whisperkittools-a8c3cdeab8da5d76a7b952aa74ffebfbcd44804b generated files: openai_whisper-tiny.en
Browse files- openai_whisper-tiny.en/AudioEncoder.mlmodelc/analytics/coremldata.bin +1 -1
- openai_whisper-tiny.en/AudioEncoder.mlmodelc/coremldata.bin +1 -1
- openai_whisper-tiny.en/AudioEncoder.mlmodelc/metadata.json +7 -9
- openai_whisper-tiny.en/AudioEncoder.mlmodelc/model.mil +19 -96
- openai_whisper-tiny.en/AudioEncoder.mlmodelc/weights/weight.bin +1 -1
- openai_whisper-tiny.en/MelSpectrogram.mlmodelc/analytics/coremldata.bin +1 -1
- openai_whisper-tiny.en/MelSpectrogram.mlmodelc/coremldata.bin +1 -1
- openai_whisper-tiny.en/MelSpectrogram.mlmodelc/metadata.json +2 -2
- openai_whisper-tiny.en/MelSpectrogram.mlmodelc/model.mil +3 -3
- openai_whisper-tiny.en/MelSpectrogram.mlmodelc/weights/weight.bin +1 -1
- openai_whisper-tiny.en/TextDecoder.mlmodelc/analytics/coremldata.bin +1 -1
- openai_whisper-tiny.en/TextDecoder.mlmodelc/coremldata.bin +1 -1
- openai_whisper-tiny.en/TextDecoder.mlmodelc/metadata.json +6 -6
- openai_whisper-tiny.en/TextDecoder.mlmodelc/model.mil +27 -136
- openai_whisper-tiny.en/TextDecoder.mlmodelc/weights/weight.bin +1 -1
openai_whisper-tiny.en/AudioEncoder.mlmodelc/analytics/coremldata.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 243
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:be62662cccc25b6eca93e6f407e024f90f72cde23a1cda8b0ca753f084274a6e
|
3 |
size 243
|
openai_whisper-tiny.en/AudioEncoder.mlmodelc/coremldata.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 347
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:892364c46ef43333af61711e2ef67e32cc6e7040d35263b805cb5795c8d69233
|
3 |
size 347
|
openai_whisper-tiny.en/AudioEncoder.mlmodelc/metadata.json
CHANGED
@@ -20,18 +20,16 @@
|
|
20 |
"specificationVersion" : 7,
|
21 |
"mlProgramOperationTypeHistogram" : {
|
22 |
"Concat" : 28,
|
23 |
-
"Ios16.
|
24 |
-
"Ios16.mul" :
|
25 |
"SliceByIndex" : 168,
|
26 |
-
"Ios16.sub" : 9,
|
27 |
"Transpose" : 4,
|
|
|
28 |
"Ios16.einsum" : 192,
|
29 |
-
"Ios16.conv" : 26,
|
30 |
-
"Ios16.add" : 18,
|
31 |
-
"Ios16.reduceMean" : 18,
|
32 |
-
"Ios16.softmax" : 96,
|
33 |
"Ios16.gelu" : 6,
|
34 |
-
"Ios16.
|
|
|
|
|
35 |
},
|
36 |
"computePrecision" : "Mixed (Float16, Int32)",
|
37 |
"isUpdatable" : "0",
|
@@ -49,7 +47,7 @@
|
|
49 |
"userDefinedMetadata" : {
|
50 |
"com.github.apple.coremltools.source_dialect" : "TorchScript",
|
51 |
"com.github.apple.coremltools.source" : "torch==2.2.2",
|
52 |
-
"com.github.apple.coremltools.version" : "7.
|
53 |
},
|
54 |
"inputSchema" : [
|
55 |
{
|
|
|
20 |
"specificationVersion" : 7,
|
21 |
"mlProgramOperationTypeHistogram" : {
|
22 |
"Concat" : 28,
|
23 |
+
"Ios16.add" : 9,
|
24 |
+
"Ios16.mul" : 96,
|
25 |
"SliceByIndex" : 168,
|
|
|
26 |
"Transpose" : 4,
|
27 |
+
"Ios16.batchNorm" : 9,
|
28 |
"Ios16.einsum" : 192,
|
|
|
|
|
|
|
|
|
29 |
"Ios16.gelu" : 6,
|
30 |
+
"Ios16.softmax" : 96,
|
31 |
+
"Ios16.layerNorm" : 9,
|
32 |
+
"Ios16.conv" : 26
|
33 |
},
|
34 |
"computePrecision" : "Mixed (Float16, Int32)",
|
35 |
"isUpdatable" : "0",
|
|
|
47 |
"userDefinedMetadata" : {
|
48 |
"com.github.apple.coremltools.source_dialect" : "TorchScript",
|
49 |
"com.github.apple.coremltools.source" : "torch==2.2.2",
|
50 |
+
"com.github.apple.coremltools.version" : "7.2"
|
51 |
},
|
52 |
"inputSchema" : [
|
53 |
{
|
openai_whisper-tiny.en/AudioEncoder.mlmodelc/model.mil
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
program(1.0)
|
2 |
-
[buildInfo = dict<tensor<string, []>, tensor<string, []>>({{"coremlc-component-MIL", "5.
|
3 |
{
|
4 |
func main<ios16>(tensor<fp16, [1, 80, 1, 3000]> melspectrogram_features) {
|
5 |
tensor<int32, [2]> var_34 = const()[name = tensor<string, []>("op_34"), val = tensor<int32, [2]>([1, 1])];
|
@@ -26,18 +26,9 @@ program(1.0)
|
|
26 |
tensor<fp16, [1, 384, 1, 1500]> inputs_1_cast_fp16 = add(x = hidden_states_3_cast_fp16, y = var_108_to_fp16)[name = tensor<string, []>("inputs_1_cast_fp16")];
|
27 |
tensor<int32, []> var_118 = const()[name = tensor<string, []>("op_118"), val = tensor<int32, []>(3)];
|
28 |
tensor<int32, []> var_129 = const()[name = tensor<string, []>("op_129"), val = tensor<int32, []>(1)];
|
29 |
-
tensor<
|
30 |
-
tensor<int32, [1]> var_140 = const()[name = tensor<string, []>("op_140"), val = tensor<int32, [1]>([1])];
|
31 |
-
tensor<fp16, [1, 1, 1, 1500]> channels_mean_1_cast_fp16 = reduce_mean(axes = var_140, keep_dims = var_130, x = inputs_1_cast_fp16)[name = tensor<string, []>("channels_mean_1_cast_fp16")];
|
32 |
-
tensor<fp16, [1, 384, 1, 1500]> zero_mean_1_cast_fp16 = sub(x = inputs_1_cast_fp16, y = channels_mean_1_cast_fp16)[name = tensor<string, []>("zero_mean_1_cast_fp16")];
|
33 |
-
tensor<fp16, [1, 384, 1, 1500]> zero_mean_sq_1_cast_fp16 = mul(x = zero_mean_1_cast_fp16, y = zero_mean_1_cast_fp16)[name = tensor<string, []>("zero_mean_sq_1_cast_fp16")];
|
34 |
-
tensor<int32, [1]> var_144 = const()[name = tensor<string, []>("op_144"), val = tensor<int32, [1]>([1])];
|
35 |
-
tensor<fp16, [1, 1, 1, 1500]> var_145_cast_fp16 = reduce_mean(axes = var_144, keep_dims = var_130, x = zero_mean_sq_1_cast_fp16)[name = tensor<string, []>("op_145_cast_fp16")];
|
36 |
tensor<fp16, []> var_146_to_fp16 = const()[name = tensor<string, []>("op_146_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
37 |
-
tensor<fp16, [1,
|
38 |
-
tensor<fp16, []> denom_1_epsilon_0_to_fp16 = const()[name = tensor<string, []>("denom_1_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1p-24)];
|
39 |
-
tensor<fp16, [1, 1, 1, 1500]> denom_1_cast_fp16 = rsqrt(epsilon = denom_1_epsilon_0_to_fp16, x = var_147_cast_fp16)[name = tensor<string, []>("denom_1_cast_fp16")];
|
40 |
-
tensor<fp16, [1, 384, 1, 1500]> out_1_cast_fp16 = mul(x = zero_mean_1_cast_fp16, y = denom_1_cast_fp16)[name = tensor<string, []>("out_1_cast_fp16")];
|
41 |
tensor<fp16, [384]> obj_1_mean_0_to_fp16 = const()[name = tensor<string, []>("obj_1_mean_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(2222976)))];
|
42 |
tensor<fp16, [384]> obj_1_variance_0_to_fp16 = const()[name = tensor<string, []>("obj_1_variance_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(2223808)))];
|
43 |
tensor<fp16, [384]> obj_1_gamma_0_to_fp16 = const()[name = tensor<string, []>("obj_1_gamma_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(2224640)))];
|
@@ -424,17 +415,9 @@ program(1.0)
|
|
424 |
tensor<fp16, [384]> layers_0_self_attn_o_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_0_self_attn_o_proj_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(3407872)))];
|
425 |
tensor<fp16, [1, 384, 1, 1500]> obj_3_cast_fp16 = conv(bias = layers_0_self_attn_o_proj_bias_to_fp16, dilations = var_610, groups = var_129, pad = obj_3_pad_0, pad_type = obj_3_pad_type_0, strides = var_608, weight = layers_0_self_attn_o_proj_weight_to_fp16, x = input_1_cast_fp16)[name = tensor<string, []>("obj_3_cast_fp16")];
|
426 |
tensor<fp16, [1, 384, 1, 1500]> inputs_3_cast_fp16 = add(x = inputs_1_cast_fp16, y = obj_3_cast_fp16)[name = tensor<string, []>("inputs_3_cast_fp16")];
|
427 |
-
tensor<int32, [1]>
|
428 |
-
tensor<fp16, [1, 1, 1, 1500]> channels_mean_3_cast_fp16 = reduce_mean(axes = var_616, keep_dims = var_130, x = inputs_3_cast_fp16)[name = tensor<string, []>("channels_mean_3_cast_fp16")];
|
429 |
-
tensor<fp16, [1, 384, 1, 1500]> zero_mean_3_cast_fp16 = sub(x = inputs_3_cast_fp16, y = channels_mean_3_cast_fp16)[name = tensor<string, []>("zero_mean_3_cast_fp16")];
|
430 |
-
tensor<fp16, [1, 384, 1, 1500]> zero_mean_sq_3_cast_fp16 = mul(x = zero_mean_3_cast_fp16, y = zero_mean_3_cast_fp16)[name = tensor<string, []>("zero_mean_sq_3_cast_fp16")];
|
431 |
-
tensor<int32, [1]> var_620 = const()[name = tensor<string, []>("op_620"), val = tensor<int32, [1]>([1])];
|
432 |
-
tensor<fp16, [1, 1, 1, 1500]> var_621_cast_fp16 = reduce_mean(axes = var_620, keep_dims = var_130, x = zero_mean_sq_3_cast_fp16)[name = tensor<string, []>("op_621_cast_fp16")];
|
433 |
tensor<fp16, []> var_622_to_fp16 = const()[name = tensor<string, []>("op_622_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
434 |
-
tensor<fp16, [1,
|
435 |
-
tensor<fp16, []> denom_3_epsilon_0_to_fp16 = const()[name = tensor<string, []>("denom_3_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1p-24)];
|
436 |
-
tensor<fp16, [1, 1, 1, 1500]> denom_3_cast_fp16 = rsqrt(epsilon = denom_3_epsilon_0_to_fp16, x = var_623_cast_fp16)[name = tensor<string, []>("denom_3_cast_fp16")];
|
437 |
-
tensor<fp16, [1, 384, 1, 1500]> out_3_cast_fp16 = mul(x = zero_mean_3_cast_fp16, y = denom_3_cast_fp16)[name = tensor<string, []>("out_3_cast_fp16")];
|
438 |
tensor<fp16, [384]> input_3_gamma_0_to_fp16 = const()[name = tensor<string, []>("input_3_gamma_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(3408704)))];
|
439 |
tensor<fp16, [384]> input_3_beta_0_to_fp16 = const()[name = tensor<string, []>("input_3_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(3409536)))];
