aotrih commited on
Commit
60420c9
·
verified ·
1 Parent(s): 56b2f75

whisperkittools-a8c3cdeab8da5d76a7b952aa74ffebfbcd44804b generated files: openai_whisper-tiny.en

Browse files
openai_whisper-tiny.en/AudioEncoder.mlmodelc/analytics/coremldata.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:d196c8b7f34488833d89071b82740bceb30133c387bc7d2d5dbaeb9e2b52cd4d
3
  size 243
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:be62662cccc25b6eca93e6f407e024f90f72cde23a1cda8b0ca753f084274a6e
3
  size 243
openai_whisper-tiny.en/AudioEncoder.mlmodelc/coremldata.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:92aaedf405bc263b8426a4c2a4d28b568171a6d97fb732a76bd40a6b1b9475a6
3
  size 347
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:892364c46ef43333af61711e2ef67e32cc6e7040d35263b805cb5795c8d69233
3
  size 347
openai_whisper-tiny.en/AudioEncoder.mlmodelc/metadata.json CHANGED
@@ -20,18 +20,16 @@
20
  "specificationVersion" : 7,
21
  "mlProgramOperationTypeHistogram" : {
22
  "Concat" : 28,
23
- "Ios16.rsqrt" : 9,
24
- "Ios16.mul" : 114,
25
  "SliceByIndex" : 168,
26
- "Ios16.sub" : 9,
27
  "Transpose" : 4,
 
28
  "Ios16.einsum" : 192,
29
- "Ios16.conv" : 26,
30
- "Ios16.add" : 18,
31
- "Ios16.reduceMean" : 18,
32
- "Ios16.softmax" : 96,
33
  "Ios16.gelu" : 6,
34
- "Ios16.batchNorm" : 9
 
 
35
  },
36
  "computePrecision" : "Mixed (Float16, Int32)",
37
  "isUpdatable" : "0",
@@ -49,7 +47,7 @@
49
  "userDefinedMetadata" : {
50
  "com.github.apple.coremltools.source_dialect" : "TorchScript",
51
  "com.github.apple.coremltools.source" : "torch==2.2.2",
52
- "com.github.apple.coremltools.version" : "7.1"
53
  },
54
  "inputSchema" : [
55
  {
 
20
  "specificationVersion" : 7,
21
  "mlProgramOperationTypeHistogram" : {
22
  "Concat" : 28,
23
+ "Ios16.add" : 9,
24
+ "Ios16.mul" : 96,
25
  "SliceByIndex" : 168,
 
26
  "Transpose" : 4,
27
+ "Ios16.batchNorm" : 9,
28
  "Ios16.einsum" : 192,
 
 
 
 
29
  "Ios16.gelu" : 6,
30
+ "Ios16.softmax" : 96,
31
+ "Ios16.layerNorm" : 9,
32
+ "Ios16.conv" : 26
33
  },
34
  "computePrecision" : "Mixed (Float16, Int32)",
35
  "isUpdatable" : "0",
 
