj_weight_to_fp16"), val = tensor<fp16, [384, 384, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(6071232)))];
|
463 |
-
tensor<fp16, [1, 384, 1, 1500]> key_3_cast_fp16 = conv(dilations =
|
464 |
-
tensor<
|
465 |
-
tensor<int32, [2]>
|
466 |
-
tensor<string, []> value_3_pad_type_0 = const()[name = tensor<string, []>("value_3_pad_type_0"), val = tensor<string, []>("custom")];
|
467 |
tensor<int32, [4]> value_3_pad_0 = const()[name = tensor<string, []>("value_3_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
|
|
|
|
|
468 |
tensor<fp16, [384, 384, 1, 1]> layers_1_self_attn_v_proj_weight_to_fp16 = const()[name = tensor<string, []>("layers_1_self_attn_v_proj_weight_to_fp16"), val = tensor<fp16, [384, 384, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(6366208)))];
|
469 |
tensor<fp16, [384]> layers_1_self_attn_v_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_1_self_attn_v_proj_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(6661184)))];
|
470 |
-
tensor<fp16, [1, 384, 1, 1500]> value_3_cast_fp16 = conv(bias = layers_1_self_attn_v_proj_bias_to_fp16, dilations =
|
471 |
tensor<int32, [4]> var_717_begin_0 = const()[name = tensor<string, []>("op_717_begin_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
|
472 |
tensor<int32, [4]> var_717_end_0 = const()[name = tensor<string, []>("op_717_end_0"), val = tensor<int32, [4]>([1, 64, 1, 1500])];
|
473 |
tensor<bool, [4]> var_717_end_mask_0 = const()[name = tensor<string, []>("op_717_end_mask_0"), val = tensor<bool, [4]>([true, false, true, true])];
|
@@ -820,13 +829,14 @@ program(1.0)
|
|
820 |
tensor<fp16, [1, 64, 1, 1500]> var_1136_cast_fp16 = concat(axis = var_651, interleave = var_1136_interleave_0, values = (var_1118_cast_fp16, var_1120_cast_fp16, var_1122_cast_fp16, var_1124_cast_fp16))[name = tensor<string, []>("op_1136_cast_fp16")];
|
821 |
tensor<bool, []> input_9_interleave_0 = const()[name = tensor<string, []>("input_9_interleave_0"), val = tensor<bool, []>(false)];
|
822 |
tensor<fp16, [1, 384, 1, 1500]> input_9_cast_fp16 = concat(axis = var_662, interleave = input_9_interleave_0, values = (var_1126_cast_fp16, var_1128_cast_fp16, var_1130_cast_fp16, var_1132_cast_fp16, var_1134_cast_fp16, var_1136_cast_fp16))[name = tensor<string, []>("input_9_cast_fp16")];
|
823 |
-
tensor<
|
824 |
-
tensor<int32, [2]>
|
825 |
-
tensor<string, []> obj_7_pad_type_0 = const()[name = tensor<string, []>("obj_7_pad_type_0"), val = tensor<string, []>("custom")];
|
826 |
tensor<int32, [4]> obj_7_pad_0 = const()[name = tensor<string, []>("obj_7_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
|
|
|
|
|
827 |
tensor<fp16, [384, 384, 1, 1]> layers_1_self_attn_o_proj_weight_to_fp16 = const()[name = tensor<string, []>("layers_1_self_attn_o_proj_weight_to_fp16"), val = tensor<fp16, [384, 384, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(6662016)))];
|
828 |
tensor<fp16, [384]> layers_1_self_attn_o_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_1_self_attn_o_proj_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(6956992)))];
|
829 |
-
tensor<fp16, [1, 384, 1, 1500]> obj_7_cast_fp16 = conv(bias = layers_1_self_attn_o_proj_bias_to_fp16, dilations =
|
830 |
tensor<fp16, [1, 384, 1, 1500]> inputs_7_cast_fp16 = add(x = inputs_5_cast_fp16, y = obj_7_cast_fp16)[name = tensor<string, []>("inputs_7_cast_fp16")];
|
831 |
tensor<int32, [1]> out_7_axes_0 = const()[name = tensor<string, []>("out_7_axes_0"), val = tensor<int32, [1]>([1])];
|
832 |
tensor<fp16, []> var_1155_to_fp16 = const()[name = tensor<string, []>("op_1155_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
@@ -835,22 +845,24 @@ program(1.0)
|
|
835 |
tensor<fp16, [384]> input_11_beta_0_to_fp16 = const()[name = tensor<string, []>("input_11_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(6958656)))];
|
836 |
tensor<fp16, []> input_11_epsilon_0_to_fp16 = const()[name = tensor<string, []>("input_11_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
837 |
tensor<fp16, [1, 384, 1, 1500]> input_11_cast_fp16 = batch_norm(beta = input_11_beta_0_to_fp16, epsilon = input_11_epsilon_0_to_fp16, gamma = input_11_gamma_0_to_fp16, mean = obj_1_mean_0_to_fp16, variance = obj_1_variance_0_to_fp16, x = out_7_cast_fp16)[name = tensor<string, []>("input_11_cast_fp16")];
|
838 |
-
tensor<
|
839 |
-
tensor<int32, [2]>
|
840 |
-
tensor<string, []> input_13_pad_type_0 = const()[name = tensor<string, []>("input_13_pad_type_0"), val = tensor<string, []>("custom")];
|
841 |
tensor<int32, [4]> input_13_pad_0 = const()[name = tensor<string, []>("input_13_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
|
|
|
|
|
842 |
tensor<fp16, [1536, 384, 1, 1]> layers_1_fc1_weight_to_fp16 = const()[name = tensor<string, []>("layers_1_fc1_weight_to_fp16"), val = tensor<fp16, [1536, 384, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(6959488)))];
|
843 |
tensor<fp16, [1536]> layers_1_fc1_bias_to_fp16 = const()[name = tensor<string, []>("layers_1_fc1_bias_to_fp16"), val = tensor<fp16, [1536]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(8139200)))];
|
844 |
-
tensor<fp16, [1, 1536, 1, 1500]> input_13_cast_fp16 = conv(bias = layers_1_fc1_bias_to_fp16, dilations =
|
845 |
tensor<string, []> input_15_mode_0 = const()[name = tensor<string, []>("input_15_mode_0"), val = tensor<string, []>("EXACT")];
|
846 |
tensor<fp16, [1, 1536, 1, 1500]> input_15_cast_fp16 = gelu(mode = input_15_mode_0, x = input_13_cast_fp16)[name = tensor<string, []>("input_15_cast_fp16")];
|
847 |
-
tensor<
|
848 |
-
tensor<int32, [2]>
|
849 |
-
tensor<string, []> hidden_states_7_pad_type_0 = const()[name = tensor<string, []>("hidden_states_7_pad_type_0"), val = tensor<string, []>("custom")];
|
850 |
tensor<int32, [4]> hidden_states_7_pad_0 = const()[name = tensor<string, []>("hidden_states_7_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
|
|
|
|
|
851 |
tensor<fp16, [384, 1536, 1, 1]> layers_1_fc2_weight_to_fp16 = const()[name = tensor<string, []>("layers_1_fc2_weight_to_fp16"), val = tensor<fp16, [384, 1536, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(8142336)))];
|
852 |
tensor<fp16, [384]> layers_1_fc2_bias_to_fp16 = const()[name = tensor<string, []>("layers_1_fc2_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(9322048)))];
|
853 |
-
tensor<fp16, [1, 384, 1, 1500]> hidden_states_7_cast_fp16 = conv(bias = layers_1_fc2_bias_to_fp16, dilations =
|
854 |
tensor<fp16, [1, 384, 1, 1500]> inputs_9_cast_fp16 = add(x = inputs_7_cast_fp16, y = hidden_states_7_cast_fp16)[name = tensor<string, []>("inputs_9_cast_fp16")];
|
855 |
tensor<int32, []> var_1184 = const()[name = tensor<string, []>("op_1184"), val = tensor<int32, []>(3)];
|
856 |
tensor<int32, []> var_1195 = const()[name = tensor<string, []>("op_1195"), val = tensor<int32, []>(1)];
|
@@ -861,26 +873,29 @@ program(1.0)
|
|
861 |
tensor<fp16, [384]> obj_9_beta_0_to_fp16 = const()[name = tensor<string, []>("obj_9_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(9323712)))];
|
862 |
tensor<fp16, []> obj_9_epsilon_0_to_fp16 = const()[name = tensor<string, []>("obj_9_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
863 |
tensor<fp16, [1, 384, 1, 1500]> obj_9_cast_fp16 = batch_norm(beta = obj_9_beta_0_to_fp16, epsilon = obj_9_epsilon_0_to_fp16, gamma = obj_9_gamma_0_to_fp16, mean = obj_1_mean_0_to_fp16, variance = obj_1_variance_0_to_fp16, x = out_9_cast_fp16)[name = tensor<string, []>("obj_9_cast_fp16")];
|
864 |
-
tensor<
|
865 |
-
tensor<int32, [2]>
|
866 |
-
tensor<string, []> query_5_pad_type_0 = const()[name = tensor<string, []>("query_5_pad_type_0"), val = tensor<string, []>("custom")];
|
867 |
tensor<int32, [4]> query_5_pad_0 = const()[name = tensor<string, []>("query_5_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
|
|
|
|
|
868 |
tensor<fp16, [384, 384, 1, 1]> layers_2_self_attn_q_proj_weight_to_fp16 = const()[name = tensor<string, []>("layers_2_self_attn_q_proj_weight_to_fp16"), val = tensor<fp16, [384, 384, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(9324544)))];
|
869 |
tensor<fp16, [384]> layers_2_self_attn_q_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_2_self_attn_q_proj_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(9619520)))];
|
870 |
-
tensor<fp16, [1, 384, 1, 1500]> query_5_cast_fp16 = conv(bias = layers_2_self_attn_q_proj_bias_to_fp16, dilations =
|
871 |
-
tensor<
|
872 |
-
tensor<int32, [2]>
|
873 |
-
tensor<string, []> key_5_pad_type_0 = const()[name = tensor<string, []>("key_5_pad_type_0"), val = tensor<string, []>("custom")];
|
874 |
tensor<int32, [4]> key_5_pad_0 = const()[name = tensor<string, []>("key_5_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
|
|
|
|
|
875 |
tensor<fp16, [384, 384, 1, 1]> layers_2_self_attn_k_proj_weight_to_fp16 = const()[name = tensor<string, []>("layers_2_self_attn_k_proj_weight_to_fp16"), val = tensor<fp16, [384, 384, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(9620352)))];
|
876 |
-
tensor<fp16, [1, 384, 1, 1500]> key_5_cast_fp16 = conv(dilations =
|
877 |
-
tensor<
|
878 |
-
tensor<int32, [2]>
|
879 |
-
tensor<string, []> value_5_pad_type_0 = const()[name = tensor<string, []>("value_5_pad_type_0"), val = tensor<string, []>("custom")];
|
880 |
tensor<int32, [4]> value_5_pad_0 = const()[name = tensor<string, []>("value_5_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
|
|
|
|
|
881 |
tensor<fp16, [384, 384, 1, 1]> layers_2_self_attn_v_proj_weight_to_fp16 = const()[name = tensor<string, []>("layers_2_self_attn_v_proj_weight_to_fp16"), val = tensor<fp16, [384, 384, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(9915328)))];
|
882 |
tensor<fp16, [384]> layers_2_self_attn_v_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_2_self_attn_v_proj_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(10210304)))];
|
883 |
-
tensor<fp16, [1, 384, 1, 1500]> value_5_cast_fp16 = conv(bias = layers_2_self_attn_v_proj_bias_to_fp16, dilations =
|
884 |
tensor<int32, [4]> var_1250_begin_0 = const()[name = tensor<string, []>("op_1250_begin_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
|
885 |
tensor<int32, [4]> var_1250_end_0 = const()[name = tensor<string, []>("op_1250_end_0"), val = tensor<int32, [4]>([1, 64, 1, 1500])];