|
440 |
tensor<fp16, []> input_3_epsilon_0_to_fp16 = const()[name = tensor<string, []>("input_3_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
@@ -458,18 +441,9 @@ program(1.0)
|
|
458 |
tensor<fp16, [1, 384, 1, 1500]> inputs_5_cast_fp16 = add(x = inputs_3_cast_fp16, y = hidden_states_5_cast_fp16)[name = tensor<string, []>("inputs_5_cast_fp16")];
|
459 |
tensor<int32, []> var_651 = const()[name = tensor<string, []>("op_651"), val = tensor<int32, []>(3)];
|
460 |
tensor<int32, []> var_662 = const()[name = tensor<string, []>("op_662"), val = tensor<int32, []>(1)];
|
461 |
-
tensor<
|
462 |
-
tensor<int32, [1]> var_673 = const()[name = tensor<string, []>("op_673"), val = tensor<int32, [1]>([1])];
|
463 |
-
tensor<fp16, [1, 1, 1, 1500]> channels_mean_5_cast_fp16 = reduce_mean(axes = var_673, keep_dims = var_663, x = inputs_5_cast_fp16)[name = tensor<string, []>("channels_mean_5_cast_fp16")];
|
464 |
-
tensor<fp16, [1, 384, 1, 1500]> zero_mean_5_cast_fp16 = sub(x = inputs_5_cast_fp16, y = channels_mean_5_cast_fp16)[name = tensor<string, []>("zero_mean_5_cast_fp16")];
|
465 |
-
tensor<fp16, [1, 384, 1, 1500]> zero_mean_sq_5_cast_fp16 = mul(x = zero_mean_5_cast_fp16, y = zero_mean_5_cast_fp16)[name = tensor<string, []>("zero_mean_sq_5_cast_fp16")];
|
466 |
-
tensor<int32, [1]> var_677 = const()[name = tensor<string, []>("op_677"), val = tensor<int32, [1]>([1])];
|
467 |
-
tensor<fp16, [1, 1, 1, 1500]> var_678_cast_fp16 = reduce_mean(axes = var_677, keep_dims = var_663, x = zero_mean_sq_5_cast_fp16)[name = tensor<string, []>("op_678_cast_fp16")];
|
468 |
tensor<fp16, []> var_679_to_fp16 = const()[name = tensor<string, []>("op_679_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
469 |
-
tensor<fp16, [1,
|
470 |
-
tensor<fp16, []> denom_5_epsilon_0_to_fp16 = const()[name = tensor<string, []>("denom_5_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1p-24)];
|
471 |
-
tensor<fp16, [1, 1, 1, 1500]> denom_5_cast_fp16 = rsqrt(epsilon = denom_5_epsilon_0_to_fp16, x = var_680_cast_fp16)[name = tensor<string, []>("denom_5_cast_fp16")];
|
472 |
-
tensor<fp16, [1, 384, 1, 1500]> out_5_cast_fp16 = mul(x = zero_mean_5_cast_fp16, y = denom_5_cast_fp16)[name = tensor<string, []>("out_5_cast_fp16")];
|
473 |
tensor<fp16, [384]> obj_5_gamma_0_to_fp16 = const()[name = tensor<string, []>("obj_5_gamma_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(5773760)))];
|
474 |
tensor<fp16, [384]> obj_5_beta_0_to_fp16 = const()[name = tensor<string, []>("obj_5_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(5774592)))];
|
475 |
tensor<fp16, []> obj_5_epsilon_0_to_fp16 = const()[name = tensor<string, []>("obj_5_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
@@ -854,17 +828,9 @@ program(1.0)
|
|
854 |
tensor<fp16, [384]> layers_1_self_attn_o_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_1_self_attn_o_proj_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(6956992)))];
|
855 |
tensor<fp16, [1, 384, 1, 1500]> obj_7_cast_fp16 = conv(bias = layers_1_self_attn_o_proj_bias_to_fp16, dilations = var_1143, groups = var_662, pad = obj_7_pad_0, pad_type = obj_7_pad_type_0, strides = var_1141, weight = layers_1_self_attn_o_proj_weight_to_fp16, x = input_9_cast_fp16)[name = tensor<string, []>("obj_7_cast_fp16")];
|
856 |
tensor<fp16, [1, 384, 1, 1500]> inputs_7_cast_fp16 = add(x = inputs_5_cast_fp16, y = obj_7_cast_fp16)[name = tensor<string, []>("inputs_7_cast_fp16")];
|
857 |
-
tensor<int32, [1]>
|
858 |
-
tensor<fp16, [1, 1, 1, 1500]> channels_mean_7_cast_fp16 = reduce_mean(axes = var_1149, keep_dims = var_663, x = inputs_7_cast_fp16)[name = tensor<string, []>("channels_mean_7_cast_fp16")];
|
859 |
-
tensor<fp16, [1, 384, 1, 1500]> zero_mean_7_cast_fp16 = sub(x = inputs_7_cast_fp16, y = channels_mean_7_cast_fp16)[name = tensor<string, []>("zero_mean_7_cast_fp16")];
|
860 |
-
tensor<fp16, [1, 384, 1, 1500]> zero_mean_sq_7_cast_fp16 = mul(x = zero_mean_7_cast_fp16, y = zero_mean_7_cast_fp16)[name = tensor<string, []>("zero_mean_sq_7_cast_fp16")];
|
861 |
-
tensor<int32, [1]> var_1153 = const()[name = tensor<string, []>("op_1153"), val = tensor<int32, [1]>([1])];
|
862 |
-
tensor<fp16, [1, 1, 1, 1500]> var_1154_cast_fp16 = reduce_mean(axes = var_1153, keep_dims = var_663, x = zero_mean_sq_7_cast_fp16)[name = tensor<string, []>("op_1154_cast_fp16")];
|
863 |
tensor<fp16, []> var_1155_to_fp16 = const()[name = tensor<string, []>("op_1155_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
864 |
-
tensor<fp16, [1,
|
865 |
-
tensor<fp16, []> denom_7_epsilon_0_to_fp16 = const()[name = tensor<string, []>("denom_7_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1p-24)];
|
866 |
-
tensor<fp16, [1, 1, 1, 1500]> denom_7_cast_fp16 = rsqrt(epsilon = denom_7_epsilon_0_to_fp16, x = var_1156_cast_fp16)[name = tensor<string, []>("denom_7_cast_fp16")];
|
867 |
-
tensor<fp16, [1, 384, 1, 1500]> out_7_cast_fp16 = mul(x = zero_mean_7_cast_fp16, y = denom_7_cast_fp16)[name = tensor<string, []>("out_7_cast_fp16")];
|
868 |
tensor<fp16, [384]> input_11_gamma_0_to_fp16 = const()[name = tensor<string, []>("input_11_gamma_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(6957824)))];
|
869 |
tensor<fp16, [384]> input_11_beta_0_to_fp16 = const()[name = tensor<string, []>("input_11_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(6958656)))];
|
870 |
tensor<fp16, []> input_11_epsilon_0_to_fp16 = const()[name = tensor<string, []>("input_11_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
@@ -888,18 +854,9 @@ program(1.0)
|
|
888 |
tensor<fp16, [1, 384, 1, 1500]> inputs_9_cast_fp16 = add(x = inputs_7_cast_fp16, y = hidden_states_7_cast_fp16)[name = tensor<string, []>("inputs_9_cast_fp16")];
|
889 |
tensor<int32, []> var_1184 = const()[name = tensor<string, []>("op_1184"), val = tensor<int32, []>(3)];
|
890 |
tensor<int32, []> var_1195 = const()[name = tensor<string, []>("op_1195"), val = tensor<int32, []>(1)];
|
891 |
-
tensor<
|
892 |
-
tensor<int32, [1]> var_1206 = const()[name = tensor<string, []>("op_1206"), val = tensor<int32, [1]>([1])];
|
893 |
-
tensor<fp16, [1, 1, 1, 1500]> channels_mean_9_cast_fp16 = reduce_mean(axes = var_1206, keep_dims = var_1196, x = inputs_9_cast_fp16)[name = tensor<string, []>("channels_mean_9_cast_fp16")];
|
894 |
-
tensor<fp16, [1, 384, 1, 1500]> zero_mean_9_cast_fp16 = sub(x = inputs_9_cast_fp16, y = channels_mean_9_cast_fp16)[name = tensor<string, []>("zero_mean_9_cast_fp16")];
|
895 |
-
tensor<fp16, [1, 384, 1, 1500]> zero_mean_sq_9_cast_fp16 = mul(x = zero_mean_9_cast_fp16, y = zero_mean_9_cast_fp16)[name = tensor<string, []>("zero_mean_sq_9_cast_fp16")];
|
896 |
-
tensor<int32, [1]> var_1210 = const()[name = tensor<string, []>("op_1210"), val = tensor<int32, [1]>([1])];
|
897 |
-
tensor<fp16, [1, 1, 1, 1500]> var_1211_cast_fp16 = reduce_mean(axes = var_1210, keep_dims = var_1196, x = zero_mean_sq_9_cast_fp16)[name = tensor<string, []>("op_1211_cast_fp16")];
|
898 |
tensor<fp16, []> var_1212_to_fp16 = const()[name = tensor<string, []>("op_1212_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
899 |
-
tensor<fp16, [1,
|
900 |
-
tensor<fp16, []> denom_9_epsilon_0_to_fp16 = const()[name = tensor<string, []>("denom_9_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1p-24)];
|
901 |
-
tensor<fp16, [1, 1, 1, 1500]> denom_9_cast_fp16 = rsqrt(epsilon = denom_9_epsilon_0_to_fp16, x = var_1213_cast_fp16)[name = tensor<string, []>("denom_9_cast_fp16")];
|
902 |
-
tensor<fp16, [1, 384, 1, 1500]> out_9_cast_fp16 = mul(x = zero_mean_9_cast_fp16, y = denom_9_cast_fp16)[name = tensor<string, []>("out_9_cast_fp16")];
|
903 |
tensor<fp16, [384]> obj_9_gamma_0_to_fp16 = const()[name = tensor<string, []>("obj_9_gamma_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(9322880)))];
|
904 |
tensor<fp16, [384]> obj_9_beta_0_to_fp16 = const()[name = tensor<string, []>("obj_9_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(9323712)))];
|
905 |
tensor<fp16, []> obj_9_epsilon_0_to_fp16 = const()[name = tensor<string, []>("obj_9_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
@@ -1284,17 +1241,9 @@ program(1.0)
|
|
1284 |
tensor<fp16, [384]> layers_2_self_attn_o_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_2_self_attn_o_proj_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(10506112)))];
|
1285 |
tensor<fp16, [1, 384, 1, 1500]> obj_11_cast_fp16 = conv(bias = layers_2_self_attn_o_proj_bias_to_fp16, dilations = var_1676, groups = var_1195, pad = obj_11_pad_0, pad_type = obj_11_pad_type_0, strides = var_1674, weight = layers_2_self_attn_o_proj_weight_to_fp16, x = input_17_cast_fp16)[name = tensor<string, []>("obj_11_cast_fp16")];
|
1286 |
tensor<fp16, [1, 384, 1, 1500]> inputs_11_cast_fp16 = add(x = inputs_9_cast_fp16, y = obj_11_cast_fp16)[name = tensor<string, []>("inputs_11_cast_fp16")];
|
1287 |