47
  "userDefinedMetadata" : {
48
  "com.github.apple.coremltools.source_dialect" : "TorchScript",
49
  "com.github.apple.coremltools.source" : "torch==2.2.2",
50
+ "com.github.apple.coremltools.version" : "7.2"
51
  },
52
  "inputSchema" : [
53
  {
openai_whisper-tiny.en/AudioEncoder.mlmodelc/model.mil CHANGED
@@ -1,5 +1,5 @@
1
  program(1.0)
2
- [buildInfo = dict<tensor<string, []>, tensor<string, []>>({{"coremlc-component-MIL", "5.33.5"}, {"coremlc-version", "1877.40.3"}, {"coremltools-component-torch", "2.2.2"}, {"coremltools-source-dialect", "TorchScript"}, {"coremltools-version", "7.1"}})]
3
  {
4
  func main<ios16>(tensor<fp16, [1, 80, 1, 3000]> melspectrogram_features) {
5
  tensor<int32, [2]> var_34 = const()[name = tensor<string, []>("op_34"), val = tensor<int32, [2]>([1, 1])];
@@ -26,18 +26,9 @@ program(1.0)
26
  tensor<fp16, [1, 384, 1, 1500]> inputs_1_cast_fp16 = add(x = hidden_states_3_cast_fp16, y = var_108_to_fp16)[name = tensor<string, []>("inputs_1_cast_fp16")];
27
  tensor<int32, []> var_118 = const()[name = tensor<string, []>("op_118"), val = tensor<int32, []>(3)];
28
  tensor<int32, []> var_129 = const()[name = tensor<string, []>("op_129"), val = tensor<int32, []>(1)];
29
- tensor<bool, []> var_130 = const()[name = tensor<string, []>("op_130"), val = tensor<bool, []>(true)];
30
- tensor<int32, [1]> var_140 = const()[name = tensor<string, []>("op_140"), val = tensor<int32, [1]>([1])];
31
- tensor<fp16, [1, 1, 1, 1500]> channels_mean_1_cast_fp16 = reduce_mean(axes = var_140, keep_dims = var_130, x = inputs_1_cast_fp16)[name = tensor<string, []>("channels_mean_1_cast_fp16")];
32
- tensor<fp16, [1, 384, 1, 1500]> zero_mean_1_cast_fp16 = sub(x = inputs_1_cast_fp16, y = channels_mean_1_cast_fp16)[name = tensor<string, []>("zero_mean_1_cast_fp16")];
33
- tensor<fp16, [1, 384, 1, 1500]> zero_mean_sq_1_cast_fp16 = mul(x = zero_mean_1_cast_fp16, y = zero_mean_1_cast_fp16)[name = tensor<string, []>("zero_mean_sq_1_cast_fp16")];
34
- tensor<int32, [1]> var_144 = const()[name = tensor<string, []>("op_144"), val = tensor<int32, [1]>([1])];
35
- tensor<fp16, [1, 1, 1, 1500]> var_145_cast_fp16 = reduce_mean(axes = var_144, keep_dims = var_130, x = zero_mean_sq_1_cast_fp16)[name = tensor<string, []>("op_145_cast_fp16")];
36
  tensor<fp16, []> var_146_to_fp16 = const()[name = tensor<string, []>("op_146_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
37
- tensor<fp16, [1, 1, 1, 1500]> var_147_cast_fp16 = add(x = var_145_cast_fp16, y = var_146_to_fp16)[name = tensor<string, []>("op_147_cast_fp16")];
38
- tensor<fp16, []> denom_1_epsilon_0_to_fp16 = const()[name = tensor<string, []>("denom_1_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1p-24)];
39
- tensor<fp16, [1, 1, 1, 1500]> denom_1_cast_fp16 = rsqrt(epsilon = denom_1_epsilon_0_to_fp16, x = var_147_cast_fp16)[name = tensor<string, []>("denom_1_cast_fp16")];
40
- tensor<fp16, [1, 384, 1, 1500]> out_1_cast_fp16 = mul(x = zero_mean_1_cast_fp16, y = denom_1_cast_fp16)[name = tensor<string, []>("out_1_cast_fp16")];
41
  tensor<fp16, [384]> obj_1_mean_0_to_fp16 = const()[name = tensor<string, []>("obj_1_mean_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(2222976)))];
42
  tensor<fp16, [384]> obj_1_variance_0_to_fp16 = const()[name = tensor<string, []>("obj_1_variance_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(2223808)))];
43
  tensor<fp16, [384]> obj_1_gamma_0_to_fp16 = const()[name = tensor<string, []>("obj_1_gamma_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(2224640)))];
@@ -424,17 +415,9 @@ program(1.0)
424
  tensor<fp16, [384]> layers_0_self_attn_o_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_0_self_attn_o_proj_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(3407872)))];
425
  tensor<fp16, [1, 384, 1, 1500]> obj_3_cast_fp16 = conv(bias = layers_0_self_attn_o_proj_bias_to_fp16, dilations = var_610, groups = var_129, pad = obj_3_pad_0, pad_type = obj_3_pad_type_0, strides = var_608, weight = layers_0_self_attn_o_proj_weight_to_fp16, x = input_1_cast_fp16)[name = tensor<string, []>("obj_3_cast_fp16")];
426
  tensor<fp16, [1, 384, 1, 1500]> inputs_3_cast_fp16 = add(x = inputs_1_cast_fp16, y = obj_3_cast_fp16)[name = tensor<string, []>("inputs_3_cast_fp16")];
427
- tensor<int32, [1]> var_616 = const()[name = tensor<string, []>("op_616"), val = tensor<int32, [1]>([1])];
428
- tensor<fp16, [1, 1, 1, 1500]> channels_mean_3_cast_fp16 = reduce_mean(axes = var_616, keep_dims = var_130, x = inputs_3_cast_fp16)[name = tensor<string, []>("channels_mean_3_cast_fp16")];
429
- tensor<fp16, [1, 384, 1, 1500]> zero_mean_3_cast_fp16 = sub(x = inputs_3_cast_fp16, y = channels_mean_3_cast_fp16)[name = tensor<string, []>("zero_mean_3_cast_fp16")];
430
- tensor<fp16, [1, 384, 1, 1500]> zero_mean_sq_3_cast_fp16 = mul(x = zero_mean_3_cast_fp16, y = zero_mean_3_cast_fp16)[name = tensor<string, []>("zero_mean_sq_3_cast_fp16")];
431
- tensor<int32, [1]> var_620 = const()[name = tensor<string, []>("op_620"), val = tensor<int32, [1]>([1])];
432
- tensor<fp16, [1, 1, 1, 1500]> var_621_cast_fp16 = reduce_mean(axes = var_620, keep_dims = var_130, x = zero_mean_sq_3_cast_fp16)[name = tensor<string, []>("op_621_cast_fp16")];
433
  tensor<fp16, []> var_622_to_fp16 = const()[name = tensor<string, []>("op_622_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
434
- tensor<fp16, [1, 1, 1, 1500]> var_623_cast_fp16 = add(x = var_621_cast_fp16, y = var_622_to_fp16)[name = tensor<string, []>("op_623_cast_fp16")];
435
- tensor<fp16, []> denom_3_epsilon_0_to_fp16 = const()[name = tensor<string, []>("denom_3_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1p-24)];
436
- tensor<fp16, [1, 1, 1, 1500]> denom_3_cast_fp16 = rsqrt(epsilon = denom_3_epsilon_0_to_fp16, x = var_623_cast_fp16)[name = tensor<string, []>("denom_3_cast_fp16")];
437
- tensor<fp16, [1, 384, 1, 1500]> out_3_cast_fp16 = mul(x = zero_mean_3_cast_fp16, y = denom_3_cast_fp16)[name = tensor<string, []>("out_3_cast_fp16")];
438
  tensor<fp16, [384]> input_3_gamma_0_to_fp16 = const()[name = tensor<string, []>("input_3_gamma_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(3408704)))];
439
  tensor<fp16, [384]> input_3_beta_0_to_fp16 = const()[name = tensor<string, []>("input_3_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(3409536)))];
440
  tensor<fp16, []> input_3_epsilon_0_to_fp16 = const()[name = tensor<string, []>("input_3_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
@@ -458,18 +441,9 @@ program(1.0)
458
  tensor<fp16, [1, 384, 1, 1500]> inputs_5_cast_fp16 = add(x = inputs_3_cast_fp16, y = hidden_states_5_cast_fp16)[name = tensor<string, []>("inputs_5_cast_fp16")];
459
  tensor<int32, []> var_651 = const()[name = tensor<string, []>("op_651"), val = tensor<int32, []>(3)];
460
  tensor<int32, []> var_662 = const()[name = tensor<string, []>("op_662"), val = tensor<int32, []>(1)];
461
- tensor<bool, []> var_663 = const()[name = tensor<string, []>("op_663"), val = tensor<bool, []>(true)];
462
- tensor<int32, [1]> var_673 = const()[name = tensor<string, []>("op_673"), val = tensor<int32, [1]>([1])];
463
- tensor<fp16, [1, 1, 1, 1500]> channels_mean_5_cast_fp16 = reduce_mean(axes = var_673, keep_dims = var_663, x = inputs_5_cast_fp16)[name = tensor<string, []>("channels_mean_5_cast_fp16")];
464
- tensor<fp16, [1, 384, 1, 1500]> zero_mean_5_cast_fp16 = sub(x = inputs_5_cast_fp16, y = channels_mean_5_cast_fp16)[name = tensor<string, []>("zero_mean_5_cast_fp16")];
465
- tensor<fp16, [1, 384, 1, 1500]> zero_mean_sq_5_cast_fp16 = mul(x = zero_mean_5_cast_fp16, y = zero_mean_5_cast_fp16)[name = tensor<string, []>("zero_mean_sq_5_cast_fp16")];
466
- tensor<int32, [1]> var_677 = const()[name = tensor<string, []>("op_677"), val = tensor<int32, [1]>([1])];
467
- tensor<fp16, [1, 1, 1, 1500]> var_678_cast_fp16 = reduce_mean(axes = var_677, keep_dims = var_663, x = zero_mean_sq_5_cast_fp16)[name = tensor<string, []>("op_678_cast_fp16")];
468
  tensor<fp16, []> var_679_to_fp16 = const()[name = tensor<string, []>("op_679_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
469
- tensor<fp16, [1, 1, 1, 1500]> var_680_cast_fp16 = add(x = var_678_cast_fp16, y = var_679_to_fp16)[name = tensor<string, []>("op_680_cast_fp16")];
470
- tensor<fp16, []> denom_5_epsilon_0_to_fp16 = const()[name = tensor<string, []>("denom_5_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1p-24)];
471
- tensor<fp16, [1, 1, 1, 1500]> denom_5_cast_fp16 = rsqrt(epsilon = denom_5_epsilon_0_to_fp16, x = var_680_cast_fp16)[name = tensor<string, []>("denom_5_cast_fp16")];
472
- tensor<fp16, [1, 384, 1, 1500]> out_5_cast_fp16 = mul(x = zero_mean_5_cast_fp16, y = denom_5_cast_fp16)[name = tensor<string, []>("out_5_cast_fp16")];
473
  tensor<fp16, [384]> obj_5_gamma_0_to_fp16 = const()[name = tensor<string, []>("obj_5_gamma_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(5773760)))];
474
  tensor<fp16, [384]> obj_5_beta_0_to_fp16 = const()[name = tensor<string, []>("obj_5_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(5774592)))];
475
  tensor<fp16, []> obj_5_epsilon_0_to_fp16 = const()[name = tensor<string, []>("obj_5_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
@@ -854,17 +828,9 @@ program(1.0)
854
  tensor<fp16, [384]> layers_1_self_attn_o_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_1_self_attn_o_proj_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(6956992)))];
855
  tensor<fp16, [1, 384, 1, 1500]> obj_7_cast_fp16 = conv(bias = layers_1_self_attn_o_proj_bias_to_fp16, dilations = var_1143, groups = var_662, pad = obj_7_pad_0, pad_type = obj_7_pad_type_0, strides = var_1141, weight = layers_1_self_attn_o_proj_weight_to_fp16, x = input_9_cast_fp16)[name = tensor<string, []>("obj_7_cast_fp16")];
856
  tensor<fp16, [1, 384, 1, 1500]> inputs_7_cast_fp16 = add(x = inputs_5_cast_fp16, y = obj_7_cast_fp16)[name = tensor<string, []>("inputs_7_cast_fp16")];
857
- tensor<int32, [1]> var_1149 = const()[name = tensor<string, []>("op_1149"), val = tensor<int32, [1]>([1])];
858
- tensor<fp16, [1, 1, 1, 1500]> channels_mean_7_cast_fp16 = reduce_mean(axes = var_1149, keep_dims = var_663, x = inputs_7_cast_fp16)[name = tensor<string, []>("channels_mean_7_cast_fp16")];
859
- tensor<fp16, [1, 384, 1, 1500]> zero_mean_7_cast_fp16 = sub(x = inputs_7_cast_fp16, y = channels_mean_7_cast_fp16)[name = tensor<string, []>("zero_mean_7_cast_fp16")];
860
- tensor<fp16, [1, 384, 1, 1500]> zero_mean_sq_7_cast_fp16 = mul(x = zero_mean_7_cast_fp16, y = zero_mean_7_cast_fp16)[name = tensor<string, []>("zero_mean_sq_7_cast_fp16")];
861
- tensor<int32, [1]> var_1153 = const()[name = tensor<string, []>("op_1153"), val = tensor<int32, [1]>([1])];
862
- tensor<fp16, [1, 1, 1, 1500]> var_1154_cast_fp16 = reduce_mean(axes = var_1153, keep_dims = var_663, x = zero_mean_sq_7_cast_fp16)[name = tensor<string, []>("op_1154_cast_fp16")];
863
  tensor<fp16, []> var_1155_to_fp16 = const()[name = tensor<string, []>("op_1155_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
864
- tensor<fp16, [1, 1, 1, 1500]> var_1156_cast_fp16 = add(x = var_1154_cast_fp16, y = var_1155_to_fp16)[name = tensor<string, []>("op_1156_cast_fp16")];
865
- tensor<fp16, []> denom_7_epsilon_0_to_fp16 = const()[name = tensor<string, []>("denom_7_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1p-24)];
866
- tensor<fp16, [1, 1, 1, 1500]> denom_7_cast_fp16 = rsqrt(epsilon = denom_7_epsilon_0_to_fp16, x = var_1156_cast_fp16)[name = tensor<string, []>("denom_7_cast_fp16")];
867
- tensor<fp16, [1, 384, 1, 1500]> out_7_cast_fp16 = mul(x = zero_mean_7_cast_fp16, y = denom_7_cast_fp16)[name = tensor<string, []>("out_7_cast_fp16")];
868
  tensor<fp16, [384]> input_11_gamma_0_to_fp16 = const()[name = tensor<string, []>("input_11_gamma_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(6957824)))];
869
  tensor<fp16, [384]> input_11_beta_0_to_fp16 = const()[name = tensor<string, []>("input_11_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(6958656)))];
870
  tensor<fp16, []> input_11_epsilon_0_to_fp16 = const()[name = tensor<string, []>("input_11_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
@@ -888,18 +854,9 @@ program(1.0)
888
  tensor<fp16, [1, 384, 1, 1500]> inputs_9_cast_fp16 = add(x = inputs_7_cast_fp16, y = hidden_states_7_cast_fp16)[name = tensor<string, []>("inputs_9_cast_fp16")];
889
  tensor<int32, []> var_1184 = const()[name = tensor<string, []>("op_1184"), val = tensor<int32, []>(3)];
890
  tensor<int32, []> var_1195 = const()[name = tensor<string, []>("op_1195"), val = tensor<int32, []>(1)];
891
- tensor<bool, []> var_1196 = const()[name = tensor<string, []>("op_1196"), val = tensor<bool, []>(true)];
892
- tensor<int32, [1]> var_1206 = const()[name = tensor<string, []>("op_1206"), val = tensor<int32, [1]>([1])];
893
- tensor<fp16, [1, 1, 1, 1500]> channels_mean_9_cast_fp16 = reduce_mean(axes = var_1206, keep_dims = var_1196, x = inputs_9_cast_fp16)[name = tensor<string, []>("channels_mean_9_cast_fp16")];
894
- tensor<fp16, [1, 384, 1, 1500]> zero_mean_9_cast_fp16 = sub(x = inputs_9_cast_fp16, y = channels_mean_9_cast_fp16)[name = tensor<string, []>("zero_mean_9_cast_fp16")];
895
- tensor<fp16, [1, 384, 1, 1500]> zero_mean_sq_9_cast_fp16 = mul(x = zero_mean_9_cast_fp16, y = zero_mean_9_cast_fp16)[name = tensor<string, []>("zero_mean_sq_9_cast_fp16")];
896
- tensor<int32, [1]> var_1210 = const()[name = tensor<string, []>("op_1210"), val = tensor<int32, [1]>([1])];
897
- tensor<fp16, [1, 1, 1, 1500]> var_1211_cast_fp16 = reduce_mean(axes = var_1210, keep_dims = var_1196, x = zero_mean_sq_9_cast_fp16)[name = tensor<string, []>("op_1211_cast_fp16")];
898
  tensor<fp16, []> var_1212_to_fp16 = const()[name = tensor<string, []>("op_1212_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
899
- tensor<fp16, [1, 1, 1, 1500]> var_1213_cast_fp16 = add(x = var_1211_cast_fp16, y = var_1212_to_fp16)[name = tensor<string, []>("op_1213_cast_fp16")];
900
- tensor<fp16, []> denom_9_epsilon_0_to_fp16 = const()[name = tensor<string, []>("denom_9_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1p-24)];
901
- tensor<fp16, [1, 1, 1, 1500]> denom_9_cast_fp16 = rsqrt(epsilon = denom_9_epsilon_0_to_fp16, x = var_1213_cast_fp16)[name = tensor<string, []>("denom_9_cast_fp16")];
902
- tensor<fp16, [1, 384, 1, 1500]> out_9_cast_fp16 = mul(x = zero_mean_9_cast_fp16, y = denom_9_cast_fp16)[name = tensor<string, []>("out_9_cast_fp16")];
903
  tensor<fp16, [384]> obj_9_gamma_0_to_fp16 = const()[name = tensor<string, []>("obj_9_gamma_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(9322880)))];
904
  tensor<fp16, [384]> obj_9_beta_0_to_fp16 = const()[name = tensor<string, []>("obj_9_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(9323712)))];
905
  tensor<fp16, []> obj_9_epsilon_0_to_fp16 = const()[name = tensor<string, []>("obj_9_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
@@ -1284,17 +1241,9 @@ program(1.0)
1284
  tensor<fp16, [384]> layers_2_self_attn_o_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_2_self_attn_o_proj_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(10506112)))];
1285
  tensor<fp16, [1, 384, 1, 1500]> obj_11_cast_fp16 = conv(bias = layers_2_self_attn_o_proj_bias_to_fp16, dilations = var_1676, groups = var_1195, pad = obj_11_pad_0, pad_type = obj_11_pad_type_0, strides = var_1674, weight = layers_2_self_attn_o_proj_weight_to_fp16, x = input_17_cast_fp16)[name = tensor<string, []>("obj_11_cast_fp16")];
1286
  tensor<fp16, [1, 384, 1, 1500]> inputs_11_cast_fp16 = add(x = inputs_9_cast_fp16, y = obj_11_cast_fp16)[name = tensor<string, []>("inputs_11_cast_fp16")];
1287
- tensor<int32, [1]> var_1682 = const()[name = tensor<string, []>("op_1682"), val = tensor<int32, [1]>([1])];
1288
- tensor<fp16, [1, 1, 1, 1500]> channels_mean_11_cast_fp16 = reduce_mean(axes = var_1682, keep_dims = var_1196, x = inputs_11_cast_fp16)[name = tensor<string, []>("channels_mean_11_cast_fp16")];
1289
- tensor<fp16, [1, 384, 1, 1500]> zero_mean_11_cast_fp16 = sub(x = inputs_11_cast_fp16, y = channels_mean_11_cast_fp16)[name = tensor<string, []>("zero_mean_11_cast_fp16")];
1290
- tensor<fp16, [1, 384, 1, 1500]> zero_mean_sq_11_cast_fp16 = mul(x = zero_mean_11_cast_fp16, y = zero_mean_11_cast_fp16)[name = tensor<string, []>("zero_mean_sq_11_cast_fp16")];
1291
- tensor<int32, [1]> var_1686 = const()[name = tensor<string, []>("op_1686"), val = tensor<int32, [1]>([1])];
1292
- tensor<fp16, [1, 1, 1, 1500]> var_1687_cast_fp16 = reduce_mean(axes = var_1686, keep_dims = var_1196, x = zero_mean_sq_11_cast_fp16)[name = tensor<string, []>("op_1687_cast_fp16")];
1293
  tensor<fp16, []> var_1688_to_fp16 = const()[name = tensor<string, []>("op_1688_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
1294
- tensor<fp16, [1, 1, 1, 1500]> var_1689_cast_fp16 = add(x = var_1687_cast_fp16, y = var_1688_to_fp16)[name = tensor<string, []>("op_1689_cast_fp16")];
1295
- tensor<fp16, []> denom_11_epsilon_0_to_fp16 = const()[name = tensor<string, []>("denom_11_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1p-24)];
1296
- tensor<fp16, [1, 1, 1, 1500]> denom_11_cast_fp16 = rsqrt(epsilon = denom_11_epsilon_0_to_fp16, x = var_1689_cast_fp16)[name = tensor<string, []>("denom_11_cast_fp16")];
1297
- tensor<fp16, [1, 384, 1, 1500]> out_11_cast_fp16 = mul(x = zero_mean_11_cast_fp16, y = denom_11_cast_fp16)[name = tensor<string, []>("out_11_cast_fp16")];
1298
  tensor<fp16, [384]> input_19_gamma_0_to_fp16 = const()[name = tensor<string, []>("input_19_gamma_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(10506944)))];
1299
  tensor<fp16, [384]> input_19_beta_0_to_fp16 = const()[name = tensor<string, []>("input_19_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(10507776)))];
1300
  tensor<fp16, []> input_19_epsilon_0_to_fp16 = const()[name = tensor<string, []>("input_19_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
@@ -1318,18 +1267,9 @@ program(1.0)
1318
  tensor<fp16, [1, 384, 1, 1500]> inputs_13_cast_fp16 = add(x = inputs_11_cast_fp16, y = hidden_states_9_cast_fp16)[name = tensor<string, []>("inputs_13_cast_fp16")];
1319
  tensor<int32, []> var_1717 = const()[name = tensor<string, []>("op_1717"), val = tensor<int32, []>(3)];
1320
  tensor<int32, []> var_1728 = const()[name = tensor<string, []>("op_1728"), val = tensor<int32, []>(1)];
1321
- tensor<bool, []> var_1729 = const()[name = tensor<string, []>("op_1729"), val = tensor<bool, []>(true)];
1322
- tensor<int32, [1]> var_1739 = const()[name = tensor<string, []>("op_1739"), val = tensor<int32, [1]>([1])];
1323
- tensor<fp16, [1, 1, 1, 1500]> channels_mean_13_cast_fp16 = reduce_mean(axes = var_1739, keep_dims = var_1729, x = inputs_13_cast_fp16)[name = tensor<string, []>("channels_mean_13_cast_fp16")];
1324
- tensor<fp16, [1, 384, 1, 1500]> zero_mean_13_cast_fp16 = sub(x = inputs_13_cast_fp16, y = channels_mean_13_cast_fp16)[name = tensor<string, []>("zero_mean_13_cast_fp16")];
1325
- tensor<fp16, [1, 384, 1, 1500]> zero_mean_sq_13_cast_fp16 = mul(x = zero_mean_13_cast_fp16, y = zero_mean_13_cast_fp16)[name = tensor<string, []>("zero_mean_sq_13_cast_fp16")];
1326
- tensor<int32, [1]> var_1743 = const()[name = tensor<string, []>("op_1743"), val = tensor<int32, [1]>([1])];
1327
- tensor<fp16, [1, 1, 1, 1500]> var_1744_cast_fp16 = reduce_mean(axes = var_1743, keep_dims = var_1729, x = zero_mean_sq_13_cast_fp16)[name = tensor<string, []>("op_1744_cast_fp16")];
1328
  tensor<fp16, []> var_1745_to_fp16 = const()[name = tensor<string, []>("op_1745_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
1329
- tensor<fp16, [1, 1, 1, 1500]> var_1746_cast_fp16 = add(x = var_1744_cast_fp16, y = var_1745_to_fp16)[name = tensor<string, []>("op_1746_cast_fp16")];
1330
- tensor<fp16, []> denom_13_epsilon_0_to_fp16 = const()[name = tensor<string, []>("denom_13_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1p-24)];
1331
- tensor<fp16, [1, 1, 1, 1500]> denom_13_cast_fp16 = rsqrt(epsilon = denom_13_epsilon_0_to_fp16, x = var_1746_cast_fp16)[name = tensor<string, []>("denom_13_cast_fp16")];
1332
- tensor<fp16, [1, 384, 1, 1500]> out_13_cast_fp16 = mul(x = zero_mean_13_cast_fp16, y = denom_13_cast_fp16)[name = tensor<string, []>("out_13_cast_fp16")];
1333
  tensor<fp16, [384]> obj_13_gamma_0_to_fp16 = const()[name = tensor<string, []>("obj_13_gamma_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(12872000)))];
1334
  tensor<fp16, [384]> obj_13_beta_0_to_fp16 = const()[name = tensor<string, []>("obj_13_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(12872832)))];
1335
  tensor<fp16, []> obj_13_epsilon_0_to_fp16 = const()[name = tensor<string, []>("obj_13_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
@@ -1714,17 +1654,9 @@ program(1.0)
1714
  tensor<fp16, [384]> layers_3_self_attn_o_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_3_self_attn_o_proj_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(14055232)))];
1715
  tensor<fp16, [1, 384, 1, 1500]> obj_cast_fp16 = conv(bias = layers_3_self_attn_o_proj_bias_to_fp16, dilations = var_2209, groups = var_1728, pad = obj_pad_0, pad_type = obj_pad_type_0, strides = var_2207, weight = layers_3_self_attn_o_proj_weight_to_fp16, x = input_25_cast_fp16)[name = tensor<string, []>("obj_cast_fp16")];
1716
  tensor<fp16, [1, 384, 1, 1500]> inputs_15_cast_fp16 = add(x = inputs_13_cast_fp16, y = obj_cast_fp16)[name = tensor<string, []>("inputs_15_cast_fp16")];
1717
- tensor<int32, [1]> var_2215 = const()[name = tensor<string, []>("op_2215"), val = tensor<int32, [1]>([1])];
1718
- tensor<fp16, [1, 1, 1, 1500]> channels_mean_15_cast_fp16 = reduce_mean(axes = var_2215, keep_dims = var_1729, x = inputs_15_cast_fp16)[name = tensor<string, []>("channels_mean_15_cast_fp16")];
1719
- tensor<fp16, [1, 384, 1, 1500]> zero_mean_15_cast_fp16 = sub(x = inputs_15_cast_fp16, y = channels_mean_15_cast_fp16)[name = tensor<string, []>("zero_mean_15_cast_fp16")];
1720
- tensor<fp16, [1, 384, 1, 1500]> zero_mean_sq_15_cast_fp16 = mul(x = zero_mean_15_cast_fp16, y = zero_mean_15_cast_fp16)[name = tensor<string, []>("zero_mean_sq_15_cast_fp16")];
1721
- tensor<int32, [1]> var_2219 = const()[name = tensor<string, []>("op_2219"), val = tensor<int32, [1]>([1])];
1722
- tensor<fp16, [1, 1, 1, 1500]> var_2220_cast_fp16 = reduce_mean(axes = var_2219, keep_dims = var_1729, x = zero_mean_sq_15_cast_fp16)[name = tensor<string, []>("op_2220_cast_fp16")];
1723
  tensor<fp16, []> var_2221_to_fp16 = const()[name = tensor<string, []>("op_2221_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
1724
- tensor<fp16, [1, 1, 1, 1500]> var_2222_cast_fp16 = add(x = var_2220_cast_fp16, y = var_2221_to_fp16)[name = tensor<string, []>("op_2222_cast_fp16")];
1725
- tensor<fp16, []> denom_15_epsilon_0_to_fp16 = const()[name = tensor<string, []>("denom_15_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1p-24)];
1726
- tensor<fp16, [1, 1, 1, 1500]> denom_15_cast_fp16 = rsqrt(epsilon = denom_15_epsilon_0_to_fp16, x = var_2222_cast_fp16)[name = tensor<string, []>("denom_15_cast_fp16")];
1727
- tensor<fp16, [1, 384, 1, 1500]> out_15_cast_fp16 = mul(x = zero_mean_15_cast_fp16, y = denom_15_cast_fp16)[name = tensor<string, []>("out_15_cast_fp16")];
1728
  tensor<fp16, [384]> input_27_gamma_0_to_fp16 = const()[name = tensor<string, []>("input_27_gamma_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(14056064)))];
1729
  tensor<fp16, [384]> input_27_beta_0_to_fp16 = const()[name = tensor<string, []>("input_27_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(14056896)))];
1730
  tensor<fp16, []> input_27_epsilon_0_to_fp16 = const()[name = tensor<string, []>("input_27_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
@@ -1746,18 +1678,9 @@ program(1.0)
1746
  tensor<fp16, [384]> layers_3_fc2_bias_to_fp16 = const()[name = tensor<string, []>("layers_3_fc2_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(16420288)))];
1747
  tensor<fp16, [1, 384, 1, 1500]> hidden_states_cast_fp16 = conv(bias = layers_3_fc2_bias_to_fp16, dilations = var_2243, groups = var_1728, pad = hidden_states_pad_0, pad_type = hidden_states_pad_type_0, strides = var_2241, weight = layers_3_fc2_weight_to_fp16, x = input_cast_fp16)[name = tensor<string, []>("hidden_states_cast_fp16")];
1748
  tensor<fp16, [1, 384, 1, 1500]> inputs_cast_fp16 = add(x = inputs_15_cast_fp16, y = hidden_states_cast_fp16)[name = tensor<string, []>("inputs_cast_fp16")];
1749
- tensor<bool, []> var_2249 = const()[name = tensor<string, []>("op_2249"), val = tensor<bool, []>(true)];
1750
- tensor<int32, [1]> var_2253 = const()[name = tensor<string, []>("op_2253"), val = tensor<int32, [1]>([1])];
1751
- tensor<fp16, [1, 1, 1, 1500]> channels_mean_cast_fp16 = reduce_mean(axes = var_2253, keep_dims = var_2249, x = inputs_cast_fp16)[name = tensor<string, []>("channels_mean_cast_fp16")];
1752
- tensor<fp16, [1, 384, 1, 1500]> zero_mean_cast_fp16 = sub(x = inputs_cast_fp16, y = channels_mean_cast_fp16)[name = tensor<string, []>("zero_mean_cast_fp16")];
1753
- tensor<fp16, [1, 384, 1, 1500]> zero_mean_sq_cast_fp16 = mul(x = zero_mean_cast_fp16, y = zero_mean_cast_fp16)[name = tensor<string, []>("zero_mean_sq_cast_fp16")];
1754
- tensor<int32, [1]> var_2257 = const()[name = tensor<string, []>("op_2257"), val = tensor<int32, [1]>([1])];
1755
- tensor<fp16, [1, 1, 1, 1500]> var_2258_cast_fp16 = reduce_mean(axes = var_2257, keep_dims = var_2249, x = zero_mean_sq_cast_fp16)[name = tensor<string, []>("op_2258_cast_fp16")];
1756
  tensor<fp16, []> var_2259_to_fp16 = const()[name = tensor<string, []>("op_2259_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
1757
- tensor<fp16, [1, 1, 1, 1500]> var_2260_cast_fp16 = add(x = var_2258_cast_fp16, y = var_2259_to_fp16)[name = tensor<string, []>("op_2260_cast_fp16")];
1758
- tensor<fp16, []> denom_epsilon_0_to_fp16 = const()[name = tensor<string, []>("denom_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1p-24)];
1759
- tensor<fp16, [1, 1, 1, 1500]> denom_cast_fp16 = rsqrt(epsilon = denom_epsilon_0_to_fp16, x = var_2260_cast_fp16)[name = tensor<string, []>("denom_cast_fp16")];
1760
- tensor<fp16, [1, 384, 1, 1500]> out_cast_fp16 = mul(x = zero_mean_cast_fp16, y = denom_cast_fp16)[name = tensor<string, []>("out_cast_fp16")];
1761
  tensor<fp16, [384]> encoder_output_embeds_type_fp32_gamma_0_to_fp16 = const()[name = tensor<string, []>("encoder_output_embeds_type_fp32_gamma_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(16421120)))];
1762
  tensor<fp16, [384]> encoder_output_embeds_type_fp32_beta_0_to_fp16 = const()[name = tensor<string, []>("encoder_output_embeds_type_fp32_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(16421952)))];
1763
  tensor<fp16, []> encoder_output_embeds_type_fp32_epsilon_0_to_fp16 = const()[name = tensor<string, []>("encoder_output_embeds_type_fp32_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
 