|
886 |
tensor<bool, [4]> var_1250_end_mask_0 = const()[name = tensor<string, []>("op_1250_end_mask_0"), val = tensor<bool, [4]>([true, false, true, true])];
|
@@ -1233,13 +1248,14 @@ program(1.0)
|
|
1233 |
tensor<fp16, [1, 64, 1, 1500]> var_1669_cast_fp16 = concat(axis = var_1184, interleave = var_1669_interleave_0, values = (var_1651_cast_fp16, var_1653_cast_fp16, var_1655_cast_fp16, var_1657_cast_fp16))[name = tensor<string, []>("op_1669_cast_fp16")];
|
1234 |
tensor<bool, []> input_17_interleave_0 = const()[name = tensor<string, []>("input_17_interleave_0"), val = tensor<bool, []>(false)];
|
1235 |
tensor<fp16, [1, 384, 1, 1500]> input_17_cast_fp16 = concat(axis = var_1195, interleave = input_17_interleave_0, values = (var_1659_cast_fp16, var_1661_cast_fp16, var_1663_cast_fp16, var_1665_cast_fp16, var_1667_cast_fp16, var_1669_cast_fp16))[name = tensor<string, []>("input_17_cast_fp16")];
|
1236 |
-
tensor<
|
1237 |
-
tensor<int32, [2]>
|
1238 |
-
tensor<string, []> obj_11_pad_type_0 = const()[name = tensor<string, []>("obj_11_pad_type_0"), val = tensor<string, []>("custom")];
|
1239 |
tensor<int32, [4]> obj_11_pad_0 = const()[name = tensor<string, []>("obj_11_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
|
|
|
|
|
1240 |
tensor<fp16, [384, 384, 1, 1]> layers_2_self_attn_o_proj_weight_to_fp16 = const()[name = tensor<string, []>("layers_2_self_attn_o_proj_weight_to_fp16"), val = tensor<fp16, [384, 384, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(10211136)))];
|
1241 |
tensor<fp16, [384]> layers_2_self_attn_o_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_2_self_attn_o_proj_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(10506112)))];
|
1242 |
-
tensor<fp16, [1, 384, 1, 1500]> obj_11_cast_fp16 = conv(bias = layers_2_self_attn_o_proj_bias_to_fp16, dilations =
|
1243 |
tensor<fp16, [1, 384, 1, 1500]> inputs_11_cast_fp16 = add(x = inputs_9_cast_fp16, y = obj_11_cast_fp16)[name = tensor<string, []>("inputs_11_cast_fp16")];
|
1244 |
tensor<int32, [1]> out_11_axes_0 = const()[name = tensor<string, []>("out_11_axes_0"), val = tensor<int32, [1]>([1])];
|
1245 |
tensor<fp16, []> var_1688_to_fp16 = const()[name = tensor<string, []>("op_1688_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
@@ -1248,22 +1264,24 @@ program(1.0)
|
|
1248 |
tensor<fp16, [384]> input_19_beta_0_to_fp16 = const()[name = tensor<string, []>("input_19_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(10507776)))];
|
1249 |
tensor<fp16, []> input_19_epsilon_0_to_fp16 = const()[name = tensor<string, []>("input_19_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
1250 |
tensor<fp16, [1, 384, 1, 1500]> input_19_cast_fp16 = batch_norm(beta = input_19_beta_0_to_fp16, epsilon = input_19_epsilon_0_to_fp16, gamma = input_19_gamma_0_to_fp16, mean = obj_1_mean_0_to_fp16, variance = obj_1_variance_0_to_fp16, x = out_11_cast_fp16)[name = tensor<string, []>("input_19_cast_fp16")];
|
1251 |
-
tensor<
|
1252 |
-
tensor<int32, [2]>
|
1253 |
-
tensor<string, []> input_21_pad_type_0 = const()[name = tensor<string, []>("input_21_pad_type_0"), val = tensor<string, []>("custom")];
|
1254 |
tensor<int32, [4]> input_21_pad_0 = const()[name = tensor<string, []>("input_21_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
|
|
|
|
|
1255 |
tensor<fp16, [1536, 384, 1, 1]> layers_2_fc1_weight_to_fp16 = const()[name = tensor<string, []>("layers_2_fc1_weight_to_fp16"), val = tensor<fp16, [1536, 384, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(10508608)))];
|
1256 |
tensor<fp16, [1536]> layers_2_fc1_bias_to_fp16 = const()[name = tensor<string, []>("layers_2_fc1_bias_to_fp16"), val = tensor<fp16, [1536]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(11688320)))];
|
1257 |
-
tensor<fp16, [1, 1536, 1, 1500]> input_21_cast_fp16 = conv(bias = layers_2_fc1_bias_to_fp16, dilations =
|
1258 |
tensor<string, []> input_23_mode_0 = const()[name = tensor<string, []>("input_23_mode_0"), val = tensor<string, []>("EXACT")];
|
1259 |
tensor<fp16, [1, 1536, 1, 1500]> input_23_cast_fp16 = gelu(mode = input_23_mode_0, x = input_21_cast_fp16)[name = tensor<string, []>("input_23_cast_fp16")];
|
1260 |
-
tensor<
|
1261 |
-
tensor<int32, [2]>
|
1262 |
-
tensor<string, []> hidden_states_9_pad_type_0 = const()[name = tensor<string, []>("hidden_states_9_pad_type_0"), val = tensor<string, []>("custom")];
|
1263 |
tensor<int32, [4]> hidden_states_9_pad_0 = const()[name = tensor<string, []>("hidden_states_9_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
|
|
|
|
|
1264 |
tensor<fp16, [384, 1536, 1, 1]> layers_2_fc2_weight_to_fp16 = const()[name = tensor<string, []>("layers_2_fc2_weight_to_fp16"), val = tensor<fp16, [384, 1536, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(11691456)))];
|
1265 |
tensor<fp16, [384]> layers_2_fc2_bias_to_fp16 = const()[name = tensor<string, []>("layers_2_fc2_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(12871168)))];
|
1266 |
-
tensor<fp16, [1, 384, 1, 1500]> hidden_states_9_cast_fp16 = conv(bias = layers_2_fc2_bias_to_fp16, dilations =
|
1267 |
tensor<fp16, [1, 384, 1, 1500]> inputs_13_cast_fp16 = add(x = inputs_11_cast_fp16, y = hidden_states_9_cast_fp16)[name = tensor<string, []>("inputs_13_cast_fp16")];
|
1268 |
tensor<int32, []> var_1717 = const()[name = tensor<string, []>("op_1717"), val = tensor<int32, []>(3)];
|
1269 |
tensor<int32, []> var_1728 = const()[name = tensor<string, []>("op_1728"), val = tensor<int32, []>(1)];
|
@@ -1274,26 +1292,29 @@ program(1.0)
|
|
1274 |
tensor<fp16, [384]> obj_13_beta_0_to_fp16 = const()[name = tensor<string, []>("obj_13_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(12872832)))];
|
1275 |
tensor<fp16, []> obj_13_epsilon_0_to_fp16 = const()[name = tensor<string, []>("obj_13_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
1276 |
tensor<fp16, [1, 384, 1, 1500]> obj_13_cast_fp16 = batch_norm(beta = obj_13_beta_0_to_fp16, epsilon = obj_13_epsilon_0_to_fp16, gamma = obj_13_gamma_0_to_fp16, mean = obj_1_mean_0_to_fp16, variance = obj_1_variance_0_to_fp16, x = out_13_cast_fp16)[name = tensor<string, []>("obj_13_cast_fp16")];
|
1277 |
-
tensor<
|
1278 |
-
tensor<int32, [2]>
|
1279 |
-
tensor<string, []> query_pad_type_0 = const()[name = tensor<string, []>("query_pad_type_0"), val = tensor<string, []>("custom")];
|
1280 |
tensor<int32, [4]> query_pad_0 = const()[name = tensor<string, []>("query_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
|
|
|
|
|
1281 |
tensor<fp16, [384, 384, 1, 1]> layers_3_self_attn_q_proj_weight_to_fp16 = const()[name = tensor<string, []>("layers_3_self_attn_q_proj_weight_to_fp16"), val = tensor<fp16, [384, 384, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(12873664)))];
|
1282 |
tensor<fp16, [384]> layers_3_self_attn_q_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_3_self_attn_q_proj_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(13168640)))];
|
1283 |
-
tensor<fp16, [1, 384, 1, 1500]> query_cast_fp16 = conv(bias = layers_3_self_attn_q_proj_bias_to_fp16, dilations =
|
1284 |
-
tensor<
|
1285 |
-
tensor<int32, [2]>
|
1286 |
-
tensor<string, []> key_pad_type_0 = const()[name = tensor<string, []>("key_pad_type_0"), val = tensor<string, []>("custom")];
|
1287 |
tensor<int32, [4]> key_pad_0 = const()[name = tensor<string, []>("key_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
|
|
|
|
|
1288 |
tensor<fp16, [384, 384, 1, 1]> layers_3_self_attn_k_proj_weight_to_fp16 = const()[name = tensor<string, []>("layers_3_self_attn_k_proj_weight_to_fp16"), val = tensor<fp16, [384, 384, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(13169472)))];
|
1289 |
-
tensor<fp16, [1, 384, 1, 1500]> key_cast_fp16 = conv(dilations =
|
1290 |
-
tensor<
|
1291 |
-
tensor<int32, [2]>
|
1292 |
-
tensor<string, []> value_pad_type_0 = const()[name = tensor<string, []>("value_pad_type_0"), val = tensor<string, []>("custom")];
|
1293 |
tensor<int32, [4]> value_pad_0 = const()[name = tensor<string, []>("value_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
|
|
|
|
|
1294 |
tensor<fp16, [384, 384, 1, 1]> layers_3_self_attn_v_proj_weight_to_fp16 = const()[name = tensor<string, []>("layers_3_self_attn_v_proj_weight_to_fp16"), val = tensor<fp16, [384, 384, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(13464448)))];
|
1295 |
tensor<fp16, [384]> layers_3_self_attn_v_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_3_self_attn_v_proj_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(13759424)))];
|
1296 |
-
tensor<fp16, [1, 384, 1, 1500]> value_cast_fp16 = conv(bias = layers_3_self_attn_v_proj_bias_to_fp16, dilations =
|
1297 |
tensor<int32, [4]> var_1783_begin_0 = const()[name = tensor<string, []>("op_1783_begin_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
|
1298 |
tensor<int32, [4]> var_1783_end_0 = const()[name = tensor<string, []>("op_1783_end_0"), val = tensor<int32, [4]>([1, 64, 1, 1500])];
|
1299 |
tensor<bool, [4]> var_1783_end_mask_0 = const()[name = tensor<string, []>("op_1783_end_mask_0"), val = tensor<bool, [4]>([true, false, true, true])];
|
@@ -1646,13 +1667,14 @@ program(1.0)
|
|
1646 |
tensor<fp16, [1, 64, 1, 1500]> var_2202_cast_fp16 = concat(axis = var_1717, interleave = var_2202_interleave_0, values = (var_2184_cast_fp16, var_2186_cast_fp16, var_2188_cast_fp16, var_2190_cast_fp16))[name = tensor<string, []>("op_2202_cast_fp16")];
|
1647 |
tensor<bool, []> input_25_interleave_0 = const()[name = tensor<string, []>("input_25_interleave_0"), val = tensor<bool, []>(false)];
|
1648 |
tensor<fp16, [1, 384, 1, 1500]> input_25_cast_fp16 = concat(axis = var_1728, interleave = input_25_interleave_0, values = (var_2192_cast_fp16, var_2194_cast_fp16, var_2196_cast_fp16, var_2198_cast_fp16, var_2200_cast_fp16, var_2202_cast_fp16))[name = tensor<string, []>("input_25_cast_fp16")];
|
1649 |
-
tensor<
|
1650 |
-
tensor<int32, [2]>
|
1651 |
-
tensor<string, []> obj_pad_type_0 = const()[name = tensor<string, []>("obj_pad_type_0"), val = tensor<string, []>("custom")];
|
1652 |
tensor<int32, [4]> obj_pad_0 = const()[name = tensor<string, []>("obj_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
|
|
|
|
|
1653 |