-
tensor<int32, [1]>
|
1288 |
-
tensor<fp16, [1, 1, 1, 1500]> channels_mean_11_cast_fp16 = reduce_mean(axes = var_1682, keep_dims = var_1196, x = inputs_11_cast_fp16)[name = tensor<string, []>("channels_mean_11_cast_fp16")];
|
1289 |
-
tensor<fp16, [1, 384, 1, 1500]> zero_mean_11_cast_fp16 = sub(x = inputs_11_cast_fp16, y = channels_mean_11_cast_fp16)[name = tensor<string, []>("zero_mean_11_cast_fp16")];
|
1290 |
-
tensor<fp16, [1, 384, 1, 1500]> zero_mean_sq_11_cast_fp16 = mul(x = zero_mean_11_cast_fp16, y = zero_mean_11_cast_fp16)[name = tensor<string, []>("zero_mean_sq_11_cast_fp16")];
|
1291 |
-
tensor<int32, [1]> var_1686 = const()[name = tensor<string, []>("op_1686"), val = tensor<int32, [1]>([1])];
|
1292 |
-
tensor<fp16, [1, 1, 1, 1500]> var_1687_cast_fp16 = reduce_mean(axes = var_1686, keep_dims = var_1196, x = zero_mean_sq_11_cast_fp16)[name = tensor<string, []>("op_1687_cast_fp16")];
|
1293 |
tensor<fp16, []> var_1688_to_fp16 = const()[name = tensor<string, []>("op_1688_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
1294 |
-
tensor<fp16, [1,
|
1295 |
-
tensor<fp16, []> denom_11_epsilon_0_to_fp16 = const()[name = tensor<string, []>("denom_11_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1p-24)];
|
1296 |
-
tensor<fp16, [1, 1, 1, 1500]> denom_11_cast_fp16 = rsqrt(epsilon = denom_11_epsilon_0_to_fp16, x = var_1689_cast_fp16)[name = tensor<string, []>("denom_11_cast_fp16")];
|
1297 |
-
tensor<fp16, [1, 384, 1, 1500]> out_11_cast_fp16 = mul(x = zero_mean_11_cast_fp16, y = denom_11_cast_fp16)[name = tensor<string, []>("out_11_cast_fp16")];
|
1298 |
tensor<fp16, [384]> input_19_gamma_0_to_fp16 = const()[name = tensor<string, []>("input_19_gamma_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(10506944)))];
|
1299 |
tensor<fp16, [384]> input_19_beta_0_to_fp16 = const()[name = tensor<string, []>("input_19_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(10507776)))];
|
1300 |
tensor<fp16, []> input_19_epsilon_0_to_fp16 = const()[name = tensor<string, []>("input_19_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
@@ -1318,18 +1267,9 @@ program(1.0)
|
|
1318 |
tensor<fp16, [1, 384, 1, 1500]> inputs_13_cast_fp16 = add(x = inputs_11_cast_fp16, y = hidden_states_9_cast_fp16)[name = tensor<string, []>("inputs_13_cast_fp16")];
|
1319 |
tensor<int32, []> var_1717 = const()[name = tensor<string, []>("op_1717"), val = tensor<int32, []>(3)];
|
1320 |
tensor<int32, []> var_1728 = const()[name = tensor<string, []>("op_1728"), val = tensor<int32, []>(1)];
|
1321 |
-
tensor<
|
1322 |
-
tensor<int32, [1]> var_1739 = const()[name = tensor<string, []>("op_1739"), val = tensor<int32, [1]>([1])];
|
1323 |
-
tensor<fp16, [1, 1, 1, 1500]> channels_mean_13_cast_fp16 = reduce_mean(axes = var_1739, keep_dims = var_1729, x = inputs_13_cast_fp16)[name = tensor<string, []>("channels_mean_13_cast_fp16")];
|
1324 |
-
tensor<fp16, [1, 384, 1, 1500]> zero_mean_13_cast_fp16 = sub(x = inputs_13_cast_fp16, y = channels_mean_13_cast_fp16)[name = tensor<string, []>("zero_mean_13_cast_fp16")];
|
1325 |
-
tensor<fp16, [1, 384, 1, 1500]> zero_mean_sq_13_cast_fp16 = mul(x = zero_mean_13_cast_fp16, y = zero_mean_13_cast_fp16)[name = tensor<string, []>("zero_mean_sq_13_cast_fp16")];
|
1326 |
-
tensor<int32, [1]> var_1743 = const()[name = tensor<string, []>("op_1743"), val = tensor<int32, [1]>([1])];
|
1327 |
-
tensor<fp16, [1, 1, 1, 1500]> var_1744_cast_fp16 = reduce_mean(axes = var_1743, keep_dims = var_1729, x = zero_mean_sq_13_cast_fp16)[name = tensor<string, []>("op_1744_cast_fp16")];
|
1328 |
tensor<fp16, []> var_1745_to_fp16 = const()[name = tensor<string, []>("op_1745_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
1329 |
-
tensor<fp16, [1,
|
1330 |
-
tensor<fp16, []> denom_13_epsilon_0_to_fp16 = const()[name = tensor<string, []>("denom_13_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1p-24)];
|
1331 |
-
tensor<fp16, [1, 1, 1, 1500]> denom_13_cast_fp16 = rsqrt(epsilon = denom_13_epsilon_0_to_fp16, x = var_1746_cast_fp16)[name = tensor<string, []>("denom_13_cast_fp16")];
|
1332 |
-
tensor<fp16, [1, 384, 1, 1500]> out_13_cast_fp16 = mul(x = zero_mean_13_cast_fp16, y = denom_13_cast_fp16)[name = tensor<string, []>("out_13_cast_fp16")];
|
1333 |
tensor<fp16, [384]> obj_13_gamma_0_to_fp16 = const()[name = tensor<string, []>("obj_13_gamma_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(12872000)))];
|
1334 |
tensor<fp16, [384]> obj_13_beta_0_to_fp16 = const()[name = tensor<string, []>("obj_13_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(12872832)))];
|
1335 |
tensor<fp16, []> obj_13_epsilon_0_to_fp16 = const()[name = tensor<string, []>("obj_13_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
@@ -1714,17 +1654,9 @@ program(1.0)
|
|
1714 |
tensor<fp16, [384]> layers_3_self_attn_o_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_3_self_attn_o_proj_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(14055232)))];
|
1715 |
tensor<fp16, [1, 384, 1, 1500]> obj_cast_fp16 = conv(bias = layers_3_self_attn_o_proj_bias_to_fp16, dilations = var_2209, groups = var_1728, pad = obj_pad_0, pad_type = obj_pad_type_0, strides = var_2207, weight = layers_3_self_attn_o_proj_weight_to_fp16, x = input_25_cast_fp16)[name = tensor<string, []>("obj_cast_fp16")];
|
1716 |
tensor<fp16, [1, 384, 1, 1500]> inputs_15_cast_fp16 = add(x = inputs_13_cast_fp16, y = obj_cast_fp16)[name = tensor<string, []>("inputs_15_cast_fp16")];
|
1717 |
-
tensor<int32, [1]>
|
1718 |
-
tensor<fp16, [1, 1, 1, 1500]> channels_mean_15_cast_fp16 = reduce_mean(axes = var_2215, keep_dims = var_1729, x = inputs_15_cast_fp16)[name = tensor<string, []>("channels_mean_15_cast_fp16")];
|
1719 |
-
tensor<fp16, [1, 384, 1, 1500]> zero_mean_15_cast_fp16 = sub(x = inputs_15_cast_fp16, y = channels_mean_15_cast_fp16)[name = tensor<string, []>("zero_mean_15_cast_fp16")];
|
1720 |
-
tensor<fp16, [1, 384, 1, 1500]> zero_mean_sq_15_cast_fp16 = mul(x = zero_mean_15_cast_fp16, y = zero_mean_15_cast_fp16)[name = tensor<string, []>("zero_mean_sq_15_cast_fp16")];
|
1721 |
-
tensor<int32, [1]> var_2219 = const()[name = tensor<string, []>("op_2219"), val = tensor<int32, [1]>([1])];
|
1722 |
-
tensor<fp16, [1, 1, 1, 1500]> var_2220_cast_fp16 = reduce_mean(axes = var_2219, keep_dims = var_1729, x = zero_mean_sq_15_cast_fp16)[name = tensor<string, []>("op_2220_cast_fp16")];
|
1723 |
tensor<fp16, []> var_2221_to_fp16 = const()[name = tensor<string, []>("op_2221_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
1724 |
-
tensor<fp16, [1,
|
1725 |
-
tensor<fp16, []> denom_15_epsilon_0_to_fp16 = const()[name = tensor<string, []>("denom_15_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1p-24)];
|
1726 |
-
tensor<fp16, [1, 1, 1, 1500]> denom_15_cast_fp16 = rsqrt(epsilon = denom_15_epsilon_0_to_fp16, x = var_2222_cast_fp16)[name = tensor<string, []>("denom_15_cast_fp16")];
|
1727 |
-
tensor<fp16, [1, 384, 1, 1500]> out_15_cast_fp16 = mul(x = zero_mean_15_cast_fp16, y = denom_15_cast_fp16)[name = tensor<string, []>("out_15_cast_fp16")];
|
1728 |
tensor<fp16, [384]> input_27_gamma_0_to_fp16 = const()[name = tensor<string, []>("input_27_gamma_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(14056064)))];
|
1729 |
tensor<fp16, [384]> input_27_beta_0_to_fp16 = const()[name = tensor<string, []>("input_27_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(14056896)))];
|
1730 |
tensor<fp16, []> input_27_epsilon_0_to_fp16 = const()[name = tensor<string, []>("input_27_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
@@ -1746,18 +1678,9 @@ program(1.0)
|
|
1746 |
tensor<fp16, [384]> layers_3_fc2_bias_to_fp16 = const()[name = tensor<string, []>("layers_3_fc2_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(16420288)))];
|
1747 |
tensor<fp16, [1, 384, 1, 1500]> hidden_states_cast_fp16 = conv(bias = layers_3_fc2_bias_to_fp16, dilations = var_2243, groups = var_1728, pad = hidden_states_pad_0, pad_type = hidden_states_pad_type_0, strides = var_2241, weight = layers_3_fc2_weight_to_fp16, x = input_cast_fp16)[name = tensor<string, []>("hidden_states_cast_fp16")];
|
1748 |
tensor<fp16, [1, 384, 1, 1500]> inputs_cast_fp16 = add(x = inputs_15_cast_fp16, y = hidden_states_cast_fp16)[name = tensor<string, []>("inputs_cast_fp16")];
|
1749 |
-
tensor<
|
1750 |
-
tensor<int32, [1]> var_2253 = const()[name = tensor<string, []>("op_2253"), val = tensor<int32, [1]>([1])];
|
1751 |
-
tensor<fp16, [1, 1, 1, 1500]> channels_mean_cast_fp16 = reduce_mean(axes = var_2253, keep_dims = var_2249, x = inputs_cast_fp16)[name = tensor<string, []>("channels_mean_cast_fp16")];
|
1752 |
-
tensor<fp16, [1, 384, 1, 1500]> zero_mean_cast_fp16 = sub(x = inputs_cast_fp16, y = channels_mean_cast_fp16)[name = tensor<string, []>("zero_mean_cast_fp16")];
|
1753 |
-
tensor<fp16, [1, 384, 1, 1500]> zero_mean_sq_cast_fp16 = mul(x = zero_mean_cast_fp16, y = zero_mean_cast_fp16)[name = tensor<string, []>("zero_mean_sq_cast_fp16")];