1
  program(1.0)
2
+ [buildInfo = dict<tensor<string, []>, tensor<string, []>>({{"coremlc-component-MIL", "3304.5.2"}, {"coremlc-version", "3304.6.2"}, {"coremltools-component-torch", "2.2.2"}, {"coremltools-source-dialect", "TorchScript"}, {"coremltools-version", "7.2"}})]
3
  {
4
  func main<ios16>(tensor<fp16, [1, 80, 1, 3000]> melspectrogram_features) {
5
  tensor<int32, [2]> var_34 = const()[name = tensor<string, []>("op_34"), val = tensor<int32, [2]>([1, 1])];
 
26
  tensor<fp16, [1, 384, 1, 1500]> inputs_1_cast_fp16 = add(x = hidden_states_3_cast_fp16, y = var_108_to_fp16)[name = tensor<string, []>("inputs_1_cast_fp16")];
27
  tensor<int32, []> var_118 = const()[name = tensor<string, []>("op_118"), val = tensor<int32, []>(3)];
28
  tensor<int32, []> var_129 = const()[name = tensor<string, []>("op_129"), val = tensor<int32, []>(1)];
29
+ tensor<int32, [1]> out_1_axes_0 = const()[name = tensor<string, []>("out_1_axes_0"), val = tensor<int32, [1]>([1])];
 
 
 
 
 
 
30
  tensor<fp16, []> var_146_to_fp16 = const()[name = tensor<string, []>("op_146_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
31
+ tensor<fp16, [1, 384, 1, 1500]> out_1_cast_fp16 = layer_norm(axes = out_1_axes_0, epsilon = var_146_to_fp16, x = inputs_1_cast_fp16)[name = tensor<string, []>("out_1_cast_fp16")];
 
 
 
32
  tensor<fp16, [384]> obj_1_mean_0_to_fp16 = const()[name = tensor<string, []>("obj_1_mean_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(2222976)))];
33
  tensor<fp16, [384]> obj_1_variance_0_to_fp16 = const()[name = tensor<string, []>("obj_1_variance_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(2223808)))];
34
  tensor<fp16, [384]> obj_1_gamma_0_to_fp16 = const()[name = tensor<string, []>("obj_1_gamma_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(2224640)))];
 
415
  tensor<fp16, [384]> layers_0_self_attn_o_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_0_self_attn_o_proj_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(3407872)))];
416
  tensor<fp16, [1, 384, 1, 1500]> obj_3_cast_fp16 = conv(bias = layers_0_self_attn_o_proj_bias_to_fp16, dilations = var_610, groups = var_129, pad = obj_3_pad_0, pad_type = obj_3_pad_type_0, strides = var_608, weight = layers_0_self_attn_o_proj_weight_to_fp16, x = input_1_cast_fp16)[name = tensor<string, []>("obj_3_cast_fp16")];
417
  tensor<fp16, [1, 384, 1, 1500]> inputs_3_cast_fp16 = add(x = inputs_1_cast_fp16, y = obj_3_cast_fp16)[name = tensor<string, []>("inputs_3_cast_fp16")];
418
+ tensor<int32, [1]> out_3_axes_0 = const()[name = tensor<string, []>("out_3_axes_0"), val = tensor<int32, [1]>([1])];
 
 
 
 
 
419
  tensor<fp16, []> var_622_to_fp16 = const()[name = tensor<string, []>("op_622_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
420
+ tensor<fp16, [1, 384, 1, 1500]> out_3_cast_fp16 = layer_norm(axes = out_3_axes_0, epsilon = var_622_to_fp16, x = inputs_3_cast_fp16)[name = tensor<string, []>("out_3_cast_fp16")];
 
 
 
421
  tensor<fp16, [384]> input_3_gamma_0_to_fp16 = const()[name = tensor<string, []>("input_3_gamma_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(3408704)))];
422
  tensor<fp16, [384]> input_3_beta_0_to_fp16 = const()[name = tensor<string, []>("input_3_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(3409536)))];
423
  tensor<fp16, []> input_3_epsilon_0_to_fp16 = const()[name = tensor<string, []>("input_3_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
 
441
  tensor<fp16, [1, 384, 1, 1500]> inputs_5_cast_fp16 = add(x = inputs_3_cast_fp16, y = hidden_states_5_cast_fp16)[name = tensor<string, []>("inputs_5_cast_fp16")];
442
  tensor<int32, []> var_651 = const()[name = tensor<string, []>("op_651"), val = tensor<int32, []>(3)];
443
  tensor<int32, []> var_662 = const()[name = tensor<string, []>("op_662"), val = tensor<int32, []>(1)];
444
+ tensor<int32, [1]> out_5_axes_0 = const()[name = tensor<string, []>("out_5_axes_0"), val = tensor<int32, [1]>([1])];
 
 
 
 
 
 
445
  tensor<fp16, []> var_679_to_fp16 = const()[name = tensor<string, []>("op_679_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
446
+ tensor<fp16, [1, 384, 1, 1500]> out_5_cast_fp16 = layer_norm(axes = out_5_axes_0, epsilon = var_679_to_fp16, x = inputs_5_cast_fp16)[name = tensor<string, []>("out_5_cast_fp16")];
 
 
 
447
  tensor<fp16, [384]> obj_5_gamma_0_to_fp16 = const()[name = tensor<string, []>("obj_5_gamma_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(5773760)))];
448
  tensor<fp16, [384]> obj_5_beta_0_to_fp16 = const()[name = tensor<string, []>("obj_5_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(5774592)))];
449
  tensor<fp16, []> obj_5_epsilon_0_to_fp16 = const()[name = tensor<string, []>("obj_5_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
 
828
  tensor<fp16, [384]> layers_1_self_attn_o_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_1_self_attn_o_proj_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(6956992)))];
829
  tensor<fp16, [1, 384, 1, 1500]> obj_7_cast_fp16 = conv(bias = layers_1_self_attn_o_proj_bias_to_fp16, dilations = var_1143, groups = var_662, pad = obj_7_pad_0, pad_type = obj_7_pad_type_0, strides = var_1141, weight = layers_1_self_attn_o_proj_weight_to_fp16, x = input_9_cast_fp16)[name = tensor<string, []>("obj_7_cast_fp16")];
830
  tensor<fp16, [1, 384, 1, 1500]> inputs_7_cast_fp16 = add(x = inputs_5_cast_fp16, y = obj_7_cast_fp16)[name = tensor<string, []>("inputs_7_cast_fp16")];
831
+ tensor<int32, [1]> out_7_axes_0 = const()[name = tensor<string, []>("out_7_axes_0"), val = tensor<int32, [1]>([1])];
 
 
 
 
 
832
  tensor<fp16, []> var_1155_to_fp16 = const()[name = tensor<string, []>("op_1155_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
833
+ tensor<fp16, [1, 384, 1, 1500]> out_7_cast_fp16 = layer_norm(axes = out_7_axes_0, epsilon = var_1155_to_fp16, x = inputs_7_cast_fp16)[name = tensor<string, []>("out_7_cast_fp16")];
 
 
 
834
  tensor<fp16, [384]> input_11_gamma_0_to_fp16 = const()[name = tensor<string, []>("input_11_gamma_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(6957824)))];
835
  tensor<fp16, [384]> input_11_beta_0_to_fp16 = const()[name = tensor<string, []>("input_11_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(6958656)))];
836
  tensor<fp16, []> input_11_epsilon_0_to_fp16 = const()[name = tensor<string, []>("input_11_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
 
854
  tensor<fp16, [1, 384, 1, 1500]> inputs_9_cast_fp16 = add(x = inputs_7_cast_fp16, y = hidden_states_7_cast_fp16)[name = tensor<string, []>("inputs_9_cast_fp16")];
855
  tensor<int32, []> var_1184 = const()[name = tensor<string, []>("op_1184"), val = tensor<int32, []>(3)];
856
  tensor<int32, []> var_1195 = const()[name = tensor<string, []>("op_1195"), val = tensor<int32, []>(1)];
857
+ tensor<int32, [1]> out_9_axes_0 = const()[name = tensor<string, []>("out_9_axes_0"), val = tensor<int32, [1]>([1])];
 
 
 
 
 
 
858
  tensor<fp16, []> var_1212_to_fp16 = const()[name = tensor<string, []>("op_1212_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
859
+ tensor<fp16, [1, 384, 1, 1500]> out_9_cast_fp16 = layer_norm(axes = out_9_axes_0, epsilon = var_1212_to_fp16, x = inputs_9_cast_fp16)[name = tensor<string, []>("out_9_cast_fp16")];
 
 
 
860
  tensor<fp16, [384]> obj_9_gamma_0_to_fp16 = const()[name = tensor<string, []>("obj_9_gamma_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(9322880)))];
861
  tensor<fp16, [384]> obj_9_beta_0_to_fp16 = const()[name = tensor<string, []>("obj_9_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(9323712)))];
862
  tensor<fp16, []> obj_9_epsilon_0_to_fp16 = const()[name = tensor<string, []>("obj_9_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
 
1241
  tensor<fp16, [384]> layers_2_self_attn_o_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_2_self_attn_o_proj_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(10506112)))];
1242
  tensor<fp16, [1, 384, 1, 1500]> obj_11_cast_fp16 = conv(bias = layers_2_self_attn_o_proj_bias_to_fp16, dilations = var_1676, groups = var_1195, pad = obj_11_pad_0, pad_type = obj_11_pad_type_0, strides = var_1674, weight = layers_2_self_attn_o_proj_weight_to_fp16, x = input_17_cast_fp16)[name = tensor<string, []>("obj_11_cast_fp16")];
1243
  tensor<fp16, [1, 384, 1, 1500]> inputs_11_cast_fp16 = add(x = inputs_9_cast_fp16, y = obj_11_cast_fp16)[name = tensor<string, []>("inputs_11_cast_fp16")];
1244
+ tensor<int32, [1]> out_11_axes_0 = const()[name = tensor<string, []>("out_11_axes_0"), val = tensor<int32, [1]>([1])];
 
 
 
 
 
1245
  tensor<fp16, []> var_1688_to_fp16 = const()[name = tensor<string, []>("op_1688_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
1246
+ tensor<fp16, [1, 384, 1, 1500]> out_11_cast_fp16 = layer_norm(axes = out_11_axes_0, epsilon = var_1688_to_fp16, x = inputs_11_cast_fp16)[name = tensor<string, []>("out_11_cast_fp16")];
 
 
 
1247
  tensor<fp16, [384]> input_19_gamma_0_to_fp16 = const()[name = tensor<string, []>("input_19_gamma_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(10506944)))];
1248
  tensor<fp16, [384]> input_19_beta_0_to_fp16 = const()[name = tensor<string, []>("input_19_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(10507776)))];
1249
  tensor<fp16, []> input_19_epsilon_0_to_fp16 = const()[name = tensor<string, []>("input_19_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
 
1267
  tensor<fp16, [1, 384, 1, 1500]> inputs_13_cast_fp16 = add(x = inputs_11_cast_fp16, y = hidden_states_9_cast_fp16)[name = tensor<string, []>("inputs_13_cast_fp16")];
1268
  tensor<int32, []> var_1717 = const()[name = tensor<string, []>("op_1717"), val = tensor<int32, []>(3)];
1269
  tensor<int32, []> var_1728 = const()[name = tensor<string, []>("op_1728"), val = tensor<int32, []>(1)];
1270
+ tensor<int32, [1]> out_13_axes_0 = const()[name = tensor<string, []>("out_13_axes_0"), val = tensor<int32, [1]>([1])];
 
 
 
 
 
 
1271
  tensor<fp16, []> var_1745_to_fp16 = const()[name = tensor<string, []>("op_1745_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
1272
+ tensor<fp16, [1, 384, 1, 1500]> out_13_cast_fp16 = layer_norm(axes = out_13_axes_0, epsilon = var_1745_to_fp16, x = inputs_13_cast_fp16)[name = tensor<string, []>("out_13_cast_fp16")];
 
 
 
1273
  tensor<fp16, [384]> obj_13_gamma_0_to_fp16 = const()[name = tensor<string, []>("obj_13_gamma_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(12872000)))];
1274
  tensor<fp16, [384]> obj_13_beta_0_to_fp16 = const()[name = tensor<string, []>("obj_13_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(12872832)))];
1275
  tensor<fp16, []> obj_13_epsilon_0_to_fp16 = const()[name = tensor<string, []>("obj_13_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
 
1654
  tensor<fp16, [384]> layers_3_self_attn_o_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_3_self_attn_o_proj_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(14055232)))];
1655
  tensor<fp16, [1, 384, 1, 1500]> obj_cast_fp16 = conv(bias = layers_3_self_attn_o_proj_bias_to_fp16, dilations = var_2209, groups = var_1728, pad = obj_pad_0, pad_type = obj_pad_type_0, strides = var_2207, weight = layers_3_self_attn_o_proj_weight_to_fp16, x = input_25_cast_fp16)[name = tensor<string, []>("obj_cast_fp16")];
1656
  tensor<fp16, [1, 384, 1, 1500]> inputs_15_cast_fp16 = add(x = inputs_13_cast_fp16, y = obj_cast_fp16)[name = tensor<string, []>("inputs_15_cast_fp16")];
1657
+ tensor<int32, [1]> out_15_axes_0 = const()[name = tensor<string, []>("out_15_axes_0"), val = tensor<int32, [1]>([1])];
 
 
 
 
 
1658
  tensor<fp16, []> var_2221_to_fp16 = const()[name = tensor<string, []>("op_2221_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
1659
+ tensor<fp16, [1, 384, 1, 1500]> out_15_cast_fp16 = layer_norm(axes = out_15_axes_0, epsilon = var_2221_to_fp16, x = inputs_15_cast_fp16)[name = tensor<string, []>("out_15_cast_fp16")];
 
 
 