tensor<fp16, [384, 384, 1, 1]> layers_3_self_attn_o_proj_weight_to_fp16 = const()[name = tensor<string, []>("layers_3_self_attn_o_proj_weight_to_fp16"), val = tensor<fp16, [384, 384, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(13760256)))];
|
1654 |
tensor<fp16, [384]> layers_3_self_attn_o_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_3_self_attn_o_proj_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(14055232)))];
|
1655 |
-
tensor<fp16, [1, 384, 1, 1500]> obj_cast_fp16 = conv(bias = layers_3_self_attn_o_proj_bias_to_fp16, dilations =
|
1656 |
tensor<fp16, [1, 384, 1, 1500]> inputs_15_cast_fp16 = add(x = inputs_13_cast_fp16, y = obj_cast_fp16)[name = tensor<string, []>("inputs_15_cast_fp16")];
|
1657 |
tensor<int32, [1]> out_15_axes_0 = const()[name = tensor<string, []>("out_15_axes_0"), val = tensor<int32, [1]>([1])];
|
1658 |
tensor<fp16, []> var_2221_to_fp16 = const()[name = tensor<string, []>("op_2221_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
@@ -1661,22 +1683,24 @@ program(1.0)
|
|
1661 |
tensor<fp16, [384]> input_27_beta_0_to_fp16 = const()[name = tensor<string, []>("input_27_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(14056896)))];
|
1662 |
tensor<fp16, []> input_27_epsilon_0_to_fp16 = const()[name = tensor<string, []>("input_27_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
1663 |
tensor<fp16, [1, 384, 1, 1500]> input_27_cast_fp16 = batch_norm(beta = input_27_beta_0_to_fp16, epsilon = input_27_epsilon_0_to_fp16, gamma = input_27_gamma_0_to_fp16, mean = obj_1_mean_0_to_fp16, variance = obj_1_variance_0_to_fp16, x = out_15_cast_fp16)[name = tensor<string, []>("input_27_cast_fp16")];
|
1664 |
-
tensor<
|
1665 |
-
tensor<int32, [2]>
|
1666 |
-
tensor<string, []> input_29_pad_type_0 = const()[name = tensor<string, []>("input_29_pad_type_0"), val = tensor<string, []>("custom")];
|
1667 |
tensor<int32, [4]> input_29_pad_0 = const()[name = tensor<string, []>("input_29_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
|
|
|
|
|
1668 |
tensor<fp16, [1536, 384, 1, 1]> layers_3_fc1_weight_to_fp16 = const()[name = tensor<string, []>("layers_3_fc1_weight_to_fp16"), val = tensor<fp16, [1536, 384, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(14057728)))];
|
1669 |
tensor<fp16, [1536]> layers_3_fc1_bias_to_fp16 = const()[name = tensor<string, []>("layers_3_fc1_bias_to_fp16"), val = tensor<fp16, [1536]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(15237440)))];
|
1670 |
-
tensor<fp16, [1, 1536, 1, 1500]> input_29_cast_fp16 = conv(bias = layers_3_fc1_bias_to_fp16, dilations =
|
1671 |
tensor<string, []> input_mode_0 = const()[name = tensor<string, []>("input_mode_0"), val = tensor<string, []>("EXACT")];
|
1672 |
tensor<fp16, [1, 1536, 1, 1500]> input_cast_fp16 = gelu(mode = input_mode_0, x = input_29_cast_fp16)[name = tensor<string, []>("input_cast_fp16")];
|
1673 |
-
tensor<
|
1674 |
-
tensor<int32, [2]>
|
1675 |
-
tensor<string, []> hidden_states_pad_type_0 = const()[name = tensor<string, []>("hidden_states_pad_type_0"), val = tensor<string, []>("custom")];
|
1676 |
tensor<int32, [4]> hidden_states_pad_0 = const()[name = tensor<string, []>("hidden_states_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
|
|
|
|
|
1677 |
tensor<fp16, [384, 1536, 1, 1]> layers_3_fc2_weight_to_fp16 = const()[name = tensor<string, []>("layers_3_fc2_weight_to_fp16"), val = tensor<fp16, [384, 1536, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(15240576)))];
|
1678 |
tensor<fp16, [384]> layers_3_fc2_bias_to_fp16 = const()[name = tensor<string, []>("layers_3_fc2_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(16420288)))];
|
1679 |
-
tensor<fp16, [1, 384, 1, 1500]> hidden_states_cast_fp16 = conv(bias = layers_3_fc2_bias_to_fp16, dilations =
|
1680 |
tensor<fp16, [1, 384, 1, 1500]> inputs_cast_fp16 = add(x = inputs_15_cast_fp16, y = hidden_states_cast_fp16)[name = tensor<string, []>("inputs_cast_fp16")];
|
1681 |
tensor<int32, [1]> out_axes_0 = const()[name = tensor<string, []>("out_axes_0"), val = tensor<int32, [1]>([1])];
|
1682 |
tensor<fp16, []> var_2259_to_fp16 = const()[name = tensor<string, []>("op_2259_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
|
|
1 |
program(1.0)
|
2 |
+
[buildInfo = dict<tensor<string, []>, tensor<string, []>>({{"coremlc-component-MIL", "3304.5.2"}, {"coremlc-version", "3304.6.2"}, {"coremltools-component-torch", "2.4.1"}, {"coremltools-source-dialect", "TorchScript"}, {"coremltools-version", "8.0"}})]
|
3 |
{
|
4 |
func main<ios16>(tensor<fp16, [1, 80, 1, 3000]> melspectrogram_features) {
|
|
|
|
|
|
|
5 |
tensor<string, []> var_50_pad_type_0 = const()[name = tensor<string, []>("op_50_pad_type_0"), val = tensor<string, []>("custom")];
|
6 |
tensor<int32, [4]> var_50_pad_0 = const()[name = tensor<string, []>("op_50_pad_0"), val = tensor<int32, [4]>([0, 0, 1, 1])];
|
7 |
+
tensor<int32, [2]> var_50_strides_0 = const()[name = tensor<string, []>("op_50_strides_0"), val = tensor<int32, [2]>([1, 1])];
|
8 |
+
tensor<int32, [2]> var_50_dilations_0 = const()[name = tensor<string, []>("op_50_dilations_0"), val = tensor<int32, [2]>([1, 1])];
|
9 |
+
tensor<int32, []> var_50_groups_0 = const()[name = tensor<string, []>("op_50_groups_0"), val = tensor<int32, []>(1)];
|
10 |
tensor<fp16, [384, 80, 1, 3]> var_25_to_fp16 = const()[name = tensor<string, []>("op_25_to_fp16"), val = tensor<fp16, [384, 80, 1, 3]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(64)))];
|
11 |
tensor<fp16, [384]> var_31_to_fp16 = const()[name = tensor<string, []>("op_31_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(184448)))];
|
12 |
+
tensor<fp16, [1, 384, 1, 3000]> var_50_cast_fp16 = conv(bias = var_31_to_fp16, dilations = var_50_dilations_0, groups = var_50_groups_0, pad = var_50_pad_0, pad_type = var_50_pad_type_0, strides = var_50_strides_0, weight = var_25_to_fp16, x = melspectrogram_features)[name = tensor<string, []>("op_50_cast_fp16")];
|
13 |
tensor<string, []> hidden_states_1_mode_0 = const()[name = tensor<string, []>("hidden_states_1_mode_0"), val = tensor<string, []>("EXACT")];
|
14 |
tensor<fp16, [1, 384, 1, 3000]> hidden_states_1_cast_fp16 = gelu(mode = hidden_states_1_mode_0, x = var_50_cast_fp16)[name = tensor<string, []>("hidden_states_1_cast_fp16")];
|
|
|
|
|
|
|
15 |
tensor<string, []> var_90_pad_type_0 = const()[name = tensor<string, []>("op_90_pad_type_0"), val = tensor<string, []>("custom")];
|
16 |
tensor<int32, [4]> var_90_pad_0 = const()[name = tensor<string, []>("op_90_pad_0"), val = tensor<int32, [4]>([0, 0, 1, 1])];
|
17 |
+
tensor<int32, [2]> var_90_strides_0 = const()[name = tensor<string, []>("op_90_strides_0"), val = tensor<int32, [2]>([2, 2])];
|
18 |
+
tensor<int32, [2]> var_90_dilations_0 = const()[name = tensor<string, []>("op_90_dilations_0"), val = tensor<int32, [2]>([1, 1])];
|
19 |
+
tensor<int32, []> var_90_groups_0 = const()[name = tensor<string, []>("op_90_groups_0"), val = tensor<int32, []>(1)];
|
20 |
tensor<fp16, [384, 384, 1, 3]> var_65_to_fp16 = const()[name = tensor<string, []>("op_65_to_fp16"), val = tensor<fp16, [384, 384, 1, 3]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(185280)))];
|
21 |
tensor<fp16, [384]> var_71_to_fp16 = const()[name = tensor<string, []>("op_71_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(1070080)))];
|
22 |
+
tensor<fp16, [1, 384, 1, 1500]> var_90_cast_fp16 = conv(bias = var_71_to_fp16, dilations = var_90_dilations_0, groups = var_90_groups_0, pad = var_90_pad_0, pad_type = var_90_pad_type_0, strides = var_90_strides_0, weight = var_65_to_fp16, x = hidden_states_1_cast_fp16)[name = tensor<string, []>("op_90_cast_fp16")];
|
23 |
tensor<string, []> hidden_states_3_mode_0 = const()[name = tensor<string, []>("hidden_states_3_mode_0"), val = tensor<string, []>("EXACT")];
|
24 |
tensor<fp16, [1, 384, 1, 1500]> hidden_states_3_cast_fp16 = gelu(mode = hidden_states_3_mode_0, x = var_90_cast_fp16)[name = tensor<string, []>("hidden_states_3_cast_fp16")];
|
25 |
tensor<fp16, [1, 384, 1, 1500]> var_108_to_fp16 = const()[name = tensor<string, []>("op_108_to_fp16"), val = tensor<fp16, [1, 384, 1, 1500]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(1070912)))];
|
|
|
35 |
tensor<fp16, [384]> obj_1_beta_0_to_fp16 = const()[name = tensor<string, []>("obj_1_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(2225472)))];
|
36 |
tensor<fp16, []> obj_1_epsilon_0_to_fp16 = const()[name = tensor<string, []>("obj_1_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
37 |
tensor<fp16, [1, 384, 1, 1500]> obj_1_cast_fp16 = batch_norm(beta = obj_1_beta_0_to_fp16, epsilon = obj_1_epsilon_0_to_fp16, gamma = obj_1_gamma_0_to_fp16, mean = obj_1_mean_0_to_fp16, variance = obj_1_variance_0_to_fp16, x = out_1_cast_fp16)[name = tensor<string, []>("obj_1_cast_fp16")];
|
38 |
+
tensor<string, []> query_1_pad_type_0 = const()[name = tensor<string, []>("query_1_pad_type_0"), val = tensor<string, []>("valid")];
|
39 |
+
tensor<int32, [2]> query_1_strides_0 = const()[name = tensor<string, []>("query_1_strides_0"), val = tensor<int32, [2]>([1, 1])];
|
|
|
40 |
tensor<int32, [4]> query_1_pad_0 = const()[name = tensor<string, []>("query_1_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
|
41 |
+
tensor<int32, [2]> query_1_dilations_0 = const()[name = tensor<string, []>("query_1_dilations_0"), val = tensor<int32, [2]>([1, 1])];
|
42 |
+
tensor<int32, []> query_1_groups_0 = const()[name = tensor<string, []>("query_1_groups_0"), val = tensor<int32, []>(1)];
|
43 |
tensor<fp16, [384, 384, 1, 1]> layers_0_self_attn_q_proj_weight_to_fp16 = const()[name = tensor<string, []>("layers_0_self_attn_q_proj_weight_to_fp16"), val = tensor<fp16, [384, 384, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(2226304)))];
|
44 |
tensor<fp16, [384]> layers_0_self_attn_q_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_0_self_attn_q_proj_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(2521280)))];
|
45 |
+
tensor<fp16, [1, 384, 1, 1500]> query_1_cast_fp16 = conv(bias = layers_0_self_attn_q_proj_bias_to_fp16, dilations = query_1_dilations_0, groups = query_1_groups_0, pad = query_1_pad_0, pad_type = query_1_pad_type_0, strides = query_1_strides_0, weight = layers_0_self_attn_q_proj_weight_to_fp16, x = obj_1_cast_fp16)[name = tensor<string, []>("query_1_cast_fp16")];