|
1754 |
-
tensor<int32, [1]> var_2257 = const()[name = tensor<string, []>("op_2257"), val = tensor<int32, [1]>([1])];
|
1755 |
-
tensor<fp16, [1, 1, 1, 1500]> var_2258_cast_fp16 = reduce_mean(axes = var_2257, keep_dims = var_2249, x = zero_mean_sq_cast_fp16)[name = tensor<string, []>("op_2258_cast_fp16")];
|
1756 |
tensor<fp16, []> var_2259_to_fp16 = const()[name = tensor<string, []>("op_2259_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
1757 |
-
tensor<fp16, [1,
|
1758 |
-
tensor<fp16, []> denom_epsilon_0_to_fp16 = const()[name = tensor<string, []>("denom_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1p-24)];
|
1759 |
-
tensor<fp16, [1, 1, 1, 1500]> denom_cast_fp16 = rsqrt(epsilon = denom_epsilon_0_to_fp16, x = var_2260_cast_fp16)[name = tensor<string, []>("denom_cast_fp16")];
|
1760 |
-
tensor<fp16, [1, 384, 1, 1500]> out_cast_fp16 = mul(x = zero_mean_cast_fp16, y = denom_cast_fp16)[name = tensor<string, []>("out_cast_fp16")];
|
1761 |
tensor<fp16, [384]> encoder_output_embeds_type_fp32_gamma_0_to_fp16 = const()[name = tensor<string, []>("encoder_output_embeds_type_fp32_gamma_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(16421120)))];
|
1762 |
tensor<fp16, [384]> encoder_output_embeds_type_fp32_beta_0_to_fp16 = const()[name = tensor<string, []>("encoder_output_embeds_type_fp32_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(16421952)))];
|
1763 |
tensor<fp16, []> encoder_output_embeds_type_fp32_epsilon_0_to_fp16 = const()[name = tensor<string, []>("encoder_output_embeds_type_fp32_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
|
|
1 |
program(1.0)
|
2 |
+
[buildInfo = dict<tensor<string, []>, tensor<string, []>>({{"coremlc-component-MIL", "3304.5.2"}, {"coremlc-version", "3304.6.2"}, {"coremltools-component-torch", "2.2.2"}, {"coremltools-source-dialect", "TorchScript"}, {"coremltools-version", "7.2"}})]
|
3 |
{
|
4 |
func main<ios16>(tensor<fp16, [1, 80, 1, 3000]> melspectrogram_features) {
|
5 |
tensor<int32, [2]> var_34 = const()[name = tensor<string, []>("op_34"), val = tensor<int32, [2]>([1, 1])];
|
|
|
26 |
tensor<fp16, [1, 384, 1, 1500]> inputs_1_cast_fp16 = add(x = hidden_states_3_cast_fp16, y = var_108_to_fp16)[name = tensor<string, []>("inputs_1_cast_fp16")];
|
27 |
tensor<int32, []> var_118 = const()[name = tensor<string, []>("op_118"), val = tensor<int32, []>(3)];
|
28 |
tensor<int32, []> var_129 = const()[name = tensor<string, []>("op_129"), val = tensor<int32, []>(1)];
|
29 |
+
tensor<int32, [1]> out_1_axes_0 = const()[name = tensor<string, []>("out_1_axes_0"), val = tensor<int32, [1]>([1])];
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
tensor<fp16, []> var_146_to_fp16 = const()[name = tensor<string, []>("op_146_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
31 |
+
tensor<fp16, [1, 384, 1, 1500]> out_1_cast_fp16 = layer_norm(axes = out_1_axes_0, epsilon = var_146_to_fp16, x = inputs_1_cast_fp16)[name = tensor<string, []>("out_1_cast_fp16")];
|
|
|
|
|
|
|
32 |
tensor<fp16, [384]> obj_1_mean_0_to_fp16 = const()[name = tensor<string, []>("obj_1_mean_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(2222976)))];
|
33 |
tensor<fp16, [384]> obj_1_variance_0_to_fp16 = const()[name = tensor<string, []>("obj_1_variance_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(2223808)))];
|
34 |
tensor<fp16, [384]> obj_1_gamma_0_to_fp16 = const()[name = tensor<string, []>("obj_1_gamma_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(2224640)))];
|
|
|
415 |
tensor<fp16, [384]> layers_0_self_attn_o_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_0_self_attn_o_proj_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(3407872)))];
|
416 |
tensor<fp16, [1, 384, 1, 1500]> obj_3_cast_fp16 = conv(bias = layers_0_self_attn_o_proj_bias_to_fp16, dilations = var_610, groups = var_129, pad = obj_3_pad_0, pad_type = obj_3_pad_type_0, strides = var_608, weight = layers_0_self_attn_o_proj_weight_to_fp16, x = input_1_cast_fp16)[name = tensor<string, []>("obj_3_cast_fp16")];
|
417 |
tensor<fp16, [1, 384, 1, 1500]> inputs_3_cast_fp16 = add(x = inputs_1_cast_fp16, y = obj_3_cast_fp16)[name = tensor<string, []>("inputs_3_cast_fp16")];
|
418 |
+
tensor<int32, [1]> out_3_axes_0 = const()[name = tensor<string, []>("out_3_axes_0"), val = tensor<int32, [1]>([1])];
|
|
|
|
|
|
|
|
|
|
|
419 |
tensor<fp16, []> var_622_to_fp16 = const()[name = tensor<string, []>("op_622_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
420 |
+
tensor<fp16, [1, 384, 1, 1500]> out_3_cast_fp16 = layer_norm(axes = out_3_axes_0, epsilon = var_622_to_fp16, x = inputs_3_cast_fp16)[name = tensor<string, []>("out_3_cast_fp16")];
|
|
|
|
|
|
|
421 |
tensor<fp16, [384]> input_3_gamma_0_to_fp16 = const()[name = tensor<string, []>("input_3_gamma_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(3408704)))];
|
422 |
tensor<fp16, [384]> input_3_beta_0_to_fp16 = const()[name = tensor<string, []>("input_3_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(3409536)))];
|
423 |
tensor<fp16, []> input_3_epsilon_0_to_fp16 = const()[name = tensor<string, []>("input_3_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
|
|
441 |
tensor<fp16, [1, 384, 1, 1500]> inputs_5_cast_fp16 = add(x = inputs_3_cast_fp16, y = hidden_states_5_cast_fp16)[name = tensor<string, []>("inputs_5_cast_fp16")];
|
442 |
tensor<int32, []> var_651 = const()[name = tensor<string, []>("op_651"), val = tensor<int32, []>(3)];
|
443 |
tensor<int32, []> var_662 = const()[name = tensor<string, []>("op_662"), val = tensor<int32, []>(1)];
|
444 |
+
tensor<int32, [1]> out_5_axes_0 = const()[name = tensor<string, []>("out_5_axes_0"), val = tensor<int32, [1]>([1])];
|
|
|
|
|
|
|
|
|
|
|
|
|
445 |
tensor<fp16, []> var_679_to_fp16 = const()[name = tensor<string, []>("op_679_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
446 |
+
tensor<fp16, [1, 384, 1, 1500]> out_5_cast_fp16 = layer_norm(axes = out_5_axes_0, epsilon = var_679_to_fp16, x = inputs_5_cast_fp16)[name = tensor<string, []>("out_5_cast_fp16")];
|
|
|
|
|
|
|
447 |
tensor<fp16, [384]> obj_5_gamma_0_to_fp16 = const()[name = tensor<string, []>("obj_5_gamma_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(5773760)))];
|
448 |
tensor<fp16, [384]> obj_5_beta_0_to_fp16 = const()[name = tensor<string, []>("obj_5_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(5774592)))];
|
449 |
tensor<fp16, []> obj_5_epsilon_0_to_fp16 = const()[name = tensor<string, []>("obj_5_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
|
|
828 |
tensor<fp16, [384]> layers_1_self_attn_o_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_1_self_attn_o_proj_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(6956992)))];
|
829 |
tensor<fp16, [1, 384, 1, 1500]> obj_7_cast_fp16 = conv(bias = layers_1_self_attn_o_proj_bias_to_fp16, dilations = var_1143, groups = var_662, pad = obj_7_pad_0, pad_type = obj_7_pad_type_0, strides = var_1141, weight = layers_1_self_attn_o_proj_weight_to_fp16, x = input_9_cast_fp16)[name = tensor<string, []>("obj_7_cast_fp16")];
|
830 |
tensor<fp16, [1, 384, 1, 1500]> inputs_7_cast_fp16 = add(x = inputs_5_cast_fp16, y = obj_7_cast_fp16)[name = tensor<string, []>("inputs_7_cast_fp16")];
|
831 |
+
tensor<int32, [1]> out_7_axes_0 = const()[name = tensor<string, []>("out_7_axes_0"), val = tensor<int32, [1]>([1])];
|
|
|
|
|
|
|
|
|
|
|
832 |
tensor<fp16, []> var_1155_to_fp16 = const()[name = tensor<string, []>("op_1155_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
833 |
+
tensor<fp16, [1, 384, 1, 1500]> out_7_cast_fp16 = layer_norm(axes = out_7_axes_0, epsilon = var_1155_to_fp16, x = inputs_7_cast_fp16)[name = tensor<string, []>("out_7_cast_fp16")];
|
|
|
|
|
|
|
834 |
tensor<fp16, [384]> input_11_gamma_0_to_fp16 = const()[name = tensor<string, []>("input_11_gamma_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(6957824)))];
|
835 |
tensor<fp16, [384]> input_11_beta_0_to_fp16 = const()[name = tensor<string, []>("input_11_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(6958656)))];
|
836 |
tensor<fp16, []> input_11_epsilon_0_to_fp16 = const()[name = tensor<string, []>("input_11_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
|
|
854 |
tensor<fp16, [1, 384, 1, 1500]> inputs_9_cast_fp16 = add(x = inputs_7_cast_fp16, y = hidden_states_7_cast_fp16)[name = tensor<string, []>("inputs_9_cast_fp16")];
|
855 |
tensor<int32, []> var_1184 = const()[name = tensor<string, []>("op_1184"), val = tensor<int32, []>(3)];
|
856 |
tensor<int32, []> var_1195 = const()[name = tensor<string, []>("op_1195"), val = tensor<int32, []>(1)];
|
857 |
+
tensor<int32, [1]> out_9_axes_0 = const()[name = tensor<string, []>("out_9_axes_0"), val = tensor<int32, [1]>([1])];
|
|
|
|
|
|
|
|
|
|
|
|
|
858 |
tensor<fp16, []> var_1212_to_fp16 = const()[name = tensor<string, []>("op_1212_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