1660
  tensor<fp16, [384]> input_27_gamma_0_to_fp16 = const()[name = tensor<string, []>("input_27_gamma_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(14056064)))];
1661
  tensor<fp16, [384]> input_27_beta_0_to_fp16 = const()[name = tensor<string, []>("input_27_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(14056896)))];
1662
  tensor<fp16, []> input_27_epsilon_0_to_fp16 = const()[name = tensor<string, []>("input_27_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
 
1678
  tensor<fp16, [384]> layers_3_fc2_bias_to_fp16 = const()[name = tensor<string, []>("layers_3_fc2_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(16420288)))];
1679
  tensor<fp16, [1, 384, 1, 1500]> hidden_states_cast_fp16 = conv(bias = layers_3_fc2_bias_to_fp16, dilations = var_2243, groups = var_1728, pad = hidden_states_pad_0, pad_type = hidden_states_pad_type_0, strides = var_2241, weight = layers_3_fc2_weight_to_fp16, x = input_cast_fp16)[name = tensor<string, []>("hidden_states_cast_fp16")];
1680
  tensor<fp16, [1, 384, 1, 1500]> inputs_cast_fp16 = add(x = inputs_15_cast_fp16, y = hidden_states_cast_fp16)[name = tensor<string, []>("inputs_cast_fp16")];
1681
+ tensor<int32, [1]> out_axes_0 = const()[name = tensor<string, []>("out_axes_0"), val = tensor<int32, [1]>([1])];
 
 
 
 
 
 
1682
  tensor<fp16, []> var_2259_to_fp16 = const()[name = tensor<string, []>("op_2259_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
1683
+ tensor<fp16, [1, 384, 1, 1500]> out_cast_fp16 = layer_norm(axes = out_axes_0, epsilon = var_2259_to_fp16, x = inputs_cast_fp16)[name = tensor<string, []>("out_cast_fp16")];
 
 
 
1684
  tensor<fp16, [384]> encoder_output_embeds_type_fp32_gamma_0_to_fp16 = const()[name = tensor<string, []>("encoder_output_embeds_type_fp32_gamma_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(16421120)))];
1685
  tensor<fp16, [384]> encoder_output_embeds_type_fp32_beta_0_to_fp16 = const()[name = tensor<string, []>("encoder_output_embeds_type_fp32_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(16421952)))];
1686
  tensor<fp16, []> encoder_output_embeds_type_fp32_epsilon_0_to_fp16 = const()[name = tensor<string, []>("encoder_output_embeds_type_fp32_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
openai_whisper-tiny.en/AudioEncoder.mlmodelc/weights/weight.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:903c9e16f458bac34caf4eacad6bcb4c47e59ab3eead6091bcdd5c0374311d46
3
  size 16422784
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:86a53cab0dcd92efa0d89803401347c8119203aac37f336d5a699c0587d01c48
3
  size 16422784
openai_whisper-tiny.en/MelSpectrogram.mlmodelc/analytics/coremldata.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:9ffbb7e8703e87c9d31219d6f7535fba26ddf4bb9c76cb7668ba4b7ae936be68
3
  size 243
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2fc2d0799af479af957359c81021ff6a464d3251b3415064f8d2c6403cbea68f
3
  size 243
openai_whisper-tiny.en/MelSpectrogram.mlmodelc/coremldata.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:5134062ebf286b76a4482eb57ce0378e1d7b961e3f44b7b4de1dbc6376278fcb
3
  size 328
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c977c1199f029235ab96a7dc394e5c5c6d2b606d333f2cab46df750a4df89329
3
  size 328
openai_whisper-tiny.en/MelSpectrogram.mlmodelc/metadata.json CHANGED
@@ -50,8 +50,8 @@
50
  },
51
  "userDefinedMetadata" : {
52
  "com.github.apple.coremltools.source_dialect" : "TorchScript",
53
- "com.github.apple.coremltools.source" : "torch==2.2.2",
54
- "com.github.apple.coremltools.version" : "7.1"
55
  },
56
  "inputSchema" : [
57
  {
 
50
  },
51
  "userDefinedMetadata" : {
52
  "com.github.apple.coremltools.source_dialect" : "TorchScript",
53
+ "com.github.apple.coremltools.version" : "7.2",
54
+ "com.github.apple.coremltools.source" : "torch==2.2.2"
55
  },
56
  "inputSchema" : [
57
  {
openai_whisper-tiny.en/MelSpectrogram.mlmodelc/model.mil CHANGED
@@ -1,13 +1,13 @@
1
  program(1.0)
2
- [buildInfo = dict<tensor<string, []>, tensor<string, []>>({{"coremlc-component-MIL", "5.33.5"}, {"coremlc-version", "1877.40.3"}, {"coremltools-component-torch", "2.2.2"}, {"coremltools-source-dialect", "TorchScript"}, {"coremltools-version", "7.1"}})]
3
  {
4
  func main<ios16>(tensor<fp16, [480000]> audio) {
5
  tensor<int32, [3]> var_10 = const()[name = tensor<string, []>("op_10"), val = tensor<int32, [3]>([1, 1, 480000])];
6
  tensor<fp16, [1, 1, 480000]> input_1_cast_fp16 = reshape(shape = var_10, x = audio)[name = tensor<string, []>("input_1_cast_fp16")];
7
  tensor<int32, [6]> input_3_pad_0 = const()[name = tensor<string, []>("input_3_pad_0"), val = tensor<int32, [6]>([0, 0, 0, 0, 200, 200])];
8
  tensor<string, []> input_3_mode_0 = const()[name = tensor<string, []>("input_3_mode_0"), val = tensor<string, []>("reflect")];
9
- tensor<fp16, []> input_3_constant_val_0_to_fp16 = const()[name = tensor<string, []>("input_3_constant_val_0_to_fp16"), val = tensor<fp16, []>(0x0p+0)];
10
- tensor<fp16, [1, 1, 480400]> input_3_cast_fp16 = pad(constant_val = input_3_constant_val_0_to_fp16, mode = input_3_mode_0, pad = input_3_pad_0, x = input_1_cast_fp16)[name = tensor<string, []>("input_3_cast_fp16")];
11
  tensor<int32, [1]> var_22 = const()[name = tensor<string, []>("op_22"), val = tensor<int32, [1]>([480400])];
12
  tensor<fp16, [480400]> input_cast_fp16 = reshape(shape = var_22, x = input_3_cast_fp16)[name = tensor<string, []>("input_cast_fp16")];
13
  tensor<int32, [1]> expand_dims_0_axes_0 = const()[name = tensor<string, []>("expand_dims_0_axes_0"), val = tensor<int32, [1]>([0])];
 
1
  program(1.0)
2
+ [buildInfo = dict<tensor<string, []>, tensor<string, []>>({{"coremlc-component-MIL", "3304.5.2"}, {"coremlc-version", "3304.6.2"}, {"coremltools-component-torch", "2.2.2"}, {"coremltools-source-dialect", "TorchScript"}, {"coremltools-version", "7.2"}})]
3
  {
4
  func main<ios16>(tensor<fp16, [480000]> audio) {
5
  tensor<int32, [3]> var_10 = const()[name = tensor<string, []>("op_10"), val = tensor<int32, [3]>([1, 1, 480000])];
6
  tensor<fp16, [1, 1, 480000]> input_1_cast_fp16 = reshape(shape = var_10, x = audio)[name = tensor<string, []>("input_1_cast_fp16")];
7
  tensor<int32, [6]> input_3_pad_0 = const()[name = tensor<string, []>("input_3_pad_0"), val = tensor<int32, [6]>([0, 0, 0, 0, 200, 200])];
8
  tensor<string, []> input_3_mode_0 = const()[name = tensor<string, []>("input_3_mode_0"), val = tensor<string, []>("reflect")];
9
+ tensor<fp16, []> const_1_to_fp16 = const()[name = tensor<string, []>("const_1_to_fp16"), val = tensor<fp16, []>(0x0p+0)];
10
+ tensor<fp16, [1, 1, 480400]> input_3_cast_fp16 = pad(constant_val = const_1_to_fp16, mode = input_3_mode_0, pad = input_3_pad_0, x = input_1_cast_fp16)[name = tensor<string, []>("input_3_cast_fp16")];
11
  tensor<int32, [1]> var_22 = const()[name = tensor<string, []>("op_22"), val = tensor<int32, [1]>([480400])];
12
  tensor<fp16, [480400]> input_cast_fp16 = reshape(shape = var_22, x = input_3_cast_fp16)[name = tensor<string, []>("input_cast_fp16")];
13
  tensor<int32, [1]> expand_dims_0_axes_0 = const()[name = tensor<string, []>("expand_dims_0_axes_0"), val = tensor<int32, [1]>([0])];
openai_whisper-tiny.en/MelSpectrogram.mlmodelc/weights/weight.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:7c63f309e59166f308c1243178fd5ff7e5b169c4291c6fafd9cbff98aa831674
3
  size 354080
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a3afe232689fe92b1958d124f42f9ccf43e611ce1055e584190d40f11dc5a3d6
3
  size 354080
openai_whisper-tiny.en/TextDecoder.mlmodelc/analytics/coremldata.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:bf65ffd583b31ee4c16f0c9812e705fbab7f8cb4797ec43210b27ef6fdc43d76
3
  size 243
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a3e8ecb0c4fc6f8c91c97b3a8b15fb84715aaa68d64fbe125553224c0c64c743
3
  size 243
openai_whisper-tiny.en/TextDecoder.mlmodelc/coremldata.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:47c8915461107bdac7eeb0087b0e8830368ec86f79816312ddb6ee690d97137a
3
  size 633
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d8bae9187c5fb7e29a7cb0c8aa2c753e82040ba85403c2dbad6dd30f9a6a008d
3
  size 633
openai_whisper-tiny.en/TextDecoder.mlmodelc/metadata.json CHANGED
@@ -51,18 +51,18 @@
51
  "mlProgramOperationTypeHistogram" : {
52
  "Split" : 2,
53
  "Concat" : 3,
54
- "Ios16.rsqrt" : 13,
55
- "Ios16.mul" : 50,
56
  "Squeeze" : 1,
 
 
57
  "SliceByIndex" : 16,
58
- "Ios16.sub" : 14,
59
  "Transpose" : 1,
60
  "Ios16.conv" : 40,
61
- "Ios16.add" : 38,
62
  "Ios16.linear" : 1,
63
  "Ios16.matmul" : 16,
64
  "Ios16.gelu" : 4,
65
- "Ios16.reduceMean" : 27,
66
  "ExpandDims" : 6,
67
  "Ios16.batchNorm" : 13,
68
  "Ios16.gather" : 2,
@@ -85,7 +85,7 @@
85
  "userDefinedMetadata" : {
86
  "com.github.apple.coremltools.source_dialect" : "TorchScript",
87
  "com.github.apple.coremltools.source" : "torch==2.2.2",
88
- "com.github.apple.coremltools.version" : "7.1"
89
  },
90
  "inputSchema" : [
91
  {
 
51
  "mlProgramOperationTypeHistogram" : {
52
  "Split" : 2,
53
  "Concat" : 3,
 
 
54
  "Squeeze" : 1,
55
+ "Ios16.mul" : 24,
56
+ "Ios16.layerNorm" : 13,
57
  "SliceByIndex" : 16,
58
+ "Ios16.sub" : 1,
59
  "Transpose" : 1,
60
  "Ios16.conv" : 40,
61
+ "Ios16.add" : 25,
62
  "Ios16.linear" : 1,
63
  "Ios16.matmul" : 16,
64
  "Ios16.gelu" : 4,
65
+ "Ios16.reduceMean" : 1,
66
  "ExpandDims" : 6,
67
  "Ios16.batchNorm" : 13,
68
  "Ios16.gather" : 2,
 