|
46 |
+
tensor<string, []> key_1_pad_type_0 = const()[name = tensor<string, []>("key_1_pad_type_0"), val = tensor<string, []>("valid")];
|
47 |
+
tensor<int32, [2]> key_1_strides_0 = const()[name = tensor<string, []>("key_1_strides_0"), val = tensor<int32, [2]>([1, 1])];
|
|
|
48 |
tensor<int32, [4]> key_1_pad_0 = const()[name = tensor<string, []>("key_1_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
|
49 |
+
tensor<int32, [2]> key_1_dilations_0 = const()[name = tensor<string, []>("key_1_dilations_0"), val = tensor<int32, [2]>([1, 1])];
|
50 |
+
tensor<int32, []> key_1_groups_0 = const()[name = tensor<string, []>("key_1_groups_0"), val = tensor<int32, []>(1)];
|
51 |
tensor<fp16, [384, 384, 1, 1]> layers_0_self_attn_k_proj_weight_to_fp16 = const()[name = tensor<string, []>("layers_0_self_attn_k_proj_weight_to_fp16"), val = tensor<fp16, [384, 384, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(2522112)))];
|
52 |
+
tensor<fp16, [1, 384, 1, 1500]> key_1_cast_fp16 = conv(dilations = key_1_dilations_0, groups = key_1_groups_0, pad = key_1_pad_0, pad_type = key_1_pad_type_0, strides = key_1_strides_0, weight = layers_0_self_attn_k_proj_weight_to_fp16, x = obj_1_cast_fp16)[name = tensor<string, []>("key_1_cast_fp16")];
|
53 |
+
tensor<string, []> value_1_pad_type_0 = const()[name = tensor<string, []>("value_1_pad_type_0"), val = tensor<string, []>("valid")];
|
54 |
+
tensor<int32, [2]> value_1_strides_0 = const()[name = tensor<string, []>("value_1_strides_0"), val = tensor<int32, [2]>([1, 1])];
|
|
|
55 |
tensor<int32, [4]> value_1_pad_0 = const()[name = tensor<string, []>("value_1_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
|
56 |
+
tensor<int32, [2]> value_1_dilations_0 = const()[name = tensor<string, []>("value_1_dilations_0"), val = tensor<int32, [2]>([1, 1])];
|
57 |
+
tensor<int32, []> value_1_groups_0 = const()[name = tensor<string, []>("value_1_groups_0"), val = tensor<int32, []>(1)];
|
58 |
tensor<fp16, [384, 384, 1, 1]> layers_0_self_attn_v_proj_weight_to_fp16 = const()[name = tensor<string, []>("layers_0_self_attn_v_proj_weight_to_fp16"), val = tensor<fp16, [384, 384, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(2817088)))];
|
59 |
tensor<fp16, [384]> layers_0_self_attn_v_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_0_self_attn_v_proj_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(3112064)))];
|
60 |
+
tensor<fp16, [1, 384, 1, 1500]> value_1_cast_fp16 = conv(bias = layers_0_self_attn_v_proj_bias_to_fp16, dilations = value_1_dilations_0, groups = value_1_groups_0, pad = value_1_pad_0, pad_type = value_1_pad_type_0, strides = value_1_strides_0, weight = layers_0_self_attn_v_proj_weight_to_fp16, x = obj_1_cast_fp16)[name = tensor<string, []>("value_1_cast_fp16")];
|
61 |
tensor<int32, [4]> var_184_begin_0 = const()[name = tensor<string, []>("op_184_begin_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
|
62 |
tensor<int32, [4]> var_184_end_0 = const()[name = tensor<string, []>("op_184_end_0"), val = tensor<int32, [4]>([1, 64, 1, 1500])];
|
63 |
tensor<bool, [4]> var_184_end_mask_0 = const()[name = tensor<string, []>("op_184_end_mask_0"), val = tensor<bool, [4]>([true, false, true, true])];
|
|
|
410 |
tensor<fp16, [1, 64, 1, 1500]> var_603_cast_fp16 = concat(axis = var_118, interleave = var_603_interleave_0, values = (var_585_cast_fp16, var_587_cast_fp16, var_589_cast_fp16, var_591_cast_fp16))[name = tensor<string, []>("op_603_cast_fp16")];
|
411 |
tensor<bool, []> input_1_interleave_0 = const()[name = tensor<string, []>("input_1_interleave_0"), val = tensor<bool, []>(false)];
|
412 |
tensor<fp16, [1, 384, 1, 1500]> input_1_cast_fp16 = concat(axis = var_129, interleave = input_1_interleave_0, values = (var_593_cast_fp16, var_595_cast_fp16, var_597_cast_fp16, var_599_cast_fp16, var_601_cast_fp16, var_603_cast_fp16))[name = tensor<string, []>("input_1_cast_fp16")];
|
413 |
+
tensor<string, []> obj_3_pad_type_0 = const()[name = tensor<string, []>("obj_3_pad_type_0"), val = tensor<string, []>("valid")];
|
414 |
+
tensor<int32, [2]> obj_3_strides_0 = const()[name = tensor<string, []>("obj_3_strides_0"), val = tensor<int32, [2]>([1, 1])];
|
|
|
415 |
tensor<int32, [4]> obj_3_pad_0 = const()[name = tensor<string, []>("obj_3_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
|
416 |
+
tensor<int32, [2]> obj_3_dilations_0 = const()[name = tensor<string, []>("obj_3_dilations_0"), val = tensor<int32, [2]>([1, 1])];
|
417 |
+
tensor<int32, []> obj_3_groups_0 = const()[name = tensor<string, []>("obj_3_groups_0"), val = tensor<int32, []>(1)];
|
418 |
tensor<fp16, [384, 384, 1, 1]> layers_0_self_attn_o_proj_weight_to_fp16 = const()[name = tensor<string, []>("layers_0_self_attn_o_proj_weight_to_fp16"), val = tensor<fp16, [384, 384, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(3112896)))];
|
419 |
tensor<fp16, [384]> layers_0_self_attn_o_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_0_self_attn_o_proj_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(3407872)))];
|
420 |
+
tensor<fp16, [1, 384, 1, 1500]> obj_3_cast_fp16 = conv(bias = layers_0_self_attn_o_proj_bias_to_fp16, dilations = obj_3_dilations_0, groups = obj_3_groups_0, pad = obj_3_pad_0, pad_type = obj_3_pad_type_0, strides = obj_3_strides_0, weight = layers_0_self_attn_o_proj_weight_to_fp16, x = input_1_cast_fp16)[name = tensor<string, []>("obj_3_cast_fp16")];
|
421 |
tensor<fp16, [1, 384, 1, 1500]> inputs_3_cast_fp16 = add(x = inputs_1_cast_fp16, y = obj_3_cast_fp16)[name = tensor<string, []>("inputs_3_cast_fp16")];
|
422 |
tensor<int32, [1]> out_3_axes_0 = const()[name = tensor<string, []>("out_3_axes_0"), val = tensor<int32, [1]>([1])];
|
423 |
tensor<fp16, []> var_622_to_fp16 = const()[name = tensor<string, []>("op_622_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
|
|
426 |
tensor<fp16, [384]> input_3_beta_0_to_fp16 = const()[name = tensor<string, []>("input_3_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(3409536)))];
|
427 |
tensor<fp16, []> input_3_epsilon_0_to_fp16 = const()[name = tensor<string, []>("input_3_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
428 |
tensor<fp16, [1, 384, 1, 1500]> input_3_cast_fp16 = batch_norm(beta = input_3_beta_0_to_fp16, epsilon = input_3_epsilon_0_to_fp16, gamma = input_3_gamma_0_to_fp16, mean = obj_1_mean_0_to_fp16, variance = obj_1_variance_0_to_fp16, x = out_3_cast_fp16)[name = tensor<string, []>("input_3_cast_fp16")];
|
429 |
+
tensor<string, []> input_5_pad_type_0 = const()[name = tensor<string, []>("input_5_pad_type_0"), val = tensor<string, []>("valid")];
|
430 |
+
tensor<int32, [2]> input_5_strides_0 = const()[name = tensor<string, []>("input_5_strides_0"), val = tensor<int32, [2]>([1, 1])];
|
|
|
431 |
tensor<int32, [4]> input_5_pad_0 = const()[name = tensor<string, []>("input_5_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
|
432 |
+
tensor<int32, [2]> input_5_dilations_0 = const()[name = tensor<string, []>("input_5_dilations_0"), val = tensor<int32, [2]>([1, 1])];
|
433 |
+
tensor<int32, []> input_5_groups_0 = const()[name = tensor<string, []>("input_5_groups_0"), val = tensor<int32, []>(1)];
|
434 |
tensor<fp16, [1536, 384, 1, 1]> layers_0_fc1_weight_to_fp16 = const()[name = tensor<string, []>("layers_0_fc1_weight_to_fp16"), val = tensor<fp16, [1536, 384, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(3410368)))];
|
435 |
tensor<fp16, [1536]> layers_0_fc1_bias_to_fp16 = const()[name = tensor<string, []>("layers_0_fc1_bias_to_fp16"), val = tensor<fp16, [1536]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(4590080)))];
|
436 |
+
tensor<fp16, [1, 1536, 1, 1500]> input_5_cast_fp16 = conv(bias = layers_0_fc1_bias_to_fp16, dilations = input_5_dilations_0, groups = input_5_groups_0, pad = input_5_pad_0, pad_type = input_5_pad_type_0, strides = input_5_strides_0, weight = layers_0_fc1_weight_to_fp16, x = input_3_cast_fp16)[name = tensor<string, []>("input_5_cast_fp16")];
|
437 |
tensor<string, []> input_7_mode_0 = const()[name = tensor<string, []>("input_7_mode_0"), val = tensor<string, []>("EXACT")];
|
438 |
tensor<fp16, [1, 1536, 1, 1500]> input_7_cast_fp16 = gelu(mode = input_7_mode_0, x = input_5_cast_fp16)[name = tensor<string, []>("input_7_cast_fp16")];
|
439 |
+
tensor<string, []> hidden_states_5_pad_type_0 = const()[name = tensor<string, []>("hidden_states_5_pad_type_0"), val = tensor<string, []>("valid")];
|
440 |
+
tensor<int32, [2]> hidden_states_5_strides_0 = const()[name = tensor<string, []>("hidden_states_5_strides_0"), val = tensor<int32, [2]>([1, 1])];
|
|
|
441 |
tensor<int32, [4]> hidden_states_5_pad_0 = const()[name = tensor<string, []>("hidden_states_5_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
|
442 |
+
tensor<int32, [2]> hidden_states_5_dilations_0 = const()[name = tensor<string, []>("hidden_states_5_dilations_0"), val = tensor<int32, [2]>([1, 1])];
|
443 |
+
tensor<int32, []> hidden_states_5_groups_0 = const()[name = tensor<string, []>("hidden_states_5_groups_0"), val = tensor<int32, []>(1)];
|
444 |
tensor<fp16, [384, 1536, 1, 1]> layers_0_fc2_weight_to_fp16 = const()[name = tensor<string, []>("layers_0_fc2_weight_to_fp16"), val = tensor<fp16, [384, 1536, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(4593216)))];
|
445 |
tensor<fp16, [384]> layers_0_fc2_bias_to_fp16 = const()[name = tensor<string, []>("layers_0_fc2_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(5772928)))];
|
446 |
+
tensor<fp16, [1, 384, 1, 1500]> hidden_states_5_cast_fp16 = conv(bias = layers_0_fc2_bias_to_fp16, dilations = hidden_states_5_dilations_0, groups = hidden_states_5_groups_0, pad = hidden_states_5_pad_0, pad_type = hidden_states_5_pad_type_0, strides = hidden_states_5_strides_0, weight = layers_0_fc2_weight_to_fp16, x = input_7_cast_fp16)[name = tensor<string, []>("hidden_states_5_cast_fp16")];
|
447 |
tensor<fp16, [1, 384, 1, 1500]> inputs_5_cast_fp16 = add(x = inputs_3_cast_fp16, y = hidden_states_5_cast_fp16)[name = tensor<string, []>("inputs_5_cast_fp16")];
|
448 |
tensor<int32, []> var_651 = const()[name = tensor<string, []>("op_651"), val = tensor<int32, []>(3)];