859 |
+
tensor<fp16, [1, 384, 1, 1500]> out_9_cast_fp16 = layer_norm(axes = out_9_axes_0, epsilon = var_1212_to_fp16, x = inputs_9_cast_fp16)[name = tensor<string, []>("out_9_cast_fp16")];
|
|
|
|
|
|
|
860 |
tensor<fp16, [384]> obj_9_gamma_0_to_fp16 = const()[name = tensor<string, []>("obj_9_gamma_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(9322880)))];
|
861 |
tensor<fp16, [384]> obj_9_beta_0_to_fp16 = const()[name = tensor<string, []>("obj_9_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(9323712)))];
|
862 |
tensor<fp16, []> obj_9_epsilon_0_to_fp16 = const()[name = tensor<string, []>("obj_9_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
|
|
1241 |
tensor<fp16, [384]> layers_2_self_attn_o_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_2_self_attn_o_proj_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(10506112)))];
|
1242 |
tensor<fp16, [1, 384, 1, 1500]> obj_11_cast_fp16 = conv(bias = layers_2_self_attn_o_proj_bias_to_fp16, dilations = var_1676, groups = var_1195, pad = obj_11_pad_0, pad_type = obj_11_pad_type_0, strides = var_1674, weight = layers_2_self_attn_o_proj_weight_to_fp16, x = input_17_cast_fp16)[name = tensor<string, []>("obj_11_cast_fp16")];
|
1243 |
tensor<fp16, [1, 384, 1, 1500]> inputs_11_cast_fp16 = add(x = inputs_9_cast_fp16, y = obj_11_cast_fp16)[name = tensor<string, []>("inputs_11_cast_fp16")];
|
1244 |
+
tensor<int32, [1]> out_11_axes_0 = const()[name = tensor<string, []>("out_11_axes_0"), val = tensor<int32, [1]>([1])];
|
|
|
|
|
|
|
|
|
|
|
1245 |
tensor<fp16, []> var_1688_to_fp16 = const()[name = tensor<string, []>("op_1688_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
1246 |
+
tensor<fp16, [1, 384, 1, 1500]> out_11_cast_fp16 = layer_norm(axes = out_11_axes_0, epsilon = var_1688_to_fp16, x = inputs_11_cast_fp16)[name = tensor<string, []>("out_11_cast_fp16")];
|
|
|
|
|
|
|
1247 |
tensor<fp16, [384]> input_19_gamma_0_to_fp16 = const()[name = tensor<string, []>("input_19_gamma_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(10506944)))];
|
1248 |
tensor<fp16, [384]> input_19_beta_0_to_fp16 = const()[name = tensor<string, []>("input_19_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(10507776)))];
|
1249 |
tensor<fp16, []> input_19_epsilon_0_to_fp16 = const()[name = tensor<string, []>("input_19_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
|
|
1267 |
tensor<fp16, [1, 384, 1, 1500]> inputs_13_cast_fp16 = add(x = inputs_11_cast_fp16, y = hidden_states_9_cast_fp16)[name = tensor<string, []>("inputs_13_cast_fp16")];
|
1268 |
tensor<int32, []> var_1717 = const()[name = tensor<string, []>("op_1717"), val = tensor<int32, []>(3)];
|
1269 |
tensor<int32, []> var_1728 = const()[name = tensor<string, []>("op_1728"), val = tensor<int32, []>(1)];
|
1270 |
+
tensor<int32, [1]> out_13_axes_0 = const()[name = tensor<string, []>("out_13_axes_0"), val = tensor<int32, [1]>([1])];
|
|
|
|
|
|
|
|
|
|
|
|
|
1271 |
tensor<fp16, []> var_1745_to_fp16 = const()[name = tensor<string, []>("op_1745_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
1272 |
+
tensor<fp16, [1, 384, 1, 1500]> out_13_cast_fp16 = layer_norm(axes = out_13_axes_0, epsilon = var_1745_to_fp16, x = inputs_13_cast_fp16)[name = tensor<string, []>("out_13_cast_fp16")];
|
|
|
|
|
|
|
1273 |
tensor<fp16, [384]> obj_13_gamma_0_to_fp16 = const()[name = tensor<string, []>("obj_13_gamma_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(12872000)))];
|
1274 |
tensor<fp16, [384]> obj_13_beta_0_to_fp16 = const()[name = tensor<string, []>("obj_13_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(12872832)))];
|
1275 |
tensor<fp16, []> obj_13_epsilon_0_to_fp16 = const()[name = tensor<string, []>("obj_13_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
|
|
1654 |
tensor<fp16, [384]> layers_3_self_attn_o_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_3_self_attn_o_proj_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(14055232)))];
|
1655 |
tensor<fp16, [1, 384, 1, 1500]> obj_cast_fp16 = conv(bias = layers_3_self_attn_o_proj_bias_to_fp16, dilations = var_2209, groups = var_1728, pad = obj_pad_0, pad_type = obj_pad_type_0, strides = var_2207, weight = layers_3_self_attn_o_proj_weight_to_fp16, x = input_25_cast_fp16)[name = tensor<string, []>("obj_cast_fp16")];
|
1656 |
tensor<fp16, [1, 384, 1, 1500]> inputs_15_cast_fp16 = add(x = inputs_13_cast_fp16, y = obj_cast_fp16)[name = tensor<string, []>("inputs_15_cast_fp16")];
|
1657 |
+
tensor<int32, [1]> out_15_axes_0 = const()[name = tensor<string, []>("out_15_axes_0"), val = tensor<int32, [1]>([1])];
|
|
|
|
|
|
|
|
|
|
|
1658 |
tensor<fp16, []> var_2221_to_fp16 = const()[name = tensor<string, []>("op_2221_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
1659 |
+
tensor<fp16, [1, 384, 1, 1500]> out_15_cast_fp16 = layer_norm(axes = out_15_axes_0, epsilon = var_2221_to_fp16, x = inputs_15_cast_fp16)[name = tensor<string, []>("out_15_cast_fp16")];
|
|
|
|
|
|
|
1660 |
tensor<fp16, [384]> input_27_gamma_0_to_fp16 = const()[name = tensor<string, []>("input_27_gamma_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(14056064)))];
|
1661 |
tensor<fp16, [384]> input_27_beta_0_to_fp16 = const()[name = tensor<string, []>("input_27_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(14056896)))];
|
1662 |
tensor<fp16, []> input_27_epsilon_0_to_fp16 = const()[name = tensor<string, []>("input_27_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
|
|
1678 |
tensor<fp16, [384]> layers_3_fc2_bias_to_fp16 = const()[name = tensor<string, []>("layers_3_fc2_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(16420288)))];
|
1679 |
tensor<fp16, [1, 384, 1, 1500]> hidden_states_cast_fp16 = conv(bias = layers_3_fc2_bias_to_fp16, dilations = var_2243, groups = var_1728, pad = hidden_states_pad_0, pad_type = hidden_states_pad_type_0, strides = var_2241, weight = layers_3_fc2_weight_to_fp16, x = input_cast_fp16)[name = tensor<string, []>("hidden_states_cast_fp16")];
|
1680 |
tensor<fp16, [1, 384, 1, 1500]> inputs_cast_fp16 = add(x = inputs_15_cast_fp16, y = hidden_states_cast_fp16)[name = tensor<string, []>("inputs_cast_fp16")];
|
1681 |
+
tensor<int32, [1]> out_axes_0 = const()[name = tensor<string, []>("out_axes_0"), val = tensor<int32, [1]>([1])];
|
|
|
|
|
|
|
|
|
|
|
|
|
1682 |
tensor<fp16, []> var_2259_to_fp16 = const()[name = tensor<string, []>("op_2259_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
1683 |
+
tensor<fp16, [1, 384, 1, 1500]> out_cast_fp16 = layer_norm(axes = out_axes_0, epsilon = var_2259_to_fp16, x = inputs_cast_fp16)[name = tensor<string, []>("out_cast_fp16")];
|
|
|
|
|
|
|
1684 |
tensor<fp16, [384]> encoder_output_embeds_type_fp32_gamma_0_to_fp16 = const()[name = tensor<string, []>("encoder_output_embeds_type_fp32_gamma_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(16421120)))];
|
1685 |
tensor<fp16, [384]> encoder_output_embeds_type_fp32_beta_0_to_fp16 = const()[name = tensor<string, []>("encoder_output_embeds_type_fp32_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(16421952)))];
|
1686 |
tensor<fp16, []> encoder_output_embeds_type_fp32_epsilon_0_to_fp16 = const()[name = tensor<string, []>("encoder_output_embeds_type_fp32_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
openai_whisper-tiny.en/AudioEncoder.mlmodelc/weights/weight.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 16422784
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:86a53cab0dcd92efa0d89803401347c8119203aac37f336d5a699c0587d01c48
|
3 |
size 16422784
|
openai_whisper-tiny.en/MelSpectrogram.mlmodelc/analytics/coremldata.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 243
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2fc2d0799af479af957359c81021ff6a464d3251b3415064f8d2c6403cbea68f
|
3 |
size 243
|
openai_whisper-tiny.en/MelSpectrogram.mlmodelc/coremldata.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 328
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c977c1199f029235ab96a7dc394e5c5c6d2b606d333f2cab46df750a4df89329
|
3 |
size 328
|
openai_whisper-tiny.en/MelSpectrogram.mlmodelc/metadata.json
CHANGED
@@ -50,8 +50,8 @@
|
|
50 |
},
|
51 |
"userDefinedMetadata" : {
|
52 |
"com.github.apple.coremltools.source_dialect" : "TorchScript",
|
53 |
-
"com.github.apple.coremltools.
|
54 |
-
"com.github.apple.coremltools.
|
55 |
},
|
56 |
"inputSchema" : [
|
57 |
{
|
|
|
50 |
},
|
51 |
"userDefinedMetadata" : {
|
52 |
"com.github.apple.coremltools.source_dialect" : "TorchScript",
|
53 |
+
"com.github.apple.coremltools.version" : "7.2",
|
54 |
+
"com.github.apple.coremltools.source" : "torch==2.2.2"
|
55 |
},
|
56 |
"inputSchema" : [
|
57 |
{
|
openai_whisper-tiny.en/MelSpectrogram.mlmodelc/model.mil
CHANGED
@@ -1,13 +1,13 @@
|
|
1 |
program(1.0)
|
2 |
-
[buildInfo = dict<tensor<string, []>, tensor<string, []>>({{"coremlc-component-MIL", "5.