85
  "userDefinedMetadata" : {
86
  "com.github.apple.coremltools.source_dialect" : "TorchScript",
87
  "com.github.apple.coremltools.source" : "torch==2.2.2",
88
+ "com.github.apple.coremltools.version" : "7.2"
89
  },
90
  "inputSchema" : [
91
  {
openai_whisper-tiny.en/TextDecoder.mlmodelc/model.mil CHANGED
@@ -1,5 +1,5 @@
1
  program(1.0)
2
- [buildInfo = dict<tensor<string, []>, tensor<string, []>>({{"coremlc-component-MIL", "5.33.5"}, {"coremlc-version", "1877.40.3"}, {"coremltools-component-torch", "2.2.2"}, {"coremltools-source-dialect", "TorchScript"}, {"coremltools-version", "7.1"}})]
3
  {
4
  func main<ios16>(tensor<int32, [1]> cache_length, tensor<fp16, [1, 448]> decoder_key_padding_mask, tensor<fp16, [1, 384, 1, 1500]> encoder_output_embeds, tensor<int32, [1]> input_ids, tensor<fp16, [1, 1536, 1, 448]> key_cache, tensor<fp16, [1, 448]> kv_cache_update_mask, tensor<fp16, [1, 1536, 1, 448]> value_cache) {
5
  tensor<int32, []> var_24_axis_0 = const()[name = tensor<string, []>("op_24_axis_0"), val = tensor<int32, []>(0)];
@@ -23,18 +23,9 @@ program(1.0)
23
  tensor<fp16, [1, 384, 1, 448]> var_54_cast_fp16_0, tensor<fp16, [1, 384, 1, 448]> var_54_cast_fp16_1, tensor<fp16, [1, 384, 1, 448]> var_54_cast_fp16_2, tensor<fp16, [1, 384, 1, 448]> var_54_cast_fp16_3 = split(axis = var_54_axis_0, split_sizes = tile_1, x = value_cache)[name = tensor<string, []>("op_54_cast_fp16")];
24
  tensor<int32, []> var_64 = const()[name = tensor<string, []>("op_64"), val = tensor<int32, []>(3)];
25
  tensor<int32, []> var_71 = const()[name = tensor<string, []>("op_71"), val = tensor<int32, []>(1)];
26
- tensor<bool, []> var_72 = const()[name = tensor<string, []>("op_72"), val = tensor<bool, []>(true)];
27
- tensor<int32, [1]> var_84 = const()[name = tensor<string, []>("op_84"), val = tensor<int32, [1]>([1])];
28
- tensor<fp16, [1, 1, 1, 1]> channels_mean_1_cast_fp16 = reduce_mean(axes = var_84, keep_dims = var_72, x = inputs_1_cast_fp16)[name = tensor<string, []>("channels_mean_1_cast_fp16")];
29
- tensor<fp16, [1, 384, 1, 1]> zero_mean_1_cast_fp16 = sub(x = inputs_1_cast_fp16, y = channels_mean_1_cast_fp16)[name = tensor<string, []>("zero_mean_1_cast_fp16")];
30
- tensor<fp16, [1, 384, 1, 1]> zero_mean_sq_1_cast_fp16 = mul(x = zero_mean_1_cast_fp16, y = zero_mean_1_cast_fp16)[name = tensor<string, []>("zero_mean_sq_1_cast_fp16")];
31
- tensor<int32, [1]> var_88 = const()[name = tensor<string, []>("op_88"), val = tensor<int32, [1]>([1])];
32
- tensor<fp16, [1, 1, 1, 1]> var_89_cast_fp16 = reduce_mean(axes = var_88, keep_dims = var_72, x = zero_mean_sq_1_cast_fp16)[name = tensor<string, []>("op_89_cast_fp16")];
33
  tensor<fp16, []> var_90_to_fp16 = const()[name = tensor<string, []>("op_90_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
34
- tensor<fp16, [1, 1, 1, 1]> var_91_cast_fp16 = add(x = var_89_cast_fp16, y = var_90_to_fp16)[name = tensor<string, []>("op_91_cast_fp16")];
35
- tensor<fp16, []> denom_1_epsilon_0_to_fp16 = const()[name = tensor<string, []>("denom_1_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1p-24)];
36
- tensor<fp16, [1, 1, 1, 1]> denom_1_cast_fp16 = rsqrt(epsilon = denom_1_epsilon_0_to_fp16, x = var_91_cast_fp16)[name = tensor<string, []>("denom_1_cast_fp16")];
37
- tensor<fp16, [1, 384, 1, 1]> out_1_cast_fp16 = mul(x = zero_mean_1_cast_fp16, y = denom_1_cast_fp16)[name = tensor<string, []>("out_1_cast_fp16")];
38
  tensor<fp16, [384]> obj_1_mean_0_to_fp16 = const()[name = tensor<string, []>("obj_1_mean_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(40175808)))];
39
  tensor<fp16, [384]> obj_1_variance_0_to_fp16 = const()[name = tensor<string, []>("obj_1_variance_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(40176640)))];
40
  tensor<fp16, [384]> obj_1_gamma_0_to_fp16 = const()[name = tensor<string, []>("obj_1_gamma_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(40177472)))];
@@ -103,17 +94,9 @@ program(1.0)
103
  tensor<fp16, [384]> layers_0_self_attn_o_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_0_self_attn_o_proj_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(41360704)))];
104
  tensor<fp16, [1, 384, 1, 1]> obj_7_cast_fp16 = conv(bias = layers_0_self_attn_o_proj_bias_to_fp16, dilations = var_161, groups = var_71, pad = obj_7_pad_0, pad_type = obj_7_pad_type_0, strides = var_159, weight = layers_0_self_attn_o_proj_weight_to_fp16, x = input_1_cast_fp16)[name = tensor<string, []>("obj_7_cast_fp16")];
105
  tensor<fp16, [1, 384, 1, 1]> inputs_3_cast_fp16 = add(x = inputs_1_cast_fp16, y = obj_7_cast_fp16)[name = tensor<string, []>("inputs_3_cast_fp16")];
106
- tensor<int32, [1]> var_171 = const()[name = tensor<string, []>("op_171"), val = tensor<int32, [1]>([1])];
107
- tensor<fp16, [1, 1, 1, 1]> channels_mean_3_cast_fp16 = reduce_mean(axes = var_171, keep_dims = var_72, x = inputs_3_cast_fp16)[name = tensor<string, []>("channels_mean_3_cast_fp16")];
108
- tensor<fp16, [1, 384, 1, 1]> zero_mean_3_cast_fp16 = sub(x = inputs_3_cast_fp16, y = channels_mean_3_cast_fp16)[name = tensor<string, []>("zero_mean_3_cast_fp16")];
109
- tensor<fp16, [1, 384, 1, 1]> zero_mean_sq_3_cast_fp16 = mul(x = zero_mean_3_cast_fp16, y = zero_mean_3_cast_fp16)[name = tensor<string, []>("zero_mean_sq_3_cast_fp16")];
110
- tensor<int32, [1]> var_175 = const()[name = tensor<string, []>("op_175"), val = tensor<int32, [1]>([1])];
111
- tensor<fp16, [1, 1, 1, 1]> var_176_cast_fp16 = reduce_mean(axes = var_175, keep_dims = var_72, x = zero_mean_sq_3_cast_fp16)[name = tensor<string, []>("op_176_cast_fp16")];
112
  tensor<fp16, []> var_177_to_fp16 = const()[name = tensor<string, []>("op_177_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
113
- tensor<fp16, [1, 1, 1, 1]> var_178_cast_fp16 = add(x = var_176_cast_fp16, y = var_177_to_fp16)[name = tensor<string, []>("op_178_cast_fp16")];
114
- tensor<fp16, []> denom_3_epsilon_0_to_fp16 = const()[name = tensor<string, []>("denom_3_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1p-24)];
115
- tensor<fp16, [1, 1, 1, 1]> denom_3_cast_fp16 = rsqrt(epsilon = denom_3_epsilon_0_to_fp16, x = var_178_cast_fp16)[name = tensor<string, []>("denom_3_cast_fp16")];
116
- tensor<fp16, [1, 384, 1, 1]> out_3_cast_fp16 = mul(x = zero_mean_3_cast_fp16, y = denom_3_cast_fp16)[name = tensor<string, []>("out_3_cast_fp16")];
117
  tensor<fp16, [384]> obj_9_gamma_0_to_fp16 = const()[name = tensor<string, []>("obj_9_gamma_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(41361536)))];
118
  tensor<fp16, [384]> obj_9_beta_0_to_fp16 = const()[name = tensor<string, []>("obj_9_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(41362368)))];
119
  tensor<fp16, []> obj_9_epsilon_0_to_fp16 = const()[name = tensor<string, []>("obj_9_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
@@ -163,17 +146,9 @@ program(1.0)
163
  tensor<fp16, [384]> layers_0_encoder_attn_o_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_0_encoder_attn_o_proj_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(42544768)))];
164
  tensor<fp16, [1, 384, 1, 1]> obj_11_cast_fp16 = conv(bias = layers_0_encoder_attn_o_proj_bias_to_fp16, dilations = var_231, groups = var_71, pad = obj_11_pad_0, pad_type = obj_11_pad_type_0, strides = var_229, weight = layers_0_encoder_attn_o_proj_weight_to_fp16, x = input_3_cast_fp16)[name = tensor<string, []>("obj_11_cast_fp16")];
165
  tensor<fp16, [1, 384, 1, 1]> inputs_5_cast_fp16 = add(x = inputs_3_cast_fp16, y = obj_11_cast_fp16)[name = tensor<string, []>("inputs_5_cast_fp16")];
166
- tensor<int32, [1]> var_237 = const()[name = tensor<string, []>("op_237"), val = tensor<int32, [1]>([1])];
167
- tensor<fp16, [1, 1, 1, 1]> channels_mean_5_cast_fp16 = reduce_mean(axes = var_237, keep_dims = var_72, x = inputs_5_cast_fp16)[name = tensor<string, []>("channels_mean_5_cast_fp16")];
168
- tensor<fp16, [1, 384, 1, 1]> zero_mean_5_cast_fp16 = sub(x = inputs_5_cast_fp16, y = channels_mean_5_cast_fp16)[name = tensor<string, []>("zero_mean_5_cast_fp16")];
169
- tensor<fp16, [1, 384, 1, 1]> zero_mean_sq_5_cast_fp16 = mul(x = zero_mean_5_cast_fp16, y = zero_mean_5_cast_fp16)[name = tensor<string, []>("zero_mean_sq_5_cast_fp16")];
170
- tensor<int32, [1]> var_241 = const()[name = tensor<string, []>("op_241"), val = tensor<int32, [1]>([1])];
171
- tensor<fp16, [1, 1, 1, 1]> var_242_cast_fp16 = reduce_mean(axes = var_241, keep_dims = var_72, x = zero_mean_sq_5_cast_fp16)[name = tensor<string, []>("op_242_cast_fp16")];
172
  tensor<fp16, []> var_243_to_fp16 = const()[name = tensor<string, []>("op_243_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
173
- tensor<fp16, [1, 1, 1, 1]> var_244_cast_fp16 = add(x = var_242_cast_fp16, y = var_243_to_fp16)[name = tensor<string, []>("op_244_cast_fp16")];
174
- tensor<fp16, []> denom_5_epsilon_0_to_fp16 = const()[name = tensor<string, []>("denom_5_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1p-24)];
175
- tensor<fp16, [1, 1, 1, 1]> denom_5_cast_fp16 = rsqrt(epsilon = denom_5_epsilon_0_to_fp16, x = var_244_cast_fp16)[name = tensor<string, []>("denom_5_cast_fp16")];
176
- tensor<fp16, [1, 384, 1, 1]> out_5_cast_fp16 = mul(x = zero_mean_5_cast_fp16, y = denom_5_cast_fp16)[name = tensor<string, []>("out_5_cast_fp16")];
177
  tensor<fp16, [384]> input_5_gamma_0_to_fp16 = const()[name = tensor<string, []>("input_5_gamma_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(42545600)))];
178
  tensor<fp16, [384]> input_5_beta_0_to_fp16 = const()[name = tensor<string, []>("input_5_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(42546432)))];
179
  tensor<fp16, []> input_5_epsilon_0_to_fp16 = const()[name = tensor<string, []>("input_5_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
@@ -197,18 +172,9 @@ program(1.0)
197
  tensor<fp16, [1, 384, 1, 1]> inputs_7_cast_fp16 = add(x = inputs_5_cast_fp16, y = hidden_states_3_cast_fp16)[name = tensor<string, []>("inputs_7_cast_fp16")];
198
  tensor<int32, []> var_278 = const()[name = tensor<string, []>("op_278"), val = tensor<int32, []>(3)];
199
  tensor<int32, []> var_285 = const()[name = tensor<string, []>("op_285"), val = tensor<int32, []>(1)];
200
- tensor<bool, []> var_286 = const()[name = tensor<string, []>("op_286"), val = tensor<bool, []>(true)];
201
- tensor<int32, [1]> var_298 = const()[name = tensor<string, []>("op_298"), val = tensor<int32, [1]>([1])];
202
- tensor<fp16, [1, 1, 1, 1]> channels_mean_7_cast_fp16 = reduce_mean(axes = var_298, keep_dims = var_286, x = inputs_7_cast_fp16)[name = tensor<string, []>("channels_mean_7_cast_fp16")];
203
- tensor<fp16, [1, 384, 1, 1]> zero_mean_7_cast_fp16 = sub(x = inputs_7_cast_fp16, y = channels_mean_7_cast_fp16)[name = tensor<string, []>("zero_mean_7_cast_fp16")];
204
- tensor<fp16, [1, 384, 1, 1]> zero_mean_sq_7_cast_fp16 = mul(x = zero_mean_7_cast_fp16, y = zero_mean_7_cast_fp16)[name = tensor<string, []>("zero_mean_sq_7_cast_fp16")];
205
- tensor<int32, [1]> var_302 = const()[name = tensor<string, []>("op_302"), val = tensor<int32, [1]>([1])];
206
- tensor<fp16, [1, 1, 1, 1]> var_303_cast_fp16 = reduce_mean(axes = var_302, keep_dims = var_286, x = zero_mean_sq_7_cast_fp16)[name = tensor<string, []>("op_303_cast_fp16")];
207
  tensor<fp16, []> var_304_to_fp16 = const()[name = tensor<string, []>("op_304_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
208
- tensor<fp16, [1, 1, 1, 1]> var_305_cast_fp16 = add(x = var_303_cast_fp16, y = var_304_to_fp16)[name = tensor<string, []>("op_305_cast_fp16")];
209
- tensor<fp16, []> denom_7_epsilon_0_to_fp16 = const()[name = tensor<string, []>("denom_7_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1p-24)];
210
- tensor<fp16, [1, 1, 1, 1]> denom_7_cast_fp16 = rsqrt(epsilon = denom_7_epsilon_0_to_fp16, x = var_305_cast_fp16)[name = tensor<string, []>("denom_7_cast_fp16")];
211
- tensor<fp16, [1, 384, 1, 1]> out_7_cast_fp16 = mul(x = zero_mean_7_cast_fp16, y = denom_7_cast_fp16)[name = tensor<string, []>("out_7_cast_fp16")];
212
  tensor<fp16, [384]> obj_15_gamma_0_to_fp16 = const()[name = tensor<string, []>("obj_15_gamma_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(44910656)))];
213
  tensor<fp16, [384]> obj_15_beta_0_to_fp16 = const()[name = tensor<string, []>("obj_15_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(44911488)))];
214
  tensor<fp16, []> obj_15_epsilon_0_to_fp16 = const()[name = tensor<string, []>("obj_15_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
@@ -265,17 +231,9 @@ program(1.0)
265
  tensor<fp16, [384]> layers_1_self_attn_o_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_1_self_attn_o_proj_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(46093888)))];
266
  tensor<fp16, [1, 384, 1, 1]> obj_21_cast_fp16 = conv(bias = layers_1_self_attn_o_proj_bias_to_fp16, dilations = var_375, groups = var_285, pad = obj_21_pad_0, pad_type = obj_21_pad_type_0, strides = var_373, weight = layers_1_self_attn_o_proj_weight_to_fp16, x = input_11_cast_fp16)[name = tensor<string, []>("obj_21_cast_fp16")];
267
  tensor<fp16, [1, 384, 1, 1]> inputs_9_cast_fp16 = add(x = inputs_7_cast_fp16, y = obj_21_cast_fp16)[name = tensor<string, []>("inputs_9_cast_fp16")];
268
- tensor<int32, [1]> var_385 = const()[name = tensor<string, []>("op_385"), val = tensor<int32, [1]>([1])];
269
- tensor<fp16, [1, 1, 1, 1]> channels_mean_9_cast_fp16 = reduce_mean(axes = var_385, keep_dims = var_286, x = inputs_9_cast_fp16)[name = tensor<string, []>("channels_mean_9_cast_fp16")];
270
- tensor<fp16, [1, 384, 1, 1]> zero_mean_9_cast_fp16 = sub(x = inputs_9_cast_fp16, y = channels_mean_9_cast_fp16)[name = tensor<string, []>("zero_mean_9_cast_fp16")];
271
- tensor<fp16, [1, 384, 1, 1]> zero_mean_sq_9_cast_fp16 = mul(x = zero_mean_9_cast_fp16, y = zero_mean_9_cast_fp16)[name = tensor<string, []>("zero_mean_sq_9_cast_fp16")];
272
- tensor<int32, [1]> var_389 = const()[name = tensor<string, []>("op_389"), val = tensor<int32, [1]>([1])];
273
- tensor<fp16, [1, 1, 1, 1]> var_390_cast_fp16 = reduce_mean(axes = var_389, keep_dims = var_286, x = zero_mean_sq_9_cast_fp16)[name = tensor<string, []>("op_390_cast_fp16")];
274
  tensor<fp16, []> var_391_to_fp16 = const()[name = tensor<string, []>("op_391_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
275
- tensor<fp16, [1, 1, 1, 1]> var_392_cast_fp16 = add(x = var_390_cast_fp16, y = var_391_to_fp16)[name = tensor<string, []>("op_392_cast_fp16")];
276
- tensor<fp16, []> denom_9_epsilon_0_to_fp16 = const()[name = tensor<string, []>("denom_9_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1p-24)];
277
- tensor<fp16, [1, 1, 1, 1]> denom_9_cast_fp16 = rsqrt(epsilon = denom_9_epsilon_0_to_fp16, x = var_392_cast_fp16)[name = tensor<string, []>("denom_9_cast_fp16")];
278
- tensor<fp16, [1, 384, 1, 1]> out_9_cast_fp16 = mul(x = zero_mean_9_cast_fp16, y = denom_9_cast_fp16)[name = tensor<string, []>("out_9_cast_fp16")];
279
  tensor<fp16, [384]> obj_23_gamma_0_to_fp16 = const()[name = tensor<string, []>("obj_23_gamma_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(46094720)))];
280
  tensor<fp16, [384]> obj_23_beta_0_to_fp16 = const()[name = tensor<string, []>("obj_23_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(46095552)))];
281
  tensor<fp16, []> obj_23_epsilon_0_to_fp16 = const()[name = tensor<string, []>("obj_23_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
@@ -325,17 +283,9 @@ program(1.0)
325
  tensor<fp16, [384]> layers_1_encoder_attn_o_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_1_encoder_attn_o_proj_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(47277952)))];
326
  tensor<fp16, [1, 384, 1, 1]> obj_25_cast_fp16 = conv(bias = layers_1_encoder_attn_o_proj_bias_to_fp16, dilations = var_445, groups = var_285, pad = obj_25_pad_0, pad_type = obj_25_pad_type_0, strides = var_443, weight = layers_1_encoder_attn_o_proj_weight_to_fp16, x = input_13_cast_fp16)[name = tensor<string, []>("obj_25_cast_fp16")];
327
  tensor<fp16, [1, 384, 1, 1]> inputs_11_cast_fp16 = add(x = inputs_9_cast_fp16, y = obj_25_cast_fp16)[name = tensor<string, []>("inputs_11_cast_fp16")];
328
- tensor<int32, [1]> var_454 = const()[name = tensor<string, []>("op_454"), val = tensor<int32, [1]>([1])];
329
- tensor<fp16, [1, 1, 1, 1]> channels_mean_11_cast_fp16 = reduce_mean(axes = var_454, keep_dims = var_286, x = inputs_11_cast_fp16)[name = tensor<string, []>("channels_mean_11_cast_fp16")];
330
- tensor<fp16, [1, 384, 1, 1]> zero_mean_11_cast_fp16 = sub(x = inputs_11_cast_fp16, y = channels_mean_11_cast_fp16)[name = tensor<string, []>("zero_mean_11_cast_fp16")];
331
- tensor<fp16, [1, 384, 1, 1]> zero_mean_sq_11_cast_fp16 = mul(x = zero_mean_11_cast_fp16, y = zero_mean_11_cast_fp16)[name = tensor<string, []>("zero_mean_sq_11_cast_fp16")];
332
- tensor<int32, [1]> var_458 = const()[name = tensor<string, []>("op_458"), val = tensor<int32, [1]>([1])];
333
- tensor<fp16, [1, 1, 1, 1]> var_459_cast_fp16 = reduce_mean(axes = var_458, keep_dims = var_286, x = zero_mean_sq_11_cast_fp16)[name = tensor<string, []>("op_459_cast_fp16")];
334
  tensor<fp16, []> var_460_to_fp16 = const()[name = tensor<string, []>("op_460_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
335
- tensor<fp16, [1, 1, 1, 1]> var_461_cast_fp16 = add(x = var_459_cast_fp16, y = var_460_to_fp16)[name = tensor<string, []>("op_461_cast_fp16")];
336
- tensor<fp16, []> denom_11_epsilon_0_to_fp16 = const()[name = tensor<string, []>("denom_11_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1p-24)];
337
- tensor<fp16, [1, 1, 1, 1]> denom_11_cast_fp16 = rsqrt(epsilon = denom_11_epsilon_0_to_fp16, x = var_461_cast_fp16)[name = tensor<string, []>("denom_11_cast_fp16")];
338
- tensor<fp16, [1, 384, 1, 1]> out_11_cast_fp16 = mul(x = zero_mean_11_cast_fp16, y = denom_11_cast_fp16)[name = tensor<string, []>("out_11_cast_fp16")];
339
  tensor<fp16, [384]> input_15_gamma_0_to_fp16 = const()[name = tensor<string, []>("input_15_gamma_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(47278784)))];
340
  tensor<fp16, [384]> input_15_beta_0_to_fp16 = const()[name = tensor<string, []>("input_15_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(47279616)))];
341
  tensor<fp16, []> input_15_epsilon_0_to_fp16 = const()[name = tensor<string, []>("input_15_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
@@ -359,18 +309,9 @@ program(1.0)
359
  tensor<fp16, [1, 384, 1, 1]> inputs_13_cast_fp16 = add(x = inputs_11_cast_fp16, y = hidden_states_5_cast_fp16)[name = tensor<string, []>("inputs_13_cast_fp16")];
360
  tensor<int32, []> var_496 = const()[name = tensor<string, []>("op_496"), val = tensor<int32, []>(3)];
361
  tensor<int32, []> var_503 = const()[name = tensor<string, []>("op_503"), val = tensor<int32, []>(1)];
362
- tensor<bool, []> var_504 = const()[name = tensor<string, []>("op_504"), val = tensor<bool, []>(true)];
363
- tensor<int32, [1]> var_516 = const()[name = tensor<string, []>("op_516"), val = tensor<int32, [1]>([1])];
364
- tensor<fp16, [1, 1, 1, 1]> channels_mean_13_cast_fp16 = reduce_mean(axes = var_516, keep_dims = var_504, x = inputs_13_cast_fp16)[name = tensor<string, []>("channels_mean_13_cast_fp16")];
365
- tensor<fp16, [1, 384, 1, 1]> zero_mean_13_cast_fp16 = sub(x = inputs_13_cast_fp16, y = channels_mean_13_cast_fp16)[name = tensor<string, []>("zero_mean_13_cast_fp16")];