|
449 |
tensor<int32, []> var_662 = const()[name = tensor<string, []>("op_662"), val = tensor<int32, []>(1)];
|
|
|
454 |
tensor<fp16, [384]> obj_5_beta_0_to_fp16 = const()[name = tensor<string, []>("obj_5_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(5774592)))];
|
455 |
tensor<fp16, []> obj_5_epsilon_0_to_fp16 = const()[name = tensor<string, []>("obj_5_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
456 |
tensor<fp16, [1, 384, 1, 1500]> obj_5_cast_fp16 = batch_norm(beta = obj_5_beta_0_to_fp16, epsilon = obj_5_epsilon_0_to_fp16, gamma = obj_5_gamma_0_to_fp16, mean = obj_1_mean_0_to_fp16, variance = obj_1_variance_0_to_fp16, x = out_5_cast_fp16)[name = tensor<string, []>("obj_5_cast_fp16")];
|
457 |
+
tensor<string, []> query_3_pad_type_0 = const()[name = tensor<string, []>("query_3_pad_type_0"), val = tensor<string, []>("valid")];
|
458 |
+
tensor<int32, [2]> query_3_strides_0 = const()[name = tensor<string, []>("query_3_strides_0"), val = tensor<int32, [2]>([1, 1])];
|
|
|
459 |
tensor<int32, [4]> query_3_pad_0 = const()[name = tensor<string, []>("query_3_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
|
460 |
+
tensor<int32, [2]> query_3_dilations_0 = const()[name = tensor<string, []>("query_3_dilations_0"), val = tensor<int32, [2]>([1, 1])];
|
461 |
+
tensor<int32, []> query_3_groups_0 = const()[name = tensor<string, []>("query_3_groups_0"), val = tensor<int32, []>(1)];
|
462 |
tensor<fp16, [384, 384, 1, 1]> layers_1_self_attn_q_proj_weight_to_fp16 = const()[name = tensor<string, []>("layers_1_self_attn_q_proj_weight_to_fp16"), val = tensor<fp16, [384, 384, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(5775424)))];
|
463 |
tensor<fp16, [384]> layers_1_self_attn_q_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_1_self_attn_q_proj_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(6070400)))];
|
464 |
+
tensor<fp16, [1, 384, 1, 1500]> query_3_cast_fp16 = conv(bias = layers_1_self_attn_q_proj_bias_to_fp16, dilations = query_3_dilations_0, groups = query_3_groups_0, pad = query_3_pad_0, pad_type = query_3_pad_type_0, strides = query_3_strides_0, weight = layers_1_self_attn_q_proj_weight_to_fp16, x = obj_5_cast_fp16)[name = tensor<string, []>("query_3_cast_fp16")];
|
465 |
+
tensor<string, []> key_3_pad_type_0 = const()[name = tensor<string, []>("key_3_pad_type_0"), val = tensor<string, []>("valid")];
|
466 |
+
tensor<int32, [2]> key_3_strides_0 = const()[name = tensor<string, []>("key_3_strides_0"), val = tensor<int32, [2]>([1, 1])];
|
|
|
467 |
tensor<int32, [4]> key_3_pad_0 = const()[name = tensor<string, []>("key_3_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
|
468 |
+
tensor<int32, [2]> key_3_dilations_0 = const()[name = tensor<string, []>("key_3_dilations_0"), val = tensor<int32, [2]>([1, 1])];
|
469 |
+
tensor<int32, []> key_3_groups_0 = const()[name = tensor<string, []>("key_3_groups_0"), val = tensor<int32, []>(1)];
|
470 |
tensor<fp16, [384, 384, 1, 1]> layers_1_self_attn_k_proj_weight_to_fp16 = const()[name = tensor<string, []>("layers_1_self_attn_k_proj_weight_to_fp16"), val = tensor<fp16, [384, 384, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(6071232)))];
|
471 |
+
tensor<fp16, [1, 384, 1, 1500]> key_3_cast_fp16 = conv(dilations = key_3_dilations_0, groups = key_3_groups_0, pad = key_3_pad_0, pad_type = key_3_pad_type_0, strides = key_3_strides_0, weight = layers_1_self_attn_k_proj_weight_to_fp16, x = obj_5_cast_fp16)[name = tensor<string, []>("key_3_cast_fp16")];
|
472 |
+
tensor<string, []> value_3_pad_type_0 = const()[name = tensor<string, []>("value_3_pad_type_0"), val = tensor<string, []>("valid")];
|
473 |
+
tensor<int32, [2]> value_3_strides_0 = const()[name = tensor<string, []>("value_3_strides_0"), val = tensor<int32, [2]>([1, 1])];
|
|
|
474 |
tensor<int32, [4]> value_3_pad_0 = const()[name = tensor<string, []>("value_3_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
|
475 |
+
tensor<int32, [2]> value_3_dilations_0 = const()[name = tensor<string, []>("value_3_dilations_0"), val = tensor<int32, [2]>([1, 1])];
|
476 |
+
tensor<int32, []> value_3_groups_0 = const()[name = tensor<string, []>("value_3_groups_0"), val = tensor<int32, []>(1)];
|
477 |
tensor<fp16, [384, 384, 1, 1]> layers_1_self_attn_v_proj_weight_to_fp16 = const()[name = tensor<string, []>("layers_1_self_attn_v_proj_weight_to_fp16"), val = tensor<fp16, [384, 384, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(6366208)))];
|
478 |
tensor<fp16, [384]> layers_1_self_attn_v_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_1_self_attn_v_proj_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(6661184)))];
|
479 |
+
tensor<fp16, [1, 384, 1, 1500]> value_3_cast_fp16 = conv(bias = layers_1_self_attn_v_proj_bias_to_fp16, dilations = value_3_dilations_0, groups = value_3_groups_0, pad = value_3_pad_0, pad_type = value_3_pad_type_0, strides = value_3_strides_0, weight = layers_1_self_attn_v_proj_weight_to_fp16, x = obj_5_cast_fp16)[name = tensor<string, []>("value_3_cast_fp16")];
|
480 |
tensor<int32, [4]> var_717_begin_0 = const()[name = tensor<string, []>("op_717_begin_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
|
481 |
tensor<int32, [4]> var_717_end_0 = const()[name = tensor<string, []>("op_717_end_0"), val = tensor<int32, [4]>([1, 64, 1, 1500])];
|
482 |
tensor<bool, [4]> var_717_end_mask_0 = const()[name = tensor<string, []>("op_717_end_mask_0"), val = tensor<bool, [4]>([true, false, true, true])];
|
|
|
829 |
tensor<fp16, [1, 64, 1, 1500]> var_1136_cast_fp16 = concat(axis = var_651, interleave = var_1136_interleave_0, values = (var_1118_cast_fp16, var_1120_cast_fp16, var_1122_cast_fp16, var_1124_cast_fp16))[name = tensor<string, []>("op_1136_cast_fp16")];
|
830 |
tensor<bool, []> input_9_interleave_0 = const()[name = tensor<string, []>("input_9_interleave_0"), val = tensor<bool, []>(false)];
|
831 |
tensor<fp16, [1, 384, 1, 1500]> input_9_cast_fp16 = concat(axis = var_662, interleave = input_9_interleave_0, values = (var_1126_cast_fp16, var_1128_cast_fp16, var_1130_cast_fp16, var_1132_cast_fp16, var_1134_cast_fp16, var_1136_cast_fp16))[name = tensor<string, []>("input_9_cast_fp16")];
|
832 |
+
tensor<string, []> obj_7_pad_type_0 = const()[name = tensor<string, []>("obj_7_pad_type_0"), val = tensor<string, []>("valid")];
|
833 |
+
tensor<int32, [2]> obj_7_strides_0 = const()[name = tensor<string, []>("obj_7_strides_0"), val = tensor<int32, [2]>([1, 1])];
|
|
|
834 |
tensor<int32, [4]> obj_7_pad_0 = const()[name = tensor<string, []>("obj_7_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
|
835 |
+
tensor<int32, [2]> obj_7_dilations_0 = const()[name = tensor<string, []>("obj_7_dilations_0"), val = tensor<int32, [2]>([1, 1])];
|
836 |
+
tensor<int32, []> obj_7_groups_0 = const()[name = tensor<string, []>("obj_7_groups_0"), val = tensor<int32, []>(1)];
|
837 |
tensor<fp16, [384, 384, 1, 1]> layers_1_self_attn_o_proj_weight_to_fp16 = const()[name = tensor<string, []>("layers_1_self_attn_o_proj_weight_to_fp16"), val = tensor<fp16, [384, 384, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(6662016)))];
|
838 |
tensor<fp16, [384]> layers_1_self_attn_o_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_1_self_attn_o_proj_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(6956992)))];
|
839 |
+
tensor<fp16, [1, 384, 1, 1500]> obj_7_cast_fp16 = conv(bias = layers_1_self_attn_o_proj_bias_to_fp16, dilations = obj_7_dilations_0, groups = obj_7_groups_0, pad = obj_7_pad_0, pad_type = obj_7_pad_type_0, strides = obj_7_strides_0, weight = layers_1_self_attn_o_proj_weight_to_fp16, x = input_9_cast_fp16)[name = tensor<string, []>("obj_7_cast_fp16")];
|
840 |
tensor<fp16, [1, 384, 1, 1500]> inputs_7_cast_fp16 = add(x = inputs_5_cast_fp16, y = obj_7_cast_fp16)[name = tensor<string, []>("inputs_7_cast_fp16")];
|
841 |
tensor<int32, [1]> out_7_axes_0 = const()[name = tensor<string, []>("out_7_axes_0"), val = tensor<int32, [1]>([1])];
|
842 |
tensor<fp16, []> var_1155_to_fp16 = const()[name = tensor<string, []>("op_1155_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
|
|
845 |
tensor<fp16, [384]> input_11_beta_0_to_fp16 = const()[name = tensor<string, []>("input_11_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(6958656)))];
|
846 |
tensor<fp16, []> input_11_epsilon_0_to_fp16 = const()[name = tensor<string, []>("input_11_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
847 |
tensor<fp16, [1, 384, 1, 1500]> input_11_cast_fp16 = batch_norm(beta = input_11_beta_0_to_fp16, epsilon = input_11_epsilon_0_to_fp16, gamma = input_11_gamma_0_to_fp16, mean = obj_1_mean_0_to_fp16, variance = obj_1_variance_0_to_fp16, x = out_7_cast_fp16)[name = tensor<string, []>("input_11_cast_fp16")];
|
848 |
+
tensor<string, []> input_13_pad_type_0 = const()[name = tensor<string, []>("input_13_pad_type_0"), val = tensor<string, []>("valid")];
|
849 |
+
tensor<int32, [2]> input_13_strides_0 = const()[name = tensor<string, []>("input_13_strides_0"), val = tensor<int32, [2]>([1, 1])];
|
|
|
850 |
tensor<int32, [4]> input_13_pad_0 = const()[name = tensor<string, []>("input_13_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
|
851 |
+
tensor<int32, [2]> input_13_dilations_0 = const()[name = tensor<string, []>("input_13_dilations_0"), val = tensor<int32, [2]>([1, 1])];
|
852 |
+
tensor<int32, []> input_13_groups_0 = const()[name = tensor<string, []>("input_13_groups_0"), val = tensor<int32, []>(1)];
|
853 |
tensor<fp16, [1536, 384, 1, 1]> layers_1_fc1_weight_to_fp16 = const()[name = tensor<string, []>("layers_1_fc1_weight_to_fp16"), val = tensor<fp16, [1536, 384, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(6959488)))];
|
854 |
tensor<fp16, [1536]> layers_1_fc1_bias_to_fp16 = const()[name = tensor<string, []>("layers_1_fc1_bias_to_fp16"), val = tensor<fp16, [1536]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(8139200)))];
|
855 |
+
tensor<fp16, [1, 1536, 1, 1500]> input_13_cast_fp16 = conv(bias = layers_1_fc1_bias_to_fp16, dilations = input_13_dilations_0, groups = input_13_groups_0, pad = input_13_pad_0, pad_type = input_13_pad_type_0, strides = input_13_strides_0, weight = layers_1_fc1_weight_to_fp16, x = input_11_cast_fp16)[name = tensor<string, []>("input_13_cast_fp16")];