|
3 |
{
|
4 |
func main<ios16>(tensor<fp16, [480000]> audio) {
|
5 |
tensor<int32, [3]> var_10 = const()[name = tensor<string, []>("op_10"), val = tensor<int32, [3]>([1, 1, 480000])];
|
6 |
tensor<fp16, [1, 1, 480000]> input_1_cast_fp16 = reshape(shape = var_10, x = audio)[name = tensor<string, []>("input_1_cast_fp16")];
|
7 |
tensor<int32, [6]> input_3_pad_0 = const()[name = tensor<string, []>("input_3_pad_0"), val = tensor<int32, [6]>([0, 0, 0, 0, 200, 200])];
|
8 |
tensor<string, []> input_3_mode_0 = const()[name = tensor<string, []>("input_3_mode_0"), val = tensor<string, []>("reflect")];
|
9 |
-
tensor<fp16, []>
|
10 |
-
tensor<fp16, [1, 1, 480400]> input_3_cast_fp16 = pad(constant_val =
|
11 |
tensor<int32, [1]> var_22 = const()[name = tensor<string, []>("op_22"), val = tensor<int32, [1]>([480400])];
|
12 |
tensor<fp16, [480400]> input_cast_fp16 = reshape(shape = var_22, x = input_3_cast_fp16)[name = tensor<string, []>("input_cast_fp16")];
|
13 |
tensor<int32, [1]> expand_dims_0_axes_0 = const()[name = tensor<string, []>("expand_dims_0_axes_0"), val = tensor<int32, [1]>([0])];
|
|
|
1 |
program(1.0)
|
2 |
+
[buildInfo = dict<tensor<string, []>, tensor<string, []>>({{"coremlc-component-MIL", "3304.5.2"}, {"coremlc-version", "3304.6.2"}, {"coremltools-component-torch", "2.2.2"}, {"coremltools-source-dialect", "TorchScript"}, {"coremltools-version", "7.2"}})]
|
3 |
{
|
4 |
func main<ios16>(tensor<fp16, [480000]> audio) {
|
5 |
tensor<int32, [3]> var_10 = const()[name = tensor<string, []>("op_10"), val = tensor<int32, [3]>([1, 1, 480000])];
|
6 |
tensor<fp16, [1, 1, 480000]> input_1_cast_fp16 = reshape(shape = var_10, x = audio)[name = tensor<string, []>("input_1_cast_fp16")];
|
7 |
tensor<int32, [6]> input_3_pad_0 = const()[name = tensor<string, []>("input_3_pad_0"), val = tensor<int32, [6]>([0, 0, 0, 0, 200, 200])];
|
8 |
tensor<string, []> input_3_mode_0 = const()[name = tensor<string, []>("input_3_mode_0"), val = tensor<string, []>("reflect")];
|
9 |
+
tensor<fp16, []> const_1_to_fp16 = const()[name = tensor<string, []>("const_1_to_fp16"), val = tensor<fp16, []>(0x0p+0)];
|
10 |
+
tensor<fp16, [1, 1, 480400]> input_3_cast_fp16 = pad(constant_val = const_1_to_fp16, mode = input_3_mode_0, pad = input_3_pad_0, x = input_1_cast_fp16)[name = tensor<string, []>("input_3_cast_fp16")];
|
11 |
tensor<int32, [1]> var_22 = const()[name = tensor<string, []>("op_22"), val = tensor<int32, [1]>([480400])];
|
12 |
tensor<fp16, [480400]> input_cast_fp16 = reshape(shape = var_22, x = input_3_cast_fp16)[name = tensor<string, []>("input_cast_fp16")];
|
13 |
tensor<int32, [1]> expand_dims_0_axes_0 = const()[name = tensor<string, []>("expand_dims_0_axes_0"), val = tensor<int32, [1]>([0])];
|
openai_whisper-tiny.en/MelSpectrogram.mlmodelc/weights/weight.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 354080
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a3afe232689fe92b1958d124f42f9ccf43e611ce1055e584190d40f11dc5a3d6
|
3 |
size 354080
|
openai_whisper-tiny.en/TextDecoder.mlmodelc/analytics/coremldata.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 243
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a3e8ecb0c4fc6f8c91c97b3a8b15fb84715aaa68d64fbe125553224c0c64c743
|
3 |
size 243
|
openai_whisper-tiny.en/TextDecoder.mlmodelc/coremldata.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 633
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d8bae9187c5fb7e29a7cb0c8aa2c753e82040ba85403c2dbad6dd30f9a6a008d
|
3 |
size 633
|
openai_whisper-tiny.en/TextDecoder.mlmodelc/metadata.json
CHANGED
@@ -51,18 +51,18 @@
|
|
51 |
"mlProgramOperationTypeHistogram" : {
|
52 |
"Split" : 2,
|
53 |
"Concat" : 3,
|
54 |
-
"Ios16.rsqrt" : 13,
|
55 |
-
"Ios16.mul" : 50,
|
56 |
"Squeeze" : 1,
|
|
|
|
|
57 |
"SliceByIndex" : 16,
|
58 |
-
"Ios16.sub" :
|
59 |
"Transpose" : 1,
|
60 |
"Ios16.conv" : 40,
|
61 |
-
"Ios16.add" :
|
62 |
"Ios16.linear" : 1,
|
63 |
"Ios16.matmul" : 16,
|
64 |
"Ios16.gelu" : 4,
|
65 |
-
"Ios16.reduceMean" :
|
66 |
"ExpandDims" : 6,
|
67 |
"Ios16.batchNorm" : 13,
|
68 |
"Ios16.gather" : 2,
|
@@ -85,7 +85,7 @@
|
|
85 |
"userDefinedMetadata" : {
|
86 |
"com.github.apple.coremltools.source_dialect" : "TorchScript",
|
87 |
"com.github.apple.coremltools.source" : "torch==2.2.2",
|
88 |
-
"com.github.apple.coremltools.version" : "7.
|
89 |
},
|
90 |
"inputSchema" : [
|
91 |
{
|
|
|
51 |
"mlProgramOperationTypeHistogram" : {
|
52 |
"Split" : 2,
|
53 |
"Concat" : 3,
|
|
|
|
|
54 |
"Squeeze" : 1,
|
55 |
+
"Ios16.mul" : 24,
|
56 |
+
"Ios16.layerNorm" : 13,
|
57 |
"SliceByIndex" : 16,
|
58 |
+
"Ios16.sub" : 1,
|
59 |
"Transpose" : 1,
|
60 |
"Ios16.conv" : 40,
|
61 |
+
"Ios16.add" : 25,
|
62 |
"Ios16.linear" : 1,
|
63 |
"Ios16.matmul" : 16,
|
64 |
"Ios16.gelu" : 4,
|
65 |
+
"Ios16.reduceMean" : 1,
|
66 |
"ExpandDims" : 6,
|
67 |
"Ios16.batchNorm" : 13,
|
68 |
"Ios16.gather" : 2,
|
|
|
85 |
"userDefinedMetadata" : {
|
86 |
"com.github.apple.coremltools.source_dialect" : "TorchScript",
|
87 |
"com.github.apple.coremltools.source" : "torch==2.2.2",
|
88 |
+
"com.github.apple.coremltools.version" : "7.2"
|
89 |
},
|
90 |
"inputSchema" : [
|
91 |
{
|
openai_whisper-tiny.en/TextDecoder.mlmodelc/model.mil
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
program(1.0)
|
2 |
-
[buildInfo = dict<tensor<string, []>, tensor<string, []>>({{"coremlc-component-MIL", "5.
|
3 |
{
|
4 |
func main<ios16>(tensor<int32, [1]> cache_length, tensor<fp16, [1, 448]> decoder_key_padding_mask, tensor<fp16, [1, 384, 1, 1500]> encoder_output_embeds, tensor<int32, [1]> input_ids, tensor<fp16, [1, 1536, 1, 448]> key_cache, tensor<fp16, [1, 448]> kv_cache_update_mask, tensor<fp16, [1, 1536, 1, 448]> value_cache) {
|
5 |
tensor<int32, []> var_24_axis_0 = const()[name = tensor<string, []>("op_24_axis_0"), val = tensor<int32, []>(0)];
|
@@ -23,18 +23,9 @@ program(1.0)
|
|
23 |
tensor<fp16, [1, 384, 1, 448]> var_54_cast_fp16_0, tensor<fp16, [1, 384, 1, 448]> var_54_cast_fp16_1, tensor<fp16, [1, 384, 1, 448]> var_54_cast_fp16_2, tensor<fp16, [1, 384, 1, 448]> var_54_cast_fp16_3 = split(axis = var_54_axis_0, split_sizes = tile_1, x = value_cache)[name = tensor<string, []>("op_54_cast_fp16")];
|
24 |
tensor<int32, []> var_64 = const()[name = tensor<string, []>("op_64"), val = tensor<int32, []>(3)];
|
25 |
tensor<int32, []> var_71 = const()[name = tensor<string, []>("op_71"), val = tensor<int32, []>(1)];
|
26 |
-
tensor<
|
27 |
-
tensor<int32, [1]> var_84 = const()[name = tensor<string, []>("op_84"), val = tensor<int32, [1]>([1])];
|
28 |
-
tensor<fp16, [1, 1, 1, 1]> channels_mean_1_cast_fp16 = reduce_mean(axes = var_84, keep_dims = var_72, x = inputs_1_cast_fp16)[name = tensor<string, []>("channels_mean_1_cast_fp16")];
|
29 |
-
tensor<fp16, [1, 384, 1, 1]> zero_mean_1_cast_fp16 = sub(x = inputs_1_cast_fp16, y = channels_mean_1_cast_fp16)[name = tensor<string, []>("zero_mean_1_cast_fp16")];
|
30 |
-
tensor<fp16, [1, 384, 1, 1]> zero_mean_sq_1_cast_fp16 = mul(x = zero_mean_1_cast_fp16, y = zero_mean_1_cast_fp16)[name = tensor<string, []>("zero_mean_sq_1_cast_fp16")];
|
31 |
-
tensor<int32, [1]> var_88 = const()[name = tensor<string, []>("op_88"), val = tensor<int32, [1]>([1])];
|
32 |
-
tensor<fp16, [1, 1, 1, 1]> var_89_cast_fp16 = reduce_mean(axes = var_88, keep_dims = var_72, x = zero_mean_sq_1_cast_fp16)[name = tensor<string, []>("op_89_cast_fp16")];
|
33 |
tensor<fp16, []> var_90_to_fp16 = const()[name = tensor<string, []>("op_90_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
34 |
-
tensor<fp16, [1,
|
35 |
-
tensor<fp16, []> denom_1_epsilon_0_to_fp16 = const()[name = tensor<string, []>("denom_1_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1p-24)];
|
36 |
-
tensor<fp16, [1, 1, 1, 1]> denom_1_cast_fp16 = rsqrt(epsilon = denom_1_epsilon_0_to_fp16, x = var_91_cast_fp16)[name = tensor<string, []>("denom_1_cast_fp16")];
|
37 |
-
tensor<fp16, [1, 384, 1, 1]> out_1_cast_fp16 = mul(x = zero_mean_1_cast_fp16, y = denom_1_cast_fp16)[name = tensor<string, []>("out_1_cast_fp16")];
|
38 |
tensor<fp16, [384]> obj_1_mean_0_to_fp16 = const()[name = tensor<string, []>("obj_1_mean_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(40175808)))];
|
39 |
tensor<fp16, [384]> obj_1_variance_0_to_fp16 = const()[name = tensor<string, []>("obj_1_variance_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(40176640)))];
|
40 |
tensor<fp16, [384]> obj_1_gamma_0_to_fp16 = const()[name = tensor<string, []>("obj_1_gamma_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(40177472)))];
|
@@ -103,17 +94,9 @@ program(1.0)
|
|
103 |
tensor<fp16, [384]> layers_0_self_attn_o_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_0_self_attn_o_proj_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(41360704)))];