366
- tensor<fp16, [1, 384, 1, 1]> zero_mean_sq_13_cast_fp16 = mul(x = zero_mean_13_cast_fp16, y = zero_mean_13_cast_fp16)[name = tensor<string, []>("zero_mean_sq_13_cast_fp16")];
367
- tensor<int32, [1]> var_520 = const()[name = tensor<string, []>("op_520"), val = tensor<int32, [1]>([1])];
368
- tensor<fp16, [1, 1, 1, 1]> var_521_cast_fp16 = reduce_mean(axes = var_520, keep_dims = var_504, x = zero_mean_sq_13_cast_fp16)[name = tensor<string, []>("op_521_cast_fp16")];
369
  tensor<fp16, []> var_522_to_fp16 = const()[name = tensor<string, []>("op_522_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
370
- tensor<fp16, [1, 1, 1, 1]> var_523_cast_fp16 = add(x = var_521_cast_fp16, y = var_522_to_fp16)[name = tensor<string, []>("op_523_cast_fp16")];
371
- tensor<fp16, []> denom_13_epsilon_0_to_fp16 = const()[name = tensor<string, []>("denom_13_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1p-24)];
372
- tensor<fp16, [1, 1, 1, 1]> denom_13_cast_fp16 = rsqrt(epsilon = denom_13_epsilon_0_to_fp16, x = var_523_cast_fp16)[name = tensor<string, []>("denom_13_cast_fp16")];
373
- tensor<fp16, [1, 384, 1, 1]> out_13_cast_fp16 = mul(x = zero_mean_13_cast_fp16, y = denom_13_cast_fp16)[name = tensor<string, []>("out_13_cast_fp16")];
374
  tensor<fp16, [384]> obj_29_gamma_0_to_fp16 = const()[name = tensor<string, []>("obj_29_gamma_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(49643840)))];
375
  tensor<fp16, [384]> obj_29_beta_0_to_fp16 = const()[name = tensor<string, []>("obj_29_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(49644672)))];
376
  tensor<fp16, []> obj_29_epsilon_0_to_fp16 = const()[name = tensor<string, []>("obj_29_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
@@ -427,17 +368,9 @@ program(1.0)
427
  tensor<fp16, [384]> layers_2_self_attn_o_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_2_self_attn_o_proj_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(50827072)))];
428
  tensor<fp16, [1, 384, 1, 1]> obj_35_cast_fp16 = conv(bias = layers_2_self_attn_o_proj_bias_to_fp16, dilations = var_593, groups = var_503, pad = obj_35_pad_0, pad_type = obj_35_pad_type_0, strides = var_591, weight = layers_2_self_attn_o_proj_weight_to_fp16, x = input_21_cast_fp16)[name = tensor<string, []>("obj_35_cast_fp16")];
429
  tensor<fp16, [1, 384, 1, 1]> inputs_15_cast_fp16 = add(x = inputs_13_cast_fp16, y = obj_35_cast_fp16)[name = tensor<string, []>("inputs_15_cast_fp16")];
430
- tensor<int32, [1]> var_603 = const()[name = tensor<string, []>("op_603"), val = tensor<int32, [1]>([1])];
431
- tensor<fp16, [1, 1, 1, 1]> channels_mean_15_cast_fp16 = reduce_mean(axes = var_603, keep_dims = var_504, x = inputs_15_cast_fp16)[name = tensor<string, []>("channels_mean_15_cast_fp16")];
432
- tensor<fp16, [1, 384, 1, 1]> zero_mean_15_cast_fp16 = sub(x = inputs_15_cast_fp16, y = channels_mean_15_cast_fp16)[name = tensor<string, []>("zero_mean_15_cast_fp16")];
433
- tensor<fp16, [1, 384, 1, 1]> zero_mean_sq_15_cast_fp16 = mul(x = zero_mean_15_cast_fp16, y = zero_mean_15_cast_fp16)[name = tensor<string, []>("zero_mean_sq_15_cast_fp16")];
434
- tensor<int32, [1]> var_607 = const()[name = tensor<string, []>("op_607"), val = tensor<int32, [1]>([1])];
435
- tensor<fp16, [1, 1, 1, 1]> var_608_cast_fp16 = reduce_mean(axes = var_607, keep_dims = var_504, x = zero_mean_sq_15_cast_fp16)[name = tensor<string, []>("op_608_cast_fp16")];
436
  tensor<fp16, []> var_609_to_fp16 = const()[name = tensor<string, []>("op_609_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
437
- tensor<fp16, [1, 1, 1, 1]> var_610_cast_fp16 = add(x = var_608_cast_fp16, y = var_609_to_fp16)[name = tensor<string, []>("op_610_cast_fp16")];
438
- tensor<fp16, []> denom_15_epsilon_0_to_fp16 = const()[name = tensor<string, []>("denom_15_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1p-24)];
439
- tensor<fp16, [1, 1, 1, 1]> denom_15_cast_fp16 = rsqrt(epsilon = denom_15_epsilon_0_to_fp16, x = var_610_cast_fp16)[name = tensor<string, []>("denom_15_cast_fp16")];
440
- tensor<fp16, [1, 384, 1, 1]> out_15_cast_fp16 = mul(x = zero_mean_15_cast_fp16, y = denom_15_cast_fp16)[name = tensor<string, []>("out_15_cast_fp16")];
441
  tensor<fp16, [384]> obj_37_gamma_0_to_fp16 = const()[name = tensor<string, []>("obj_37_gamma_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(50827904)))];
442
  tensor<fp16, [384]> obj_37_beta_0_to_fp16 = const()[name = tensor<string, []>("obj_37_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(50828736)))];
443
  tensor<fp16, []> obj_37_epsilon_0_to_fp16 = const()[name = tensor<string, []>("obj_37_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
@@ -487,17 +420,9 @@ program(1.0)
487
  tensor<fp16, [384]> layers_2_encoder_attn_o_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_2_encoder_attn_o_proj_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(52011136)))];
488
  tensor<fp16, [1, 384, 1, 1]> obj_39_cast_fp16 = conv(bias = layers_2_encoder_attn_o_proj_bias_to_fp16, dilations = var_663, groups = var_503, pad = obj_39_pad_0, pad_type = obj_39_pad_type_0, strides = var_661, weight = layers_2_encoder_attn_o_proj_weight_to_fp16, x = input_23_cast_fp16)[name = tensor<string, []>("obj_39_cast_fp16")];
489
  tensor<fp16, [1, 384, 1, 1]> inputs_17_cast_fp16 = add(x = inputs_15_cast_fp16, y = obj_39_cast_fp16)[name = tensor<string, []>("inputs_17_cast_fp16")];
490
- tensor<int32, [1]> var_672 = const()[name = tensor<string, []>("op_672"), val = tensor<int32, [1]>([1])];
491
- tensor<fp16, [1, 1, 1, 1]> channels_mean_17_cast_fp16 = reduce_mean(axes = var_672, keep_dims = var_504, x = inputs_17_cast_fp16)[name = tensor<string, []>("channels_mean_17_cast_fp16")];
492
- tensor<fp16, [1, 384, 1, 1]> zero_mean_17_cast_fp16 = sub(x = inputs_17_cast_fp16, y = channels_mean_17_cast_fp16)[name = tensor<string, []>("zero_mean_17_cast_fp16")];
493
- tensor<fp16, [1, 384, 1, 1]> zero_mean_sq_17_cast_fp16 = mul(x = zero_mean_17_cast_fp16, y = zero_mean_17_cast_fp16)[name = tensor<string, []>("zero_mean_sq_17_cast_fp16")];
494
- tensor<int32, [1]> var_676 = const()[name = tensor<string, []>("op_676"), val = tensor<int32, [1]>([1])];
495
- tensor<fp16, [1, 1, 1, 1]> var_677_cast_fp16 = reduce_mean(axes = var_676, keep_dims = var_504, x = zero_mean_sq_17_cast_fp16)[name = tensor<string, []>("op_677_cast_fp16")];
496
  tensor<fp16, []> var_678_to_fp16 = const()[name = tensor<string, []>("op_678_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
497
- tensor<fp16, [1, 1, 1, 1]> var_679_cast_fp16 = add(x = var_677_cast_fp16, y = var_678_to_fp16)[name = tensor<string, []>("op_679_cast_fp16")];
498
- tensor<fp16, []> denom_17_epsilon_0_to_fp16 = const()[name = tensor<string, []>("denom_17_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1p-24)];
499
- tensor<fp16, [1, 1, 1, 1]> denom_17_cast_fp16 = rsqrt(epsilon = denom_17_epsilon_0_to_fp16, x = var_679_cast_fp16)[name = tensor<string, []>("denom_17_cast_fp16")];
500
- tensor<fp16, [1, 384, 1, 1]> out_17_cast_fp16 = mul(x = zero_mean_17_cast_fp16, y = denom_17_cast_fp16)[name = tensor<string, []>("out_17_cast_fp16")];
501
  tensor<fp16, [384]> input_25_gamma_0_to_fp16 = const()[name = tensor<string, []>("input_25_gamma_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(52011968)))];
502
  tensor<fp16, [384]> input_25_beta_0_to_fp16 = const()[name = tensor<string, []>("input_25_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(52012800)))];
503
  tensor<fp16, []> input_25_epsilon_0_to_fp16 = const()[name = tensor<string, []>("input_25_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
@@ -521,18 +446,9 @@ program(1.0)
521
  tensor<fp16, [1, 384, 1, 1]> inputs_19_cast_fp16 = add(x = inputs_17_cast_fp16, y = hidden_states_7_cast_fp16)[name = tensor<string, []>("inputs_19_cast_fp16")];
522
  tensor<int32, []> var_714 = const()[name = tensor<string, []>("op_714"), val = tensor<int32, []>(3)];
523
  tensor<int32, []> var_721 = const()[name = tensor<string, []>("op_721"), val = tensor<int32, []>(1)];
524
- tensor<bool, []> var_722 = const()[name = tensor<string, []>("op_722"), val = tensor<bool, []>(true)];
525
- tensor<int32, [1]> var_734 = const()[name = tensor<string, []>("op_734"), val = tensor<int32, [1]>([1])];
526
- tensor<fp16, [1, 1, 1, 1]> channels_mean_19_cast_fp16 = reduce_mean(axes = var_734, keep_dims = var_722, x = inputs_19_cast_fp16)[name = tensor<string, []>("channels_mean_19_cast_fp16")];
527
- tensor<fp16, [1, 384, 1, 1]> zero_mean_19_cast_fp16 = sub(x = inputs_19_cast_fp16, y = channels_mean_19_cast_fp16)[name = tensor<string, []>("zero_mean_19_cast_fp16")];
528
- tensor<fp16, [1, 384, 1, 1]> zero_mean_sq_19_cast_fp16 = mul(x = zero_mean_19_cast_fp16, y = zero_mean_19_cast_fp16)[name = tensor<string, []>("zero_mean_sq_19_cast_fp16")];
529
- tensor<int32, [1]> var_738 = const()[name = tensor<string, []>("op_738"), val = tensor<int32, [1]>([1])];
530
- tensor<fp16, [1, 1, 1, 1]> var_739_cast_fp16 = reduce_mean(axes = var_738, keep_dims = var_722, x = zero_mean_sq_19_cast_fp16)[name = tensor<string, []>("op_739_cast_fp16")];
531
  tensor<fp16, []> var_740_to_fp16 = const()[name = tensor<string, []>("op_740_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
532
- tensor<fp16, [1, 1, 1, 1]> var_741_cast_fp16 = add(x = var_739_cast_fp16, y = var_740_to_fp16)[name = tensor<string, []>("op_741_cast_fp16")];
533
- tensor<fp16, []> denom_19_epsilon_0_to_fp16 = const()[name = tensor<string, []>("denom_19_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1p-24)];
534
- tensor<fp16, [1, 1, 1, 1]> denom_19_cast_fp16 = rsqrt(epsilon = denom_19_epsilon_0_to_fp16, x = var_741_cast_fp16)[name = tensor<string, []>("denom_19_cast_fp16")];
535
- tensor<fp16, [1, 384, 1, 1]> out_19_cast_fp16 = mul(x = zero_mean_19_cast_fp16, y = denom_19_cast_fp16)[name = tensor<string, []>("out_19_cast_fp16")];
536
  tensor<fp16, [384]> obj_43_gamma_0_to_fp16 = const()[name = tensor<string, []>("obj_43_gamma_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(54377024)))];
537
  tensor<fp16, [384]> obj_43_beta_0_to_fp16 = const()[name = tensor<string, []>("obj_43_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(54377856)))];
538
  tensor<fp16, []> obj_43_epsilon_0_to_fp16 = const()[name = tensor<string, []>("obj_43_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
@@ -589,17 +505,9 @@ program(1.0)
589
  tensor<fp16, [384]> layers_3_self_attn_o_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_3_self_attn_o_proj_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(55560256)))];
590
  tensor<fp16, [1, 384, 1, 1]> obj_49_cast_fp16 = conv(bias = layers_3_self_attn_o_proj_bias_to_fp16, dilations = var_811, groups = var_721, pad = obj_49_pad_0, pad_type = obj_49_pad_type_0, strides = var_809, weight = layers_3_self_attn_o_proj_weight_to_fp16, x = input_31_cast_fp16)[name = tensor<string, []>("obj_49_cast_fp16")];
591
  tensor<fp16, [1, 384, 1, 1]> inputs_21_cast_fp16 = add(x = inputs_19_cast_fp16, y = obj_49_cast_fp16)[name = tensor<string, []>("inputs_21_cast_fp16")];
592
- tensor<int32, [1]> var_821 = const()[name = tensor<string, []>("op_821"), val = tensor<int32, [1]>([1])];
593
- tensor<fp16, [1, 1, 1, 1]> channels_mean_21_cast_fp16 = reduce_mean(axes = var_821, keep_dims = var_722, x = inputs_21_cast_fp16)[name = tensor<string, []>("channels_mean_21_cast_fp16")];
594
- tensor<fp16, [1, 384, 1, 1]> zero_mean_21_cast_fp16 = sub(x = inputs_21_cast_fp16, y = channels_mean_21_cast_fp16)[name = tensor<string, []>("zero_mean_21_cast_fp16")];
595
- tensor<fp16, [1, 384, 1, 1]> zero_mean_sq_21_cast_fp16 = mul(x = zero_mean_21_cast_fp16, y = zero_mean_21_cast_fp16)[name = tensor<string, []>("zero_mean_sq_21_cast_fp16")];
596
- tensor<int32, [1]> var_825 = const()[name = tensor<string, []>("op_825"), val = tensor<int32, [1]>([1])];
597
- tensor<fp16, [1, 1, 1, 1]> var_826_cast_fp16 = reduce_mean(axes = var_825, keep_dims = var_722, x = zero_mean_sq_21_cast_fp16)[name = tensor<string, []>("op_826_cast_fp16")];
598
  tensor<fp16, []> var_827_to_fp16 = const()[name = tensor<string, []>("op_827_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
599
- tensor<fp16, [1, 1, 1, 1]> var_828_cast_fp16 = add(x = var_826_cast_fp16, y = var_827_to_fp16)[name = tensor<string, []>("op_828_cast_fp16")];
600
- tensor<fp16, []> denom_21_epsilon_0_to_fp16 = const()[name = tensor<string, []>("denom_21_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1p-24)];
601
- tensor<fp16, [1, 1, 1, 1]> denom_21_cast_fp16 = rsqrt(epsilon = denom_21_epsilon_0_to_fp16, x = var_828_cast_fp16)[name = tensor<string, []>("denom_21_cast_fp16")];
602
- tensor<fp16, [1, 384, 1, 1]> out_21_cast_fp16 = mul(x = zero_mean_21_cast_fp16, y = denom_21_cast_fp16)[name = tensor<string, []>("out_21_cast_fp16")];
603
  tensor<fp16, [384]> obj_51_gamma_0_to_fp16 = const()[name = tensor<string, []>("obj_51_gamma_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(55561088)))];
604
  tensor<fp16, [384]> obj_51_beta_0_to_fp16 = const()[name = tensor<string, []>("obj_51_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(55561920)))];
605
  tensor<fp16, []> obj_51_epsilon_0_to_fp16 = const()[name = tensor<string, []>("obj_51_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
@@ -649,17 +557,9 @@ program(1.0)
649
  tensor<fp16, [384]> layers_3_encoder_attn_o_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_3_encoder_attn_o_proj_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(56744320)))];
650
  tensor<fp16, [1, 384, 1, 1]> obj_53_cast_fp16 = conv(bias = layers_3_encoder_attn_o_proj_bias_to_fp16, dilations = var_881, groups = var_721, pad = obj_53_pad_0, pad_type = obj_53_pad_type_0, strides = var_879, weight = layers_3_encoder_attn_o_proj_weight_to_fp16, x = input_33_cast_fp16)[name = tensor<string, []>("obj_53_cast_fp16")];
651
  tensor<fp16, [1, 384, 1, 1]> inputs_23_cast_fp16 = add(x = inputs_21_cast_fp16, y = obj_53_cast_fp16)[name = tensor<string, []>("inputs_23_cast_fp16")];
652
- tensor<int32, [1]> var_890 = const()[name = tensor<string, []>("op_890"), val = tensor<int32, [1]>([1])];
653
- tensor<fp16, [1, 1, 1, 1]> channels_mean_23_cast_fp16 = reduce_mean(axes = var_890, keep_dims = var_722, x = inputs_23_cast_fp16)[name = tensor<string, []>("channels_mean_23_cast_fp16")];
654
- tensor<fp16, [1, 384, 1, 1]> zero_mean_23_cast_fp16 = sub(x = inputs_23_cast_fp16, y = channels_mean_23_cast_fp16)[name = tensor<string, []>("zero_mean_23_cast_fp16")];
655
- tensor<fp16, [1, 384, 1, 1]> zero_mean_sq_23_cast_fp16 = mul(x = zero_mean_23_cast_fp16, y = zero_mean_23_cast_fp16)[name = tensor<string, []>("zero_mean_sq_23_cast_fp16")];
656
- tensor<int32, [1]> var_894 = const()[name = tensor<string, []>("op_894"), val = tensor<int32, [1]>([1])];
657
- tensor<fp16, [1, 1, 1, 1]> var_895_cast_fp16 = reduce_mean(axes = var_894, keep_dims = var_722, x = zero_mean_sq_23_cast_fp16)[name = tensor<string, []>("op_895_cast_fp16")];
658
  tensor<fp16, []> var_896_to_fp16 = const()[name = tensor<string, []>("op_896_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
659
- tensor<fp16, [1, 1, 1, 1]> var_897_cast_fp16 = add(x = var_895_cast_fp16, y = var_896_to_fp16)[name = tensor<string, []>("op_897_cast_fp16")];
660
- tensor<fp16, []> denom_23_epsilon_0_to_fp16 = const()[name = tensor<string, []>("denom_23_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1p-24)];
661
- tensor<fp16, [1, 1, 1, 1]> denom_23_cast_fp16 = rsqrt(epsilon = denom_23_epsilon_0_to_fp16, x = var_897_cast_fp16)[name = tensor<string, []>("denom_23_cast_fp16")];
662
- tensor<fp16, [1, 384, 1, 1]> out_23_cast_fp16 = mul(x = zero_mean_23_cast_fp16, y = denom_23_cast_fp16)[name = tensor<string, []>("out_23_cast_fp16")];
663
  tensor<fp16, [384]> input_35_gamma_0_to_fp16 = const()[name = tensor<string, []>("input_35_gamma_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(56745152)))];
664
  tensor<fp16, [384]> input_35_beta_0_to_fp16 = const()[name = tensor<string, []>("input_35_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(56745984)))];
665
  tensor<fp16, []> input_35_epsilon_0_to_fp16 = const()[name = tensor<string, []>("input_35_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
@@ -681,18 +581,9 @@ program(1.0)
681
  tensor<fp16, [384]> layers_3_fc2_bias_to_fp16 = const()[name = tensor<string, []>("layers_3_fc2_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(59109376)))];
682
  tensor<fp16, [1, 384, 1, 1]> hidden_states_9_cast_fp16 = conv(bias = layers_3_fc2_bias_to_fp16, dilations = var_918, groups = var_721, pad = hidden_states_9_pad_0, pad_type = hidden_states_9_pad_type_0, strides = var_916, weight = layers_3_fc2_weight_to_fp16, x = input_cast_fp16)[name = tensor<string, []>("hidden_states_9_cast_fp16")];
683
  tensor<fp16, [1, 384, 1, 1]> inputs_cast_fp16 = add(x = inputs_23_cast_fp16, y = hidden_states_9_cast_fp16)[name = tensor<string, []>("inputs_cast_fp16")];
684
- tensor<bool, []> var_929 = const()[name = tensor<string, []>("op_929"), val = tensor<bool, []>(true)];
685
- tensor<int32, [1]> var_933 = const()[name = tensor<string, []>("op_933"), val = tensor<int32, [1]>([1])];
686
- tensor<fp16, [1, 1, 1, 1]> channels_mean_cast_fp16 = reduce_mean(axes = var_933, keep_dims = var_929, x = inputs_cast_fp16)[name = tensor<string, []>("channels_mean_cast_fp16")];
687
- tensor<fp16, [1, 384, 1, 1]> zero_mean_cast_fp16 = sub(x = inputs_cast_fp16, y = channels_mean_cast_fp16)[name = tensor<string, []>("zero_mean_cast_fp16")];
688
- tensor<fp16, [1, 384, 1, 1]> zero_mean_sq_cast_fp16 = mul(x = zero_mean_cast_fp16, y = zero_mean_cast_fp16)[name = tensor<string, []>("zero_mean_sq_cast_fp16")];
689
- tensor<int32, [1]> var_937 = const()[name = tensor<string, []>("op_937"), val = tensor<int32, [1]>([1])];
690
- tensor<fp16, [1, 1, 1, 1]> var_938_cast_fp16 = reduce_mean(axes = var_937, keep_dims = var_929, x = zero_mean_sq_cast_fp16)[name = tensor<string, []>("op_938_cast_fp16")];
691
  tensor<fp16, []> var_939_to_fp16 = const()[name = tensor<string, []>("op_939_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
692
- tensor<fp16, [1, 1, 1, 1]> var_940_cast_fp16 = add(x = var_938_cast_fp16, y = var_939_to_fp16)[name = tensor<string, []>("op_940_cast_fp16")];
693
- tensor<fp16, []> denom_epsilon_0_to_fp16 = const()[name = tensor<string, []>("denom_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1p-24)];
694
- tensor<fp16, [1, 1, 1, 1]> denom_cast_fp16 = rsqrt(epsilon = denom_epsilon_0_to_fp16, x = var_940_cast_fp16)[name = tensor<string, []>("denom_cast_fp16")];
695
- tensor<fp16, [1, 384, 1, 1]> out_cast_fp16 = mul(x = zero_mean_cast_fp16, y = denom_cast_fp16)[name = tensor<string, []>("out_cast_fp16")];
696
  tensor<fp16, [384]> hidden_states_gamma_0_to_fp16 = const()[name = tensor<string, []>("hidden_states_gamma_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(59110208)))];
697
  tensor<fp16, [384]> hidden_states_beta_0_to_fp16 = const()[name = tensor<string, []>("hidden_states_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(59111040)))];
698
  tensor<fp16, []> hidden_states_epsilon_0_to_fp16 = const()[name = tensor<string, []>("hidden_states_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
 