|
856 |
tensor<string, []> input_15_mode_0 = const()[name = tensor<string, []>("input_15_mode_0"), val = tensor<string, []>("EXACT")];
|
857 |
tensor<fp16, [1, 1536, 1, 1500]> input_15_cast_fp16 = gelu(mode = input_15_mode_0, x = input_13_cast_fp16)[name = tensor<string, []>("input_15_cast_fp16")];
|
858 |
+
tensor<string, []> hidden_states_7_pad_type_0 = const()[name = tensor<string, []>("hidden_states_7_pad_type_0"), val = tensor<string, []>("valid")];
|
859 |
+
tensor<int32, [2]> hidden_states_7_strides_0 = const()[name = tensor<string, []>("hidden_states_7_strides_0"), val = tensor<int32, [2]>([1, 1])];
|
|
|
860 |
tensor<int32, [4]> hidden_states_7_pad_0 = const()[name = tensor<string, []>("hidden_states_7_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
|
861 |
+
tensor<int32, [2]> hidden_states_7_dilations_0 = const()[name = tensor<string, []>("hidden_states_7_dilations_0"), val = tensor<int32, [2]>([1, 1])];
|
862 |
+
tensor<int32, []> hidden_states_7_groups_0 = const()[name = tensor<string, []>("hidden_states_7_groups_0"), val = tensor<int32, []>(1)];
|
863 |
tensor<fp16, [384, 1536, 1, 1]> layers_1_fc2_weight_to_fp16 = const()[name = tensor<string, []>("layers_1_fc2_weight_to_fp16"), val = tensor<fp16, [384, 1536, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(8142336)))];
|
864 |
tensor<fp16, [384]> layers_1_fc2_bias_to_fp16 = const()[name = tensor<string, []>("layers_1_fc2_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(9322048)))];
|
865 |
+
tensor<fp16, [1, 384, 1, 1500]> hidden_states_7_cast_fp16 = conv(bias = layers_1_fc2_bias_to_fp16, dilations = hidden_states_7_dilations_0, groups = hidden_states_7_groups_0, pad = hidden_states_7_pad_0, pad_type = hidden_states_7_pad_type_0, strides = hidden_states_7_strides_0, weight = layers_1_fc2_weight_to_fp16, x = input_15_cast_fp16)[name = tensor<string, []>("hidden_states_7_cast_fp16")];
|
866 |
tensor<fp16, [1, 384, 1, 1500]> inputs_9_cast_fp16 = add(x = inputs_7_cast_fp16, y = hidden_states_7_cast_fp16)[name = tensor<string, []>("inputs_9_cast_fp16")];
|
867 |
tensor<int32, []> var_1184 = const()[name = tensor<string, []>("op_1184"), val = tensor<int32, []>(3)];
|
868 |
tensor<int32, []> var_1195 = const()[name = tensor<string, []>("op_1195"), val = tensor<int32, []>(1)];
|
|
|
873 |
tensor<fp16, [384]> obj_9_beta_0_to_fp16 = const()[name = tensor<string, []>("obj_9_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(9323712)))];
|
874 |
tensor<fp16, []> obj_9_epsilon_0_to_fp16 = const()[name = tensor<string, []>("obj_9_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
875 |
tensor<fp16, [1, 384, 1, 1500]> obj_9_cast_fp16 = batch_norm(beta = obj_9_beta_0_to_fp16, epsilon = obj_9_epsilon_0_to_fp16, gamma = obj_9_gamma_0_to_fp16, mean = obj_1_mean_0_to_fp16, variance = obj_1_variance_0_to_fp16, x = out_9_cast_fp16)[name = tensor<string, []>("obj_9_cast_fp16")];
|
876 |
+
tensor<string, []> query_5_pad_type_0 = const()[name = tensor<string, []>("query_5_pad_type_0"), val = tensor<string, []>("valid")];
|
877 |
+
tensor<int32, [2]> query_5_strides_0 = const()[name = tensor<string, []>("query_5_strides_0"), val = tensor<int32, [2]>([1, 1])];
|
|
|
878 |
tensor<int32, [4]> query_5_pad_0 = const()[name = tensor<string, []>("query_5_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
|
879 |
+
tensor<int32, [2]> query_5_dilations_0 = const()[name = tensor<string, []>("query_5_dilations_0"), val = tensor<int32, [2]>([1, 1])];
|
880 |
+
tensor<int32, []> query_5_groups_0 = const()[name = tensor<string, []>("query_5_groups_0"), val = tensor<int32, []>(1)];
|
881 |
tensor<fp16, [384, 384, 1, 1]> layers_2_self_attn_q_proj_weight_to_fp16 = const()[name = tensor<string, []>("layers_2_self_attn_q_proj_weight_to_fp16"), val = tensor<fp16, [384, 384, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(9324544)))];
|
882 |
tensor<fp16, [384]> layers_2_self_attn_q_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_2_self_attn_q_proj_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(9619520)))];
|
883 |
+
tensor<fp16, [1, 384, 1, 1500]> query_5_cast_fp16 = conv(bias = layers_2_self_attn_q_proj_bias_to_fp16, dilations = query_5_dilations_0, groups = query_5_groups_0, pad = query_5_pad_0, pad_type = query_5_pad_type_0, strides = query_5_strides_0, weight = layers_2_self_attn_q_proj_weight_to_fp16, x = obj_9_cast_fp16)[name = tensor<string, []>("query_5_cast_fp16")];
|
884 |
+
tensor<string, []> key_5_pad_type_0 = const()[name = tensor<string, []>("key_5_pad_type_0"), val = tensor<string, []>("valid")];
|
885 |
+
tensor<int32, [2]> key_5_strides_0 = const()[name = tensor<string, []>("key_5_strides_0"), val = tensor<int32, [2]>([1, 1])];
|
|
|
886 |
tensor<int32, [4]> key_5_pad_0 = const()[name = tensor<string, []>("key_5_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
|
887 |
+
tensor<int32, [2]> key_5_dilations_0 = const()[name = tensor<string, []>("key_5_dilations_0"), val = tensor<int32, [2]>([1, 1])];
|
888 |
+
tensor<int32, []> key_5_groups_0 = const()[name = tensor<string, []>("key_5_groups_0"), val = tensor<int32, []>(1)];
|
889 |
tensor<fp16, [384, 384, 1, 1]> layers_2_self_attn_k_proj_weight_to_fp16 = const()[name = tensor<string, []>("layers_2_self_attn_k_proj_weight_to_fp16"), val = tensor<fp16, [384, 384, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(9620352)))];
|
890 |
+
tensor<fp16, [1, 384, 1, 1500]> key_5_cast_fp16 = conv(dilations = key_5_dilations_0, groups = key_5_groups_0, pad = key_5_pad_0, pad_type = key_5_pad_type_0, strides = key_5_strides_0, weight = layers_2_self_attn_k_proj_weight_to_fp16, x = obj_9_cast_fp16)[name = tensor<string, []>("key_5_cast_fp16")];
|
891 |
+
tensor<string, []> value_5_pad_type_0 = const()[name = tensor<string, []>("value_5_pad_type_0"), val = tensor<string, []>("valid")];
|
892 |
+
tensor<int32, [2]> value_5_strides_0 = const()[name = tensor<string, []>("value_5_strides_0"), val = tensor<int32, [2]>([1, 1])];
|
|
|
893 |
tensor<int32, [4]> value_5_pad_0 = const()[name = tensor<string, []>("value_5_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
|
894 |
+
tensor<int32, [2]> value_5_dilations_0 = const()[name = tensor<string, []>("value_5_dilations_0"), val = tensor<int32, [2]>([1, 1])];
|
895 |
+
tensor<int32, []> value_5_groups_0 = const()[name = tensor<string, []>("value_5_groups_0"), val = tensor<int32, []>(1)];
|
896 |
tensor<fp16, [384, 384, 1, 1]> layers_2_self_attn_v_proj_weight_to_fp16 = const()[name = tensor<string, []>("layers_2_self_attn_v_proj_weight_to_fp16"), val = tensor<fp16, [384, 384, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(9915328)))];
|
897 |
tensor<fp16, [384]> layers_2_self_attn_v_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_2_self_attn_v_proj_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(10210304)))];
|
898 |
+
tensor<fp16, [1, 384, 1, 1500]> value_5_cast_fp16 = conv(bias = layers_2_self_attn_v_proj_bias_to_fp16, dilations = value_5_dilations_0, groups = value_5_groups_0, pad = value_5_pad_0, pad_type = value_5_pad_type_0, strides = value_5_strides_0, weight = layers_2_self_attn_v_proj_weight_to_fp16, x = obj_9_cast_fp16)[name = tensor<string, []>("value_5_cast_fp16")];
|
899 |
tensor<int32, [4]> var_1250_begin_0 = const()[name = tensor<string, []>("op_1250_begin_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
|
900 |
tensor<int32, [4]> var_1250_end_0 = const()[name = tensor<string, []>("op_1250_end_0"), val = tensor<int32, [4]>([1, 64, 1, 1500])];
|
901 |
tensor<bool, [4]> var_1250_end_mask_0 = const()[name = tensor<string, []>("op_1250_end_mask_0"), val = tensor<bool, [4]>([true, false, true, true])];
|
|
|
1248 |
tensor<fp16, [1, 64, 1, 1500]> var_1669_cast_fp16 = concat(axis = var_1184, interleave = var_1669_interleave_0, values = (var_1651_cast_fp16, var_1653_cast_fp16, var_1655_cast_fp16, var_1657_cast_fp16))[name = tensor<string, []>("op_1669_cast_fp16")];
|
1249 |
tensor<bool, []> input_17_interleave_0 = const()[name = tensor<string, []>("input_17_interleave_0"), val = tensor<bool, []>(false)];
|
1250 |
tensor<fp16, [1, 384, 1, 1500]> input_17_cast_fp16 = concat(axis = var_1195, interleave = input_17_interleave_0, values = (var_1659_cast_fp16, var_1661_cast_fp16, var_1663_cast_fp16, var_1665_cast_fp16, var_1667_cast_fp16, var_1669_cast_fp16))[name = tensor<string, []>("input_17_cast_fp16")];
|
1251 |
+
tensor<string, []> obj_11_pad_type_0 = const()[name = tensor<string, []>("obj_11_pad_type_0"), val = tensor<string, []>("valid")];
|
1252 |
+
tensor<int32, [2]> obj_11_strides_0 = const()[name = tensor<string, []>("obj_11_strides_0"), val = tensor<int32, [2]>([1, 1])];
|
|
|
1253 |
tensor<int32, [4]> obj_11_pad_0 = const()[name = tensor<string, []>("obj_11_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
|
1254 |
+
tensor<int32, [2]> obj_11_dilations_0 = const()[name = tensor<string, []>("obj_11_dilations_0"), val = tensor<int32, [2]>([1, 1])];
|
1255 |
+
tensor<int32, []> obj_11_groups_0 = const()[name = tensor<string, []>("obj_11_groups_0"), val = tensor<int32, []>(1)];
|
1256 |
tensor<fp16, [384, 384, 1, 1]> layers_2_self_attn_o_proj_weight_to_fp16 = const()[name = tensor<string, []>("layers_2_self_attn_o_proj_weight_to_fp16"), val = tensor<fp16, [384, 384, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(10211136)))];
|
1257 |
tensor<fp16, [384]> layers_2_self_attn_o_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_2_self_attn_o_proj_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(10506112)))];
|
1258 |
+
tensor<fp16, [1, 384, 1, 1500]> obj_11_cast_fp16 = conv(bias = layers_2_self_attn_o_proj_bias_to_fp16, dilations = obj_11_dilations_0, groups = obj_11_groups_0, pad = obj_11_pad_0, pad_type = obj_11_pad_type_0, strides = obj_11_strides_0, weight = layers_2_self_attn_o_proj_weight_to_fp16, x = input_17_cast_fp16)[name = tensor<string, []>("obj_11_cast_fp16")];
|
1259 |
tensor<fp16, [1, 384, 1, 1500]> inputs_11_cast_fp16 = add(x = inputs_9_cast_fp16, y = obj_11_cast_fp16)[name = tensor<string, []>("inputs_11_cast_fp16")];
|
1260 |
tensor<int32, [1]> out_11_axes_0 = const()[name = tensor<string, []>("out_11_axes_0"), val = tensor<int32, [1]>([1])];