|
104 |
tensor<fp16, [1, 384, 1, 1]> obj_7_cast_fp16 = conv(bias = layers_0_self_attn_o_proj_bias_to_fp16, dilations = var_161, groups = var_71, pad = obj_7_pad_0, pad_type = obj_7_pad_type_0, strides = var_159, weight = layers_0_self_attn_o_proj_weight_to_fp16, x = input_1_cast_fp16)[name = tensor<string, []>("obj_7_cast_fp16")];
|
105 |
tensor<fp16, [1, 384, 1, 1]> inputs_3_cast_fp16 = add(x = inputs_1_cast_fp16, y = obj_7_cast_fp16)[name = tensor<string, []>("inputs_3_cast_fp16")];
|
106 |
-
tensor<int32, [1]>
|
107 |
-
tensor<fp16, [1, 1, 1, 1]> channels_mean_3_cast_fp16 = reduce_mean(axes = var_171, keep_dims = var_72, x = inputs_3_cast_fp16)[name = tensor<string, []>("channels_mean_3_cast_fp16")];
|
108 |
-
tensor<fp16, [1, 384, 1, 1]> zero_mean_3_cast_fp16 = sub(x = inputs_3_cast_fp16, y = channels_mean_3_cast_fp16)[name = tensor<string, []>("zero_mean_3_cast_fp16")];
|
109 |
-
tensor<fp16, [1, 384, 1, 1]> zero_mean_sq_3_cast_fp16 = mul(x = zero_mean_3_cast_fp16, y = zero_mean_3_cast_fp16)[name = tensor<string, []>("zero_mean_sq_3_cast_fp16")];
|
110 |
-
tensor<int32, [1]> var_175 = const()[name = tensor<string, []>("op_175"), val = tensor<int32, [1]>([1])];
|
111 |
-
tensor<fp16, [1, 1, 1, 1]> var_176_cast_fp16 = reduce_mean(axes = var_175, keep_dims = var_72, x = zero_mean_sq_3_cast_fp16)[name = tensor<string, []>("op_176_cast_fp16")];
|
112 |
tensor<fp16, []> var_177_to_fp16 = const()[name = tensor<string, []>("op_177_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
113 |
-
tensor<fp16, [1,
|
114 |
-
tensor<fp16, []> denom_3_epsilon_0_to_fp16 = const()[name = tensor<string, []>("denom_3_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1p-24)];
|
115 |
-
tensor<fp16, [1, 1, 1, 1]> denom_3_cast_fp16 = rsqrt(epsilon = denom_3_epsilon_0_to_fp16, x = var_178_cast_fp16)[name = tensor<string, []>("denom_3_cast_fp16")];
|
116 |
-
tensor<fp16, [1, 384, 1, 1]> out_3_cast_fp16 = mul(x = zero_mean_3_cast_fp16, y = denom_3_cast_fp16)[name = tensor<string, []>("out_3_cast_fp16")];
|
117 |
tensor<fp16, [384]> obj_9_gamma_0_to_fp16 = const()[name = tensor<string, []>("obj_9_gamma_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(41361536)))];
|
118 |
tensor<fp16, [384]> obj_9_beta_0_to_fp16 = const()[name = tensor<string, []>("obj_9_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(41362368)))];
|
119 |
tensor<fp16, []> obj_9_epsilon_0_to_fp16 = const()[name = tensor<string, []>("obj_9_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
@@ -163,17 +146,9 @@ program(1.0)
|
|
163 |
tensor<fp16, [384]> layers_0_encoder_attn_o_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_0_encoder_attn_o_proj_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(42544768)))];
|
164 |
tensor<fp16, [1, 384, 1, 1]> obj_11_cast_fp16 = conv(bias = layers_0_encoder_attn_o_proj_bias_to_fp16, dilations = var_231, groups = var_71, pad = obj_11_pad_0, pad_type = obj_11_pad_type_0, strides = var_229, weight = layers_0_encoder_attn_o_proj_weight_to_fp16, x = input_3_cast_fp16)[name = tensor<string, []>("obj_11_cast_fp16")];
|
165 |
tensor<fp16, [1, 384, 1, 1]> inputs_5_cast_fp16 = add(x = inputs_3_cast_fp16, y = obj_11_cast_fp16)[name = tensor<string, []>("inputs_5_cast_fp16")];
|
166 |
-
tensor<int32, [1]>
|
167 |
-
tensor<fp16, [1, 1, 1, 1]> channels_mean_5_cast_fp16 = reduce_mean(axes = var_237, keep_dims = var_72, x = inputs_5_cast_fp16)[name = tensor<string, []>("channels_mean_5_cast_fp16")];
|
168 |
-
tensor<fp16, [1, 384, 1, 1]> zero_mean_5_cast_fp16 = sub(x = inputs_5_cast_fp16, y = channels_mean_5_cast_fp16)[name = tensor<string, []>("zero_mean_5_cast_fp16")];
|
169 |
-
tensor<fp16, [1, 384, 1, 1]> zero_mean_sq_5_cast_fp16 = mul(x = zero_mean_5_cast_fp16, y = zero_mean_5_cast_fp16)[name = tensor<string, []>("zero_mean_sq_5_cast_fp16")];
|
170 |
-
tensor<int32, [1]> var_241 = const()[name = tensor<string, []>("op_241"), val = tensor<int32, [1]>([1])];
|
171 |
-
tensor<fp16, [1, 1, 1, 1]> var_242_cast_fp16 = reduce_mean(axes = var_241, keep_dims = var_72, x = zero_mean_sq_5_cast_fp16)[name = tensor<string, []>("op_242_cast_fp16")];
|
172 |
tensor<fp16, []> var_243_to_fp16 = const()[name = tensor<string, []>("op_243_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
173 |
-
tensor<fp16, [1,
|
174 |
-
tensor<fp16, []> denom_5_epsilon_0_to_fp16 = const()[name = tensor<string, []>("denom_5_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1p-24)];
|
175 |
-
tensor<fp16, [1, 1, 1, 1]> denom_5_cast_fp16 = rsqrt(epsilon = denom_5_epsilon_0_to_fp16, x = var_244_cast_fp16)[name = tensor<string, []>("denom_5_cast_fp16")];
|
176 |
-
tensor<fp16, [1, 384, 1, 1]> out_5_cast_fp16 = mul(x = zero_mean_5_cast_fp16, y = denom_5_cast_fp16)[name = tensor<string, []>("out_5_cast_fp16")];
|
177 |
tensor<fp16, [384]> input_5_gamma_0_to_fp16 = const()[name = tensor<string, []>("input_5_gamma_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(42545600)))];
|
178 |
tensor<fp16, [384]> input_5_beta_0_to_fp16 = const()[name = tensor<string, []>("input_5_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(42546432)))];
|
179 |
tensor<fp16, []> input_5_epsilon_0_to_fp16 = const()[name = tensor<string, []>("input_5_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
@@ -197,18 +172,9 @@ program(1.0)
|
|
197 |
tensor<fp16, [1, 384, 1, 1]> inputs_7_cast_fp16 = add(x = inputs_5_cast_fp16, y = hidden_states_3_cast_fp16)[name = tensor<string, []>("inputs_7_cast_fp16")];
|
198 |
tensor<int32, []> var_278 = const()[name = tensor<string, []>("op_278"), val = tensor<int32, []>(3)];
|
199 |
tensor<int32, []> var_285 = const()[name = tensor<string, []>("op_285"), val = tensor<int32, []>(1)];
|
200 |
-
tensor<
|
201 |
-
tensor<int32, [1]> var_298 = const()[name = tensor<string, []>("op_298"), val = tensor<int32, [1]>([1])];
|
202 |
-
tensor<fp16, [1, 1, 1, 1]> channels_mean_7_cast_fp16 = reduce_mean(axes = var_298, keep_dims = var_286, x = inputs_7_cast_fp16)[name = tensor<string, []>("channels_mean_7_cast_fp16")];
|
203 |
-
tensor<fp16, [1, 384, 1, 1]> zero_mean_7_cast_fp16 = sub(x = inputs_7_cast_fp16, y = channels_mean_7_cast_fp16)[name = tensor<string, []>("zero_mean_7_cast_fp16")];
|
204 |
-
tensor<fp16, [1, 384, 1, 1]> zero_mean_sq_7_cast_fp16 = mul(x = zero_mean_7_cast_fp16, y = zero_mean_7_cast_fp16)[name = tensor<string, []>("zero_mean_sq_7_cast_fp16")];
|
205 |
-
tensor<int32, [1]> var_302 = const()[name = tensor<string, []>("op_302"), val = tensor<int32, [1]>([1])];
|
206 |
-
tensor<fp16, [1, 1, 1, 1]> var_303_cast_fp16 = reduce_mean(axes = var_302, keep_dims = var_286, x = zero_mean_sq_7_cast_fp16)[name = tensor<string, []>("op_303_cast_fp16")];
|
207 |
tensor<fp16, []> var_304_to_fp16 = const()[name = tensor<string, []>("op_304_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
208 |
-
tensor<fp16, [1,
|
209 |
-
tensor<fp16, []> denom_7_epsilon_0_to_fp16 = const()[name = tensor<string, []>("denom_7_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1p-24)];
|
210 |
-
tensor<fp16, [1, 1, 1, 1]> denom_7_cast_fp16 = rsqrt(epsilon = denom_7_epsilon_0_to_fp16, x = var_305_cast_fp16)[name = tensor<string, []>("denom_7_cast_fp16")];
|
211 |
-
tensor<fp16, [1, 384, 1, 1]> out_7_cast_fp16 = mul(x = zero_mean_7_cast_fp16, y = denom_7_cast_fp16)[name = tensor<string, []>("out_7_cast_fp16")];
|
212 |
tensor<fp16, [384]> obj_15_gamma_0_to_fp16 = const()[name = tensor<string, []>("obj_15_gamma_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(44910656)))];
|
213 |
tensor<fp16, [384]> obj_15_beta_0_to_fp16 = const()[name = tensor<string, []>("obj_15_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(44911488)))];
|
214 |
tensor<fp16, []> obj_15_epsilon_0_to_fp16 = const()[name = tensor<string, []>("obj_15_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
@@ -265,17 +231,9 @@ program(1.0)
|
|
265 |
tensor<fp16, [384]> layers_1_self_attn_o_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_1_self_attn_o_proj_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(46093888)))];
|
266 |
tensor<fp16, [1, 384, 1, 1]> obj_21_cast_fp16 = conv(bias = layers_1_self_attn_o_proj_bias_to_fp16, dilations = var_375, groups = var_285, pad = obj_21_pad_0, pad_type = obj_21_pad_type_0, strides = var_373, weight = layers_1_self_attn_o_proj_weight_to_fp16, x = input_11_cast_fp16)[name = tensor<string, []>("obj_21_cast_fp16")];
|
267 |
tensor<fp16, [1, 384, 1, 1]> inputs_9_cast_fp16 = add(x = inputs_7_cast_fp16, y = obj_21_cast_fp16)[name = tensor<string, []>("inputs_9_cast_fp16")];
|
268 |
-
tensor<int32, [1]>
|
269 |
-
tensor<fp16, [1, 1, 1, 1]> channels_mean_9_cast_fp16 = reduce_mean(axes = var_385, keep_dims = var_286, x = inputs_9_cast_fp16)[name = tensor<string, []>("channels_mean_9_cast_fp16")];