1
  program(1.0)
2
+ [buildInfo = dict<tensor<string, []>, tensor<string, []>>({{"coremlc-component-MIL", "3304.5.2"}, {"coremlc-version", "3304.6.2"}, {"coremltools-component-torch", "2.2.2"}, {"coremltools-source-dialect", "TorchScript"}, {"coremltools-version", "7.2"}})]
3
  {
4
  func main<ios16>(tensor<int32, [1]> cache_length, tensor<fp16, [1, 448]> decoder_key_padding_mask, tensor<fp16, [1, 384, 1, 1500]> encoder_output_embeds, tensor<int32, [1]> input_ids, tensor<fp16, [1, 1536, 1, 448]> key_cache, tensor<fp16, [1, 448]> kv_cache_update_mask, tensor<fp16, [1, 1536, 1, 448]> value_cache) {
5
  tensor<int32, []> var_24_axis_0 = const()[name = tensor<string, []>("op_24_axis_0"), val = tensor<int32, []>(0)];
 
23
  tensor<fp16, [1, 384, 1, 448]> var_54_cast_fp16_0, tensor<fp16, [1, 384, 1, 448]> var_54_cast_fp16_1, tensor<fp16, [1, 384, 1, 448]> var_54_cast_fp16_2, tensor<fp16, [1, 384, 1, 448]> var_54_cast_fp16_3 = split(axis = var_54_axis_0, split_sizes = tile_1, x = value_cache)[name = tensor<string, []>("op_54_cast_fp16")];
24
  tensor<int32, []> var_64 = const()[name = tensor<string, []>("op_64"), val = tensor<int32, []>(3)];
25
  tensor<int32, []> var_71 = const()[name = tensor<string, []>("op_71"), val = tensor<int32, []>(1)];
26
+ tensor<int32, [1]> out_1_axes_0 = const()[name = tensor<string, []>("out_1_axes_0"), val = tensor<int32, [1]>([1])];
 
 
 
 
 
 
27
  tensor<fp16, []> var_90_to_fp16 = const()[name = tensor<string, []>("op_90_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
28
+ tensor<fp16, [1, 384, 1, 1]> out_1_cast_fp16 = layer_norm(axes = out_1_axes_0, epsilon = var_90_to_fp16, x = inputs_1_cast_fp16)[name = tensor<string, []>("out_1_cast_fp16")];
 
 
 
29
  tensor<fp16, [384]> obj_1_mean_0_to_fp16 = const()[name = tensor<string, []>("obj_1_mean_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(40175808)))];
30
  tensor<fp16, [384]> obj_1_variance_0_to_fp16 = const()[name = tensor<string, []>("obj_1_variance_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(40176640)))];
31
  tensor<fp16, [384]> obj_1_gamma_0_to_fp16 = const()[name = tensor<string, []>("obj_1_gamma_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(40177472)))];
 
94
  tensor<fp16, [384]> layers_0_self_attn_o_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_0_self_attn_o_proj_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(41360704)))];
95
  tensor<fp16, [1, 384, 1, 1]> obj_7_cast_fp16 = conv(bias = layers_0_self_attn_o_proj_bias_to_fp16, dilations = var_161, groups = var_71, pad = obj_7_pad_0, pad_type = obj_7_pad_type_0, strides = var_159, weight = layers_0_self_attn_o_proj_weight_to_fp16, x = input_1_cast_fp16)[name = tensor<string, []>("obj_7_cast_fp16")];
96
  tensor<fp16, [1, 384, 1, 1]> inputs_3_cast_fp16 = add(x = inputs_1_cast_fp16, y = obj_7_cast_fp16)[name = tensor<string, []>("inputs_3_cast_fp16")];
97
+ tensor<int32, [1]> out_3_axes_0 = const()[name = tensor<string, []>("out_3_axes_0"), val = tensor<int32, [1]>([1])];
 
 
 
 
 
98
  tensor<fp16, []> var_177_to_fp16 = const()[name = tensor<string, []>("op_177_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
99
+ tensor<fp16, [1, 384, 1, 1]> out_3_cast_fp16 = layer_norm(axes = out_3_axes_0, epsilon = var_177_to_fp16, x = inputs_3_cast_fp16)[name = tensor<string, []>("out_3_cast_fp16")];
 
 
 
100
  tensor<fp16, [384]> obj_9_gamma_0_to_fp16 = const()[name = tensor<string, []>("obj_9_gamma_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(41361536)))];
101
  tensor<fp16, [384]> obj_9_beta_0_to_fp16 = const()[name = tensor<string, []>("obj_9_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(41362368)))];
102
  tensor<fp16, []> obj_9_epsilon_0_to_fp16 = const()[name = tensor<string, []>("obj_9_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
 
146
  tensor<fp16, [384]> layers_0_encoder_attn_o_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_0_encoder_attn_o_proj_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(42544768)))];
147
  tensor<fp16, [1, 384, 1, 1]> obj_11_cast_fp16 = conv(bias = layers_0_encoder_attn_o_proj_bias_to_fp16, dilations = var_231, groups = var_71, pad = obj_11_pad_0, pad_type = obj_11_pad_type_0, strides = var_229, weight = layers_0_encoder_attn_o_proj_weight_to_fp16, x = input_3_cast_fp16)[name = tensor<string, []>("obj_11_cast_fp16")];
148
  tensor<fp16, [1, 384, 1, 1]> inputs_5_cast_fp16 = add(x = inputs_3_cast_fp16, y = obj_11_cast_fp16)[name = tensor<string, []>("inputs_5_cast_fp16")];
149
+ tensor<int32, [1]> out_5_axes_0 = const()[name = tensor<string, []>("out_5_axes_0"), val = tensor<int32, [1]>([1])];
 
 
 
 
 
150
  tensor<fp16, []> var_243_to_fp16 = const()[name = tensor<string, []>("op_243_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
151
+ tensor<fp16, [1, 384, 1, 1]> out_5_cast_fp16 = layer_norm(axes = out_5_axes_0, epsilon = var_243_to_fp16, x = inputs_5_cast_fp16)[name = tensor<string, []>("out_5_cast_fp16")];
 
 
 
152
  tensor<fp16, [384]> input_5_gamma_0_to_fp16 = const()[name = tensor<string, []>("input_5_gamma_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(42545600)))];
153
  tensor<fp16, [384]> input_5_beta_0_to_fp16 = const()[name = tensor<string, []>("input_5_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(42546432)))];
154
  tensor<fp16, []> input_5_epsilon_0_to_fp16 = const()[name = tensor<string, []>("input_5_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
 
172
  tensor<fp16, [1, 384, 1, 1]> inputs_7_cast_fp16 = add(x = inputs_5_cast_fp16, y = hidden_states_3_cast_fp16)[name = tensor<string, []>("inputs_7_cast_fp16")];
173
  tensor<int32, []> var_278 = const()[name = tensor<string, []>("op_278"), val = tensor<int32, []>(3)];
174
  tensor<int32, []> var_285 = const()[name = tensor<string, []>("op_285"), val = tensor<int32, []>(1)];
175
+ tensor<int32, [1]> out_7_axes_0 = const()[name = tensor<string, []>("out_7_axes_0"), val = tensor<int32, [1]>([1])];
 
 
 
 
 
 
176
  tensor<fp16, []> var_304_to_fp16 = const()[name = tensor<string, []>("op_304_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
177
+ tensor<fp16, [1, 384, 1, 1]> out_7_cast_fp16 = layer_norm(axes = out_7_axes_0, epsilon = var_304_to_fp16, x = inputs_7_cast_fp16)[name = tensor<string, []>("out_7_cast_fp16")];
 