|
1261 |
tensor<fp16, []> var_1688_to_fp16 = const()[name = tensor<string, []>("op_1688_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
|
|
1264 |
tensor<fp16, [384]> input_19_beta_0_to_fp16 = const()[name = tensor<string, []>("input_19_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(10507776)))];
|
1265 |
tensor<fp16, []> input_19_epsilon_0_to_fp16 = const()[name = tensor<string, []>("input_19_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
1266 |
tensor<fp16, [1, 384, 1, 1500]> input_19_cast_fp16 = batch_norm(beta = input_19_beta_0_to_fp16, epsilon = input_19_epsilon_0_to_fp16, gamma = input_19_gamma_0_to_fp16, mean = obj_1_mean_0_to_fp16, variance = obj_1_variance_0_to_fp16, x = out_11_cast_fp16)[name = tensor<string, []>("input_19_cast_fp16")];
|
1267 |
+
tensor<string, []> input_21_pad_type_0 = const()[name = tensor<string, []>("input_21_pad_type_0"), val = tensor<string, []>("valid")];
|
1268 |
+
tensor<int32, [2]> input_21_strides_0 = const()[name = tensor<string, []>("input_21_strides_0"), val = tensor<int32, [2]>([1, 1])];
|
|
|
1269 |
tensor<int32, [4]> input_21_pad_0 = const()[name = tensor<string, []>("input_21_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
|
1270 |
+
tensor<int32, [2]> input_21_dilations_0 = const()[name = tensor<string, []>("input_21_dilations_0"), val = tensor<int32, [2]>([1, 1])];
|
1271 |
+
tensor<int32, []> input_21_groups_0 = const()[name = tensor<string, []>("input_21_groups_0"), val = tensor<int32, []>(1)];
|
1272 |
tensor<fp16, [1536, 384, 1, 1]> layers_2_fc1_weight_to_fp16 = const()[name = tensor<string, []>("layers_2_fc1_weight_to_fp16"), val = tensor<fp16, [1536, 384, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(10508608)))];
|
1273 |
tensor<fp16, [1536]> layers_2_fc1_bias_to_fp16 = const()[name = tensor<string, []>("layers_2_fc1_bias_to_fp16"), val = tensor<fp16, [1536]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(11688320)))];
|
1274 |
+
tensor<fp16, [1, 1536, 1, 1500]> input_21_cast_fp16 = conv(bias = layers_2_fc1_bias_to_fp16, dilations = input_21_dilations_0, groups = input_21_groups_0, pad = input_21_pad_0, pad_type = input_21_pad_type_0, strides = input_21_strides_0, weight = layers_2_fc1_weight_to_fp16, x = input_19_cast_fp16)[name = tensor<string, []>("input_21_cast_fp16")];
|
1275 |
tensor<string, []> input_23_mode_0 = const()[name = tensor<string, []>("input_23_mode_0"), val = tensor<string, []>("EXACT")];
|
1276 |
tensor<fp16, [1, 1536, 1, 1500]> input_23_cast_fp16 = gelu(mode = input_23_mode_0, x = input_21_cast_fp16)[name = tensor<string, []>("input_23_cast_fp16")];
|
1277 |
+
tensor<string, []> hidden_states_9_pad_type_0 = const()[name = tensor<string, []>("hidden_states_9_pad_type_0"), val = tensor<string, []>("valid")];
|
1278 |
+
tensor<int32, [2]> hidden_states_9_strides_0 = const()[name = tensor<string, []>("hidden_states_9_strides_0"), val = tensor<int32, [2]>([1, 1])];
|
|
|
1279 |
tensor<int32, [4]> hidden_states_9_pad_0 = const()[name = tensor<string, []>("hidden_states_9_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
|
1280 |
+
tensor<int32, [2]> hidden_states_9_dilations_0 = const()[name = tensor<string, []>("hidden_states_9_dilations_0"), val = tensor<int32, [2]>([1, 1])];
|
1281 |
+
tensor<int32, []> hidden_states_9_groups_0 = const()[name = tensor<string, []>("hidden_states_9_groups_0"), val = tensor<int32, []>(1)];
|
1282 |
tensor<fp16, [384, 1536, 1, 1]> layers_2_fc2_weight_to_fp16 = const()[name = tensor<string, []>("layers_2_fc2_weight_to_fp16"), val = tensor<fp16, [384, 1536, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(11691456)))];
|
1283 |
tensor<fp16, [384]> layers_2_fc2_bias_to_fp16 = const()[name = tensor<string, []>("layers_2_fc2_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(12871168)))];
|
1284 |
+
tensor<fp16, [1, 384, 1, 1500]> hidden_states_9_cast_fp16 = conv(bias = layers_2_fc2_bias_to_fp16, dilations = hidden_states_9_dilations_0, groups = hidden_states_9_groups_0, pad = hidden_states_9_pad_0, pad_type = hidden_states_9_pad_type_0, strides = hidden_states_9_strides_0, weight = layers_2_fc2_weight_to_fp16, x = input_23_cast_fp16)[name = tensor<string, []>("hidden_states_9_cast_fp16")];
|
1285 |
tensor<fp16, [1, 384, 1, 1500]> inputs_13_cast_fp16 = add(x = inputs_11_cast_fp16, y = hidden_states_9_cast_fp16)[name = tensor<string, []>("inputs_13_cast_fp16")];
|
1286 |
tensor<int32, []> var_1717 = const()[name = tensor<string, []>("op_1717"), val = tensor<int32, []>(3)];
|
1287 |
tensor<int32, []> var_1728 = const()[name = tensor<string, []>("op_1728"), val = tensor<int32, []>(1)];
|
|
|
1292 |
tensor<fp16, [384]> obj_13_beta_0_to_fp16 = const()[name = tensor<string, []>("obj_13_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(12872832)))];
|
1293 |
tensor<fp16, []> obj_13_epsilon_0_to_fp16 = const()[name = tensor<string, []>("obj_13_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
1294 |
tensor<fp16, [1, 384, 1, 1500]> obj_13_cast_fp16 = batch_norm(beta = obj_13_beta_0_to_fp16, epsilon = obj_13_epsilon_0_to_fp16, gamma = obj_13_gamma_0_to_fp16, mean = obj_1_mean_0_to_fp16, variance = obj_1_variance_0_to_fp16, x = out_13_cast_fp16)[name = tensor<string, []>("obj_13_cast_fp16")];
|
1295 |
+
tensor<string, []> query_pad_type_0 = const()[name = tensor<string, []>("query_pad_type_0"), val = tensor<string, []>("valid")];
|
1296 |
+
tensor<int32, [2]> query_strides_0 = const()[name = tensor<string, []>("query_strides_0"), val = tensor<int32, [2]>([1, 1])];
|
|
|
1297 |
tensor<int32, [4]> query_pad_0 = const()[name = tensor<string, []>("query_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
|
1298 |
+
tensor<int32, [2]> query_dilations_0 = const()[name = tensor<string, []>("query_dilations_0"), val = tensor<int32, [2]>([1, 1])];
|
1299 |
+
tensor<int32, []> query_groups_0 = const()[name = tensor<string, []>("query_groups_0"), val = tensor<int32, []>(1)];
|
1300 |
tensor<fp16, [384, 384, 1, 1]> layers_3_self_attn_q_proj_weight_to_fp16 = const()[name = tensor<string, []>("layers_3_self_attn_q_proj_weight_to_fp16"), val = tensor<fp16, [384, 384, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(12873664)))];
|
1301 |
tensor<fp16, [384]> layers_3_self_attn_q_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_3_self_attn_q_proj_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(13168640)))];
|
1302 |
+
tensor<fp16, [1, 384, 1, 1500]> query_cast_fp16 = conv(bias = layers_3_self_attn_q_proj_bias_to_fp16, dilations = query_dilations_0, groups = query_groups_0, pad = query_pad_0, pad_type = query_pad_type_0, strides = query_strides_0, weight = layers_3_self_attn_q_proj_weight_to_fp16, x = obj_13_cast_fp16)[name = tensor<string, []>("query_cast_fp16")];
|
1303 |
+
tensor<string, []> key_pad_type_0 = const()[name = tensor<string, []>("key_pad_type_0"), val = tensor<string, []>("valid")];
|
1304 |
+
tensor<int32, [2]> key_strides_0 = const()[name = tensor<string, []>("key_strides_0"), val = tensor<int32, [2]>([1, 1])];
|
|
|
1305 |
tensor<int32, [4]> key_pad_0 = const()[name = tensor<string, []>("key_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
|
1306 |
+
tensor<int32, [2]> key_dilations_0 = const()[name = tensor<string, []>("key_dilations_0"), val = tensor<int32, [2]>([1, 1])];
|
1307 |
+
tensor<int32, []> key_groups_0 = const()[name = tensor<string, []>("key_groups_0"), val = tensor<int32, []>(1)];
|
1308 |
tensor<fp16, [384, 384, 1, 1]> layers_3_self_attn_k_proj_weight_to_fp16 = const()[name = tensor<string, []>("layers_3_self_attn_k_proj_weight_to_fp16"), val = tensor<fp16, [384, 384, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(13169472)))];
|
1309 |
+
tensor<fp16, [1, 384, 1, 1500]> key_cast_fp16 = conv(dilations = key_dilations_0, groups = key_groups_0, pad = key_pad_0, pad_type = key_pad_type_0, strides = key_strides_0, weight = layers_3_self_attn_k_proj_weight_to_fp16, x = obj_13_cast_fp16)[name = tensor<string, []>("key_cast_fp16")];
|
1310 |
+
tensor<string, []> value_pad_type_0 = const()[name = tensor<string, []>("value_pad_type_0"), val = tensor<string, []>("valid")];
|
1311 |
+
tensor<int32, [2]> value_strides_0 = const()[name = tensor<string, []>("value_strides_0"), val = tensor<int32, [2]>([1, 1])];
|
|
|
1312 |
tensor<int32, [4]> value_pad_0 = const()[name = tensor<string, []>("value_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
|
1313 |
+
tensor<int32, [2]> value_dilations_0 = const()[name = tensor<string, []>("value_dilations_0"), val = tensor<int32, [2]>([1, 1])];
|
1314 |
+
tensor<int32, []> value_groups_0 = const()[name = tensor<string, []>("value_groups_0"), val = tensor<int32, []>(1)];
|
1315 |
tensor<fp16, [384, 384, 1, 1]> layers_3_self_attn_v_proj_weight_to_fp16 = const()[name = tensor<string, []>("layers_3_self_attn_v_proj_weight_to_fp16"), val = tensor<fp16, [384, 384, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(13464448)))];
|
1316 |
tensor<fp16, [384]> layers_3_self_attn_v_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_3_self_attn_v_proj_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(13759424)))];
|
1317 |
+
tensor<fp16, [1, 384, 1, 1500]> value_cast_fp16 = conv(bias = layers_3_self_attn_v_proj_bias_to_fp16, dilations = value_dilations_0, groups = value_groups_0, pad = value_pad_0, pad_type = value_pad_type_0, strides = value_strides_0, weight = layers_3_self_attn_v_proj_weight_to_fp16, x = obj_13_cast_fp16)[name = tensor<string, []>("value_cast_fp16")];
|
1318 |
tensor<int32, [4]> var_1783_begin_0 = const()[name = tensor<string, []>("op_1783_begin_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
|
1319 |
tensor<int32, [4]> var_1783_end_0 = const()[name = tensor<string, []>("op_1783_end_0"), val = tensor<int32, [4]>([1, 64, 1, 1500])];
|
1320 |
tensor<bool, [4]> var_1783_end_mask_0 = const()[name = tensor<string, []>("op_1783_end_mask_0"), val = tensor<bool, [4]>([true, false, true, true])];
|
|
|
1667 |
tensor<fp16, [1, 64, 1, 1500]> var_2202_cast_fp16 = concat(axis = var_1717, interleave = var_2202_interleave_0, values = (var_2184_cast_fp16, var_2186_cast_fp16, var_2188_cast_fp16, var_2190_cast_fp16))[name = tensor<string, []>("op_2202_cast_fp16")];