|
270 |
-
tensor<fp16, [1, 384, 1, 1]> zero_mean_9_cast_fp16 = sub(x = inputs_9_cast_fp16, y = channels_mean_9_cast_fp16)[name = tensor<string, []>("zero_mean_9_cast_fp16")];
|
271 |
-
tensor<fp16, [1, 384, 1, 1]> zero_mean_sq_9_cast_fp16 = mul(x = zero_mean_9_cast_fp16, y = zero_mean_9_cast_fp16)[name = tensor<string, []>("zero_mean_sq_9_cast_fp16")];
|
272 |
-
tensor<int32, [1]> var_389 = const()[name = tensor<string, []>("op_389"), val = tensor<int32, [1]>([1])];
|
273 |
-
tensor<fp16, [1, 1, 1, 1]> var_390_cast_fp16 = reduce_mean(axes = var_389, keep_dims = var_286, x = zero_mean_sq_9_cast_fp16)[name = tensor<string, []>("op_390_cast_fp16")];
|
274 |
tensor<fp16, []> var_391_to_fp16 = const()[name = tensor<string, []>("op_391_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
275 |
-
tensor<fp16, [1,
|
276 |
-
tensor<fp16, []> denom_9_epsilon_0_to_fp16 = const()[name = tensor<string, []>("denom_9_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1p-24)];
|
277 |
-
tensor<fp16, [1, 1, 1, 1]> denom_9_cast_fp16 = rsqrt(epsilon = denom_9_epsilon_0_to_fp16, x = var_392_cast_fp16)[name = tensor<string, []>("denom_9_cast_fp16")];
|
278 |
-
tensor<fp16, [1, 384, 1, 1]> out_9_cast_fp16 = mul(x = zero_mean_9_cast_fp16, y = denom_9_cast_fp16)[name = tensor<string, []>("out_9_cast_fp16")];
|
279 |
tensor<fp16, [384]> obj_23_gamma_0_to_fp16 = const()[name = tensor<string, []>("obj_23_gamma_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(46094720)))];
|
280 |
tensor<fp16, [384]> obj_23_beta_0_to_fp16 = const()[name = tensor<string, []>("obj_23_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(46095552)))];
|
281 |
tensor<fp16, []> obj_23_epsilon_0_to_fp16 = const()[name = tensor<string, []>("obj_23_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
@@ -325,17 +283,9 @@ program(1.0)
|
|
325 |
tensor<fp16, [384]> layers_1_encoder_attn_o_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_1_encoder_attn_o_proj_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(47277952)))];
|
326 |
tensor<fp16, [1, 384, 1, 1]> obj_25_cast_fp16 = conv(bias = layers_1_encoder_attn_o_proj_bias_to_fp16, dilations = var_445, groups = var_285, pad = obj_25_pad_0, pad_type = obj_25_pad_type_0, strides = var_443, weight = layers_1_encoder_attn_o_proj_weight_to_fp16, x = input_13_cast_fp16)[name = tensor<string, []>("obj_25_cast_fp16")];
|
327 |
tensor<fp16, [1, 384, 1, 1]> inputs_11_cast_fp16 = add(x = inputs_9_cast_fp16, y = obj_25_cast_fp16)[name = tensor<string, []>("inputs_11_cast_fp16")];
|
328 |
-
tensor<int32, [1]>
|
329 |
-
tensor<fp16, [1, 1, 1, 1]> channels_mean_11_cast_fp16 = reduce_mean(axes = var_454, keep_dims = var_286, x = inputs_11_cast_fp16)[name = tensor<string, []>("channels_mean_11_cast_fp16")];
|
330 |
-
tensor<fp16, [1, 384, 1, 1]> zero_mean_11_cast_fp16 = sub(x = inputs_11_cast_fp16, y = channels_mean_11_cast_fp16)[name = tensor<string, []>("zero_mean_11_cast_fp16")];
|
331 |
-
tensor<fp16, [1, 384, 1, 1]> zero_mean_sq_11_cast_fp16 = mul(x = zero_mean_11_cast_fp16, y = zero_mean_11_cast_fp16)[name = tensor<string, []>("zero_mean_sq_11_cast_fp16")];
|
332 |
-
tensor<int32, [1]> var_458 = const()[name = tensor<string, []>("op_458"), val = tensor<int32, [1]>([1])];
|
333 |
-
tensor<fp16, [1, 1, 1, 1]> var_459_cast_fp16 = reduce_mean(axes = var_458, keep_dims = var_286, x = zero_mean_sq_11_cast_fp16)[name = tensor<string, []>("op_459_cast_fp16")];
|
334 |
tensor<fp16, []> var_460_to_fp16 = const()[name = tensor<string, []>("op_460_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
335 |
-
tensor<fp16, [1,
|
336 |
-
tensor<fp16, []> denom_11_epsilon_0_to_fp16 = const()[name = tensor<string, []>("denom_11_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1p-24)];
|
337 |
-
tensor<fp16, [1, 1, 1, 1]> denom_11_cast_fp16 = rsqrt(epsilon = denom_11_epsilon_0_to_fp16, x = var_461_cast_fp16)[name = tensor<string, []>("denom_11_cast_fp16")];
|
338 |
-
tensor<fp16, [1, 384, 1, 1]> out_11_cast_fp16 = mul(x = zero_mean_11_cast_fp16, y = denom_11_cast_fp16)[name = tensor<string, []>("out_11_cast_fp16")];
|
339 |
tensor<fp16, [384]> input_15_gamma_0_to_fp16 = const()[name = tensor<string, []>("input_15_gamma_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(47278784)))];
|
340 |
tensor<fp16, [384]> input_15_beta_0_to_fp16 = const()[name = tensor<string, []>("input_15_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(47279616)))];
|
341 |
tensor<fp16, []> input_15_epsilon_0_to_fp16 = const()[name = tensor<string, []>("input_15_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
@@ -359,18 +309,9 @@ program(1.0)
|
|
359 |
tensor<fp16, [1, 384, 1, 1]> inputs_13_cast_fp16 = add(x = inputs_11_cast_fp16, y = hidden_states_5_cast_fp16)[name = tensor<string, []>("inputs_13_cast_fp16")];
|
360 |
tensor<int32, []> var_496 = const()[name = tensor<string, []>("op_496"), val = tensor<int32, []>(3)];
|
361 |
tensor<int32, []> var_503 = const()[name = tensor<string, []>("op_503"), val = tensor<int32, []>(1)];
|
362 |
-
tensor<
|
363 |
-
tensor<int32, [1]> var_516 = const()[name = tensor<string, []>("op_516"), val = tensor<int32, [1]>([1])];
|
364 |
-
tensor<fp16, [1, 1, 1, 1]> channels_mean_13_cast_fp16 = reduce_mean(axes = var_516, keep_dims = var_504, x = inputs_13_cast_fp16)[name = tensor<string, []>("channels_mean_13_cast_fp16")];
|
365 |
-
tensor<fp16, [1, 384, 1, 1]> zero_mean_13_cast_fp16 = sub(x = inputs_13_cast_fp16, y = channels_mean_13_cast_fp16)[name = tensor<string, []>("zero_mean_13_cast_fp16")];
|
366 |
-
tensor<fp16, [1, 384, 1, 1]> zero_mean_sq_13_cast_fp16 = mul(x = zero_mean_13_cast_fp16, y = zero_mean_13_cast_fp16)[name = tensor<string, []>("zero_mean_sq_13_cast_fp16")];
|
367 |
-
tensor<int32, [1]> var_520 = const()[name = tensor<string, []>("op_520"), val = tensor<int32, [1]>([1])];
|
368 |
-
tensor<fp16, [1, 1, 1, 1]> var_521_cast_fp16 = reduce_mean(axes = var_520, keep_dims = var_504, x = zero_mean_sq_13_cast_fp16)[name = tensor<string, []>("op_521_cast_fp16")];
|
369 |
tensor<fp16, []> var_522_to_fp16 = const()[name = tensor<string, []>("op_522_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
370 |
-
tensor<fp16, [1,
|
371 |
-
tensor<fp16, []> denom_13_epsilon_0_to_fp16 = const()[name = tensor<string, []>("denom_13_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1p-24)];
|
372 |
-
tensor<fp16, [1, 1, 1, 1]> denom_13_cast_fp16 = rsqrt(epsilon = denom_13_epsilon_0_to_fp16, x = var_523_cast_fp16)[name = tensor<string, []>("denom_13_cast_fp16")];
|
373 |
-
tensor<fp16, [1, 384, 1, 1]> out_13_cast_fp16 = mul(x = zero_mean_13_cast_fp16, y = denom_13_cast_fp16)[name = tensor<string, []>("out_13_cast_fp16")];
|
374 |
tensor<fp16, [384]> obj_29_gamma_0_to_fp16 = const()[name = tensor<string, []>("obj_29_gamma_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(49643840)))];
|
375 |
tensor<fp16, [384]> obj_29_beta_0_to_fp16 = const()[name = tensor<string, []>("obj_29_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(49644672)))];
|
376 |
tensor<fp16, []> obj_29_epsilon_0_to_fp16 = const()[name = tensor<string, []>("obj_29_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
@@ -427,17 +368,9 @@ program(1.0)
|
|
427 |
tensor<fp16, [384]> layers_2_self_attn_o_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_2_self_attn_o_proj_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(50827072)))];
|
428 |
tensor<fp16, [1, 384, 1, 1]> obj_35_cast_fp16 = conv(bias = layers_2_self_attn_o_proj_bias_to_fp16, dilations = var_593, groups = var_503, pad = obj_35_pad_0, pad_type = obj_35_pad_type_0, strides = var_591, weight = layers_2_self_attn_o_proj_weight_to_fp16, x = input_21_cast_fp16)[name = tensor<string, []>("obj_35_cast_fp16")];
|
429 |
tensor<fp16, [1, 384, 1, 1]> inputs_15_cast_fp16 = add(x = inputs_13_cast_fp16, y = obj_35_cast_fp16)[name = tensor<string, []>("inputs_15_cast_fp16")];
|
430 |
-
tensor<int32, [1]>
|
431 |
-
tensor<fp16, [1, 1, 1, 1]> channels_mean_15_cast_fp16 = reduce_mean(axes = var_603, keep_dims = var_504, x = inputs_15_cast_fp16)[name = tensor<string, []>("channels_mean_15_cast_fp16")];
|
432 |
-
tensor<fp16, [1, 384, 1, 1]> zero_mean_15_cast_fp16 = sub(x = inputs_15_cast_fp16, y = channels_mean_15_cast_fp16)[name = tensor<string, []>("zero_mean_15_cast_fp16")];
|
433 |
-
tensor<fp16, [1, 384, 1, 1]> zero_mean_sq_15_cast_fp16 = mul(x = zero_mean_15_cast_fp16, y = zero_mean_15_cast_fp16)[name = tensor<string, []>("zero_mean_sq_15_cast_fp16")];
|
434 |
-
tensor<int32, [1]> var_607 = const()[name = tensor<string, []>("op_607"), val = tensor<int32, [1]>([1])];
|
435 |
-
tensor<fp16, [1, 1, 1, 1]> var_608_cast_fp16 = reduce_mean(axes = var_