 
 
178
  tensor<fp16, [384]> obj_15_gamma_0_to_fp16 = const()[name = tensor<string, []>("obj_15_gamma_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(44910656)))];
179
  tensor<fp16, [384]> obj_15_beta_0_to_fp16 = const()[name = tensor<string, []>("obj_15_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(44911488)))];
180
  tensor<fp16, []> obj_15_epsilon_0_to_fp16 = const()[name = tensor<string, []>("obj_15_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
 
231
  tensor<fp16, [384]> layers_1_self_attn_o_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_1_self_attn_o_proj_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(46093888)))];
232
  tensor<fp16, [1, 384, 1, 1]> obj_21_cast_fp16 = conv(bias = layers_1_self_attn_o_proj_bias_to_fp16, dilations = var_375, groups = var_285, pad = obj_21_pad_0, pad_type = obj_21_pad_type_0, strides = var_373, weight = layers_1_self_attn_o_proj_weight_to_fp16, x = input_11_cast_fp16)[name = tensor<string, []>("obj_21_cast_fp16")];
233
  tensor<fp16, [1, 384, 1, 1]> inputs_9_cast_fp16 = add(x = inputs_7_cast_fp16, y = obj_21_cast_fp16)[name = tensor<string, []>("inputs_9_cast_fp16")];
234
+ tensor<int32, [1]> out_9_axes_0 = const()[name = tensor<string, []>("out_9_axes_0"), val = tensor<int32, [1]>([1])];
 
 
 
 
 
235
  tensor<fp16, []> var_391_to_fp16 = const()[name = tensor<string, []>("op_391_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
236
+ tensor<fp16, [1, 384, 1, 1]> out_9_cast_fp16 = layer_norm(axes = out_9_axes_0, epsilon = var_391_to_fp16, x = inputs_9_cast_fp16)[name = tensor<string, []>("out_9_cast_fp16")];
 
 
 
237
  tensor<fp16, [384]> obj_23_gamma_0_to_fp16 = const()[name = tensor<string, []>("obj_23_gamma_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(46094720)))];
238
  tensor<fp16, [384]> obj_23_beta_0_to_fp16 = const()[name = tensor<string, []>("obj_23_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(46095552)))];
239
  tensor<fp16, []> obj_23_epsilon_0_to_fp16 = const()[name = tensor<string, []>("obj_23_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
 
283
  tensor<fp16, [384]> layers_1_encoder_attn_o_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_1_encoder_attn_o_proj_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(47277952)))];
284
  tensor<fp16, [1, 384, 1, 1]> obj_25_cast_fp16 = conv(bias = layers_1_encoder_attn_o_proj_bias_to_fp16, dilations = var_445, groups = var_285, pad = obj_25_pad_0, pad_type = obj_25_pad_type_0, strides = var_443, weight = layers_1_encoder_attn_o_proj_weight_to_fp16, x = input_13_cast_fp16)[name = tensor<string, []>("obj_25_cast_fp16")];
285
  tensor<fp16, [1, 384, 1, 1]> inputs_11_cast_fp16 = add(x = inputs_9_cast_fp16, y = obj_25_cast_fp16)[name = tensor<string, []>("inputs_11_cast_fp16")];
286
+ tensor<int32, [1]> out_11_axes_0 = const()[name = tensor<string, []>("out_11_axes_0"), val = tensor<int32, [1]>([1])];
 
 
 
 
 
287
  tensor<fp16, []> var_460_to_fp16 = const()[name = tensor<string, []>("op_460_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
288
+ tensor<fp16, [1, 384, 1, 1]> out_11_cast_fp16 = layer_norm(axes = out_11_axes_0, epsilon = var_460_to_fp16, x = inputs_11_cast_fp16)[name = tensor<string, []>("out_11_cast_fp16")];
 
 
 
289
  tensor<fp16, [384]> input_15_gamma_0_to_fp16 = const()[name = tensor<string, []>("input_15_gamma_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(47278784)))];
290
  tensor<fp16, [384]> input_15_beta_0_to_fp16 = const()[name = tensor<string, []>("input_15_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(47279616)))];
291
  tensor<fp16, []> input_15_epsilon_0_to_fp16 = const()[name = tensor<string, []>("input_15_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
 
309
  tensor<fp16, [1, 384, 1, 1]> inputs_13_cast_fp16 = add(x = inputs_11_cast_fp16, y = hidden_states_5_cast_fp16)[name = tensor<string, []>("inputs_13_cast_fp16")];
310
  tensor<int32, []> var_496 = const()[name = tensor<string, []>("op_496"), val = tensor<int32, []>(3)];
311
  tensor<int32, []> var_503 = const()[name = tensor<string, []>("op_503"), val = tensor<int32, []>(1)];
312
+ tensor<int32, [1]> out_13_axes_0 = const()[name = tensor<string, []>("out_13_axes_0"), val = tensor<int32, [1]>([1])];
 
 
 
 
 
 
313
  tensor<fp16, []> var_522_to_fp16 = const()[name = tensor<string, []>("op_522_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
314
+ tensor<fp16, [1, 384, 1, 1]> out_13_cast_fp16 = layer_norm(axes = out_13_axes_0, epsilon = var_522_to_fp16, x = inputs_13_cast_fp16)[name = tensor<string, []>("out_13_cast_fp16")];
 
 
 
315
  tensor<fp16, [384]> obj_29_gamma_0_to_fp16 = const()[name = tensor<string, []>("obj_29_gamma_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(49643840)))];
316
  tensor<fp16, [384]> obj_29_beta_0_to_fp16 = const()[name = tensor<string, []>("obj_29_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(49644672)))];
317
  tensor<fp16, []> obj_29_epsilon_0_to_fp16 = const()[name = tensor<string, []>("obj_29_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
 
368
  tensor<fp16, [384]> layers_2_self_attn_o_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_2_self_attn_o_proj_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(50827072)))];
369
  tensor<fp16, [1, 384, 1, 1]> obj_35_cast_fp16 = conv(bias = layers_2_self_attn_o_proj_bias_to_fp16, dilations = var_593, groups = var_503, pad = obj_35_pad_0, pad_type = obj_35_pad_type_0, strides = var_591, weight = layers_2_self_attn_o_proj_weight_to_fp16, x = input_21_cast_fp16)[name = tensor<string, []>("obj_35_cast_fp16")];
370
  tensor<fp16, [1, 384, 1, 1]> inputs_15_cast_fp16 = add(x = inputs_13_cast_fp16, y = obj_35_cast_fp16)[name = tensor<string, []>("inputs_15_cast_fp16")];
371
+ tensor<int32, [1]> out_15_axes_0 = const()[name = tensor<string, []>("out_15_axes_0"), val = tensor<int32, [1]>([1])];
 
 
 
 
 
372
  tensor<fp16, []> var_609_to_fp16 = const()[name = tensor<string, []>("op_609_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
373
+ tensor<fp16, [1, 384, 1, 1]> out_15_cast_fp16 = layer_norm(axes = out_15_axes_0, epsilon = var_609_to_fp16, x = inputs_15_cast_fp16)[name = tensor<string, []>("out_15_cast_fp16")];
 
 
 
374
  tensor<fp16, [384]> obj_37_gamma_0_to_fp16 = const()[name = tensor<string, []>("obj_37_gamma_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(50827904)))];
375
  tensor<fp16, [384]> obj_37_beta_0_to_fp16 = const()[name = tensor<string, []>("obj_37_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(50828736)))];
376
  tensor<fp16, []> obj_37_epsilon_0_to_fp16 = const()[name = tensor<string, []>("obj_37_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
 
420
  tensor<fp16, [384]> layers_2_encoder_attn_o_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_2_encoder_attn_o_proj_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(52011136)))];
421
  tensor<fp16, [1, 384, 1, 1]> obj_39_cast_fp16 = conv(bias = layers_2_encoder_attn_o_proj_bias_to_fp16, dilations = var_663, groups = var_503, pad = obj_39_pad_0, pad_type = obj_39_pad_type_0, strides = var_661, weight = layers_2_encoder_attn_o_proj_weight_to_fp16, x = input_23_cast_fp16)[name = tensor<string, []>("obj_39_cast_fp16")];
422
  tensor<fp16, [1, 384, 1, 1]> inputs_17_cast_fp16 = add(x = inputs_15_cast_fp16, y = obj_39_cast_fp16)[name = tensor<string, []>("inputs_17_cast_fp16")];
423
+ tensor<int32, [1]> out_17_axes_0 = const()[name = tensor<string, []>("out_17_axes_0"), val = tensor<int32, [1]>([1])];
 
 
 
 
 
424
  tensor<fp16, []> var_678_to_fp16 = const()[name = tensor<string, []>("op_678_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
425
+ tensor<fp16, [1, 384, 1, 1]> out_17_cast_fp16 = layer_norm(axes = out_17_axes_0, epsilon = var_678_to_fp16, x = inputs_17_cast_fp16)[name = tensor<string, []>("out_17_cast_fp16")];
 
 
 
426
  tensor<fp16, [384]> input_25_gamma_0_to_fp16 = const()[name = tensor<string, []>("input_25_gamma_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(52011968)))];
427
  tensor<fp16, [384]> input_25_beta_0_to_fp16 = const()[name = tensor<string, []>("input_25_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(52012800)))];
428
  tensor<fp16, []> input_25_epsilon_0_to_fp16 = const()[name = tensor<string, []>("input_25_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
 
446
  tensor<fp16, [1, 384, 1, 1]> inputs_19_cast_fp16 = add(x = inputs_17_cast_fp16, y = hidden_states_7_cast_fp16)[name = tensor<string, []>("inputs_19_cast_fp16")];
447
  tensor<int32, []> var_714 = const()[name = tensor<string, []>("op_714"), val = tensor<int32, []>(3)];
448
  tensor<int32, []> var_721 = const()[name = tensor<string, []>("op_721"), val = tensor<int32, []>(1)];
449
+ tensor<int32, [1]> out_19_axes_0 = const()[name = tensor<string, []>("out_19_axes_0"), val = tensor<int32, [1]>([1])];
 
 
 
 
 
 
450
  tensor<fp16, []> var_740_to_fp16 = const()[name = tensor<string, []>("op_740_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
451
+ tensor<fp16, [1, 384, 1, 1]> out_19_cast_fp16 = layer_norm(axes = out_19_axes_0, epsilon = var_740_to_fp16, x = inputs_19_cast_fp16)[name = tensor<string, []>("out_19_cast_fp16")];
 
 
 
452
  tensor<fp16, [384]> obj_43_gamma_0_to_fp16 = const()[name = tensor<string, []>("obj_43_gamma_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(54377024)))];
453
  tensor<fp16, [384]> obj_43_beta_0_to_fp16 = const()[name = tensor<string, []>("obj_43_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(54377856)))];
454
  tensor<fp16, []> obj_43_epsilon_0_to_fp16 = const()[name = tensor<string, []>("obj_43_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
 
505
  tensor<fp16, [384]> layers_3_self_attn_o_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_3_self_attn_o_proj_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(55560256)))];
506
  tensor<fp16, [1, 384, 1, 1]> obj_49_cast_fp16 = conv(bias = layers_3_self_attn_o_proj_bias_to_fp16, dilations = var_811, groups = var_721, pad = obj_49_pad_0, pad_type = obj_49_pad_type_0, strides = var_809, weight = layers_3_self_attn_o_proj_weight_to_fp16, x = input_31_cast_fp16)[name = tensor<string, []>("obj_49_cast_fp16")];
507
  tensor<fp16, [1, 384, 1, 1]> inputs_21_cast_fp16 = add(x = inputs_19_cast_fp16, y = obj_49_cast_fp16)[name = tensor<string, []>("inputs_21_cast_fp16")];
508
+ tensor<int32, [1]> out_21_axes_0 = const()[name = tensor<string, []>("out_21_axes_0"), val = tensor<int32, [1]>([1])];
 
 
 
 
 
509
  tensor<fp16, []> var_827_to_fp16 = const()[name = tensor<string, []>("op_827_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
510
+ tensor<fp16, [1, 384, 1, 1]> out_21_cast_fp16 = layer_norm(axes = out_21_axes_0, epsilon = var_827_to_fp16, x = inputs_21_cast_fp16)[name = tensor<string, []>("out_21_cast_fp16")];
 
 
 
511
  tensor<fp16, [384]> obj_51_gamma_0_to_fp16 = const()[name = tensor<string, []>("obj_51_gamma_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(55561088)))];
512
  tensor<fp16, [384]> obj_51_beta_0_to_fp16 = const()[name = tensor<string, []>("obj_51_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(55561920)))];
513
  tensor<fp16, []> obj_51_epsilon_0_to_fp16 = const()[name = tensor<string, []>("obj_51_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
 
557
  tensor<fp16, [384]> layers_3_encoder_attn_o_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_3_encoder_attn_o_proj_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(56744320)))];
558
  tensor<fp16, [1, 384, 1, 1]> obj_53_cast_fp16 = conv(bias = layers_3_encoder_attn_o_proj_bias_to_fp16, dilations = var_881, groups = var_721, pad = obj_53_pad_0, pad_type = obj_53_pad_type_0, strides = var_879, weight = layers_3_encoder_attn_o_proj_weight_to_fp16, x = input_33_cast_fp16)[name = tensor<string, []>("obj_53_cast_fp16")];
559
  tensor<fp16, [1, 384, 1, 1]> inputs_23_cast_fp16 = add(x = inputs_21_cast_fp16, y = obj_53_cast_fp16)[name = tensor<string, []>("inputs_23_cast_fp16")];
560
+ tensor<int32, [1]> out_23_axes_0 = const()[name = tensor<string, []>("out_23_axes_0"), val = tensor<int32, [1]>([1])];
 
 
 
 
 
561
  tensor<fp16, []> var_896_to_fp16 = const()[name = tensor<string, []>("op_896_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
562
+ tensor<fp16, [1, 384, 1, 1]> out_23_cast_fp16 = layer_norm(axes = out_23_axes_0, epsilon = var_896_to_fp16, x = inputs_23_cast_fp16)[name = tensor<string, []>("out_23_cast_fp16")];
 
 
 
563
  tensor<fp16, [384]> input_35_gamma_0_to_fp16 = const()[name = tensor<string, []>("input_35_gamma_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(56745152)))];
564
  tensor<fp16, [384]> input_35_beta_0_to_fp16 = const()[name = tensor<string, []>("input_35_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(56745984)))];
565
  tensor<fp16, []> input_35_epsilon_0_to_fp16 = const()[name = tensor<string, []>("input_35_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
 
581
  tensor<fp16, [384]> layers_3_fc2_bias_to_fp16 = const()[name = tensor<string, []>("layers_3_fc2_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(59109376)))];
582
  tensor<fp16, [1, 384, 1, 1]> hidden_states_9_cast_fp16 = conv(bias = layers_3_fc2_bias_to_fp16, dilations = var_918, groups = var_721, pad = hidden_states_9_pad_0, pad_type = hidden_states_9_pad_type_0, strides = var_916, weight = layers_3_fc2_weight_to_fp16, x = input_cast_fp16)[name = tensor<string, []>("hidden_states_9_cast_fp16")];
583
  tensor<fp16, [1, 384, 1, 1]> inputs_cast_fp16 = add(x = inputs_23_cast_fp16, y = hidden_states_9_cast_fp16)[name = tensor<string, []>("inputs_cast_fp16")];
584
+ tensor<int32, [1]> out_axes_0 = const()[name = tensor<string, []>("out_axes_0"), val = tensor<int32, [1]>([1])];
 
 
 
 
 
 
585
  tensor<fp16, []> var_939_to_fp16 = const()[name = tensor<string, []>("op_939_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
586
+ tensor<fp16, [1, 384, 1, 1]> out_cast_fp16 = layer_norm(axes = out_axes_0, epsilon = var_939_to_fp16, x = inputs_cast_fp16)[name = tensor<string, []>("out_cast_fp16")];
 
 
 
587
  tensor<fp16, [384]> hidden_states_gamma_0_to_fp16 = const()[name = tensor<string, []>("hidden_states_gamma_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(59110208)))];
588
  tensor<fp16, [384]> hidden_states_beta_0_to_fp16 = const()[name = tensor<string, []>("hidden_states_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(59111040)))];
589
  tensor<fp16, []> hidden_states_epsilon_0_to_fp16 = const()[name = tensor<string, []>("hidden_states_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
openai_whisper-tiny.en/TextDecoder.mlmodelc/weights/weight.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:7b9086b2c9f476f0884572aae91e5059c31aeddb4b5658b5f810269aaa0f3c01
3
  size 59215664
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:12c57bf53565400bb60c09b13e9a6e31fdaa147585a8e21aeea1b60a96e3400e
3
  size 59215664