|
1668 |
tensor<bool, []> input_25_interleave_0 = const()[name = tensor<string, []>("input_25_interleave_0"), val = tensor<bool, []>(false)];
|
1669 |
tensor<fp16, [1, 384, 1, 1500]> input_25_cast_fp16 = concat(axis = var_1728, interleave = input_25_interleave_0, values = (var_2192_cast_fp16, var_2194_cast_fp16, var_2196_cast_fp16, var_2198_cast_fp16, var_2200_cast_fp16, var_2202_cast_fp16))[name = tensor<string, []>("input_25_cast_fp16")];
|
1670 |
+
tensor<string, []> obj_pad_type_0 = const()[name = tensor<string, []>("obj_pad_type_0"), val = tensor<string, []>("valid")];
|
1671 |
+
tensor<int32, [2]> obj_strides_0 = const()[name = tensor<string, []>("obj_strides_0"), val = tensor<int32, [2]>([1, 1])];
|
|
|
1672 |
tensor<int32, [4]> obj_pad_0 = const()[name = tensor<string, []>("obj_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
|
1673 |
+
tensor<int32, [2]> obj_dilations_0 = const()[name = tensor<string, []>("obj_dilations_0"), val = tensor<int32, [2]>([1, 1])];
|
1674 |
+
tensor<int32, []> obj_groups_0 = const()[name = tensor<string, []>("obj_groups_0"), val = tensor<int32, []>(1)];
|
1675 |
tensor<fp16, [384, 384, 1, 1]> layers_3_self_attn_o_proj_weight_to_fp16 = const()[name = tensor<string, []>("layers_3_self_attn_o_proj_weight_to_fp16"), val = tensor<fp16, [384, 384, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(13760256)))];
|
1676 |
tensor<fp16, [384]> layers_3_self_attn_o_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_3_self_attn_o_proj_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(14055232)))];
|
1677 |
+
tensor<fp16, [1, 384, 1, 1500]> obj_cast_fp16 = conv(bias = layers_3_self_attn_o_proj_bias_to_fp16, dilations = obj_dilations_0, groups = obj_groups_0, pad = obj_pad_0, pad_type = obj_pad_type_0, strides = obj_strides_0, weight = layers_3_self_attn_o_proj_weight_to_fp16, x = input_25_cast_fp16)[name = tensor<string, []>("obj_cast_fp16")];
|
1678 |
tensor<fp16, [1, 384, 1, 1500]> inputs_15_cast_fp16 = add(x = inputs_13_cast_fp16, y = obj_cast_fp16)[name = tensor<string, []>("inputs_15_cast_fp16")];
|
1679 |
tensor<int32, [1]> out_15_axes_0 = const()[name = tensor<string, []>("out_15_axes_0"), val = tensor<int32, [1]>([1])];
|
1680 |
tensor<fp16, []> var_2221_to_fp16 = const()[name = tensor<string, []>("op_2221_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
|
|
1683 |
tensor<fp16, [384]> input_27_beta_0_to_fp16 = const()[name = tensor<string, []>("input_27_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(14056896)))];
|
1684 |
tensor<fp16, []> input_27_epsilon_0_to_fp16 = const()[name = tensor<string, []>("input_27_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
1685 |
tensor<fp16, [1, 384, 1, 1500]> input_27_cast_fp16 = batch_norm(beta = input_27_beta_0_to_fp16, epsilon = input_27_epsilon_0_to_fp16, gamma = input_27_gamma_0_to_fp16, mean = obj_1_mean_0_to_fp16, variance = obj_1_variance_0_to_fp16, x = out_15_cast_fp16)[name = tensor<string, []>("input_27_cast_fp16")];
|
1686 |
+
tensor<string, []> input_29_pad_type_0 = const()[name = tensor<string, []>("input_29_pad_type_0"), val = tensor<string, []>("valid")];
|
1687 |
+
tensor<int32, [2]> input_29_strides_0 = const()[name = tensor<string, []>("input_29_strides_0"), val = tensor<int32, [2]>([1, 1])];
|
|
|
1688 |
tensor<int32, [4]> input_29_pad_0 = const()[name = tensor<string, []>("input_29_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
|
1689 |
+
tensor<int32, [2]> input_29_dilations_0 = const()[name = tensor<string, []>("input_29_dilations_0"), val = tensor<int32, [2]>([1, 1])];
|
1690 |
+
tensor<int32, []> input_29_groups_0 = const()[name = tensor<string, []>("input_29_groups_0"), val = tensor<int32, []>(1)];
|
1691 |
tensor<fp16, [1536, 384, 1, 1]> layers_3_fc1_weight_to_fp16 = const()[name = tensor<string, []>("layers_3_fc1_weight_to_fp16"), val = tensor<fp16, [1536, 384, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(14057728)))];
|
1692 |
tensor<fp16, [1536]> layers_3_fc1_bias_to_fp16 = const()[name = tensor<string, []>("layers_3_fc1_bias_to_fp16"), val = tensor<fp16, [1536]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(15237440)))];
|
1693 |
+
tensor<fp16, [1, 1536, 1, 1500]> input_29_cast_fp16 = conv(bias = layers_3_fc1_bias_to_fp16, dilations = input_29_dilations_0, groups = input_29_groups_0, pad = input_29_pad_0, pad_type = input_29_pad_type_0, strides = input_29_strides_0, weight = layers_3_fc1_weight_to_fp16, x = input_27_cast_fp16)[name = tensor<string, []>("input_29_cast_fp16")];
|
1694 |
tensor<string, []> input_mode_0 = const()[name = tensor<string, []>("input_mode_0"), val = tensor<string, []>("EXACT")];
|
1695 |
tensor<fp16, [1, 1536, 1, 1500]> input_cast_fp16 = gelu(mode = input_mode_0, x = input_29_cast_fp16)[name = tensor<string, []>("input_cast_fp16")];
|
1696 |
+
tensor<string, []> hidden_states_pad_type_0 = const()[name = tensor<string, []>("hidden_states_pad_type_0"), val = tensor<string, []>("valid")];
|
1697 |
+
tensor<int32, [2]> hidden_states_strides_0 = const()[name = tensor<string, []>("hidden_states_strides_0"), val = tensor<int32, [2]>([1, 1])];
|
|
|
1698 |
tensor<int32, [4]> hidden_states_pad_0 = const()[name = tensor<string, []>("hidden_states_pad_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
|
1699 |
+
tensor<int32, [2]> hidden_states_dilations_0 = const()[name = tensor<string, []>("hidden_states_dilations_0"), val = tensor<int32, [2]>([1, 1])];
|
1700 |
+
tensor<int32, []> hidden_states_groups_0 = const()[name = tensor<string, []>("hidden_states_groups_0"), val = tensor<int32, []>(1)];
|
1701 |
tensor<fp16, [384, 1536, 1, 1]> layers_3_fc2_weight_to_fp16 = const()[name = tensor<string, []>("layers_3_fc2_weight_to_fp16"), val = tensor<fp16, [384, 1536, 1, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(15240576)))];
|
1702 |
tensor<fp16, [384]> layers_3_fc2_bias_to_fp16 = const()[name = tensor<string, []>("layers_3_fc2_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(16420288)))];
|
1703 |
+
tensor<fp16, [1, 384, 1, 1500]> hidden_states_cast_fp16 = conv(bias = layers_3_fc2_bias_to_fp16, dilations = hidden_states_dilations_0, groups = hidden_states_groups_0, pad = hidden_states_pad_0, pad_type = hidden_states_pad_type_0, strides = hidden_states_strides_0, weight = layers_3_fc2_weight_to_fp16, x = input_cast_fp16)[name = tensor<string, []>("hidden_states_cast_fp16")];
|
1704 |
tensor<fp16, [1, 384, 1, 1500]> inputs_cast_fp16 = add(x = inputs_15_cast_fp16, y = hidden_states_cast_fp16)[name = tensor<string, []>("inputs_cast_fp16")];
|
1705 |
tensor<int32, [1]> out_axes_0 = const()[name = tensor<string, []>("out_axes_0"), val = tensor<int32, [1]>([1])];
|
1706 |
tensor<fp16, []> var_2259_to_fp16 = const()[name = tensor<string, []>("op_2259_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
openai_whisper-tiny.en/MelSpectrogram.mlmodelc/analytics/coremldata.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 243
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:160d9737169d22dc01a899e1c6a0a9c44d0637d41f0dedb2a0b7c1422c4035d2
|
3 |
size 243
|
openai_whisper-tiny.en/MelSpectrogram.mlmodelc/coremldata.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cb3b3f51b080f58b12a6888a5e8ad57419be9e4c6843b96a7577f171b300e660
|
3 |
+
size 328
|
openai_whisper-tiny.en/MelSpectrogram.mlmodelc/metadata.json
CHANGED
@@ -50,8 +50,8 @@
|
|
50 |
},
|
51 |
"userDefinedMetadata" : {
|
52 |
"com.github.apple.coremltools.source_dialect" : "TorchScript",
|
53 |
-
"com.github.apple.coremltools.
|
54 |
-
"com.github.apple.coremltools.
|
55 |
},
|
56 |
"inputSchema" : [
|
57 |
{
|
|
|
50 |
},
|
51 |
"userDefinedMetadata" : {
|
52 |
"com.github.apple.coremltools.source_dialect" : "TorchScript",
|
53 |
+
"com.github.apple.coremltools.source" : "torch==2.4.1",
|
54 |
+
"com.github.apple.coremltools.version" : "8.0"
|
55 |
},
|
56 |
"inputSchema" : [
|
57 |
{
|
openai_whisper-tiny.en/MelSpectrogram.mlmodelc/model.mil
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
program(1.0)
|
2 |
-
[buildInfo = dict<tensor<string, []>, tensor<string, []>>({{"coremlc-component-MIL", "3304.5.2"}, {"coremlc-version", "3304.6.2"}, {"coremltools-component-torch", "2.4.1"}, {"coremltools-source-dialect", "TorchScript"}, {"coremltools-version", "8.
|
3 |
{
|
4 |
func main<ios16>(tensor<fp16, [480000]> audio) {
|
5 |
tensor<int32, [3]> var_10 = const()[name = tensor<string, []>("op_10"), val = tensor<int32, [3]>([1, 1, 480000])];
|
|
|
1 |
program(1.0)
|
2 |
+
[buildInfo = dict<tensor<string, []>, tensor<string, []>>({{"coremlc-component-MIL", "3304.5.2"}, {"coremlc-version", "3304.6.2"}, {"coremltools-component-torch", "2.4.1"}, {"coremltools-source-dialect", "TorchScript"}, {"coremltools-version", "8.0"}})]
|
3 |
{
|
4 |
func main<ios16>(tensor<fp16, [480000]> audio) {
|
5 |
tensor<int32, [3]> var_10 = const()[name = tensor<string, []>("op_10"), val = tensor<int32, [3]>([1, 1, 480000])];
|
openai_whisper-tiny.en/TextDecoder.mlmodelc/analytics/coremldata.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 243
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:edb99a30ccee8e157fbec80dc3dce49349ba0982391b327d753e10ccab0a01c3
|
3 |
size 243
|
openai_whisper-tiny.en/TextDecoder.mlmodelc/coremldata.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:65c043a081845d190918b4c7d244f94a55df1a15fae796abedc1f414995542c6
|
3 |
+
size 633
|
openai_whisper-tiny.en/TextDecoder.mlmodelc/metadata.json
CHANGED
@@ -85,7 +85,7 @@
|
|
85 |
"userDefinedMetadata" : {
|
86 |
"com.github.apple.coremltools.source_dialect" : "TorchScript",
|
87 |
"com.github.apple.coremltools.source" : "torch==2.4.1",
|
88 |
-
"com.github.apple.coremltools.version" : "8.
|
89 |
},
|
90 |
"inputSchema" : [
|
91 |
{
|
|
|
85 |
"userDefinedMetadata" : {
|
86 |
"com.github.apple.coremltools.source_dialect" : "TorchScript",
|
87 |
"com.github.apple.coremltools.source" : "torch==2.4.1",
|
88 |
+
"com.github.apple.coremltools.version" : "8.0"
|
89 |
},
|
90 |
"inputSchema" : [
|
91 |
{
|
openai_whisper-tiny.en/TextDecoder.mlmodelc/model.mil
CHANGED
The diff for this file is too large to render.
See raw diff
|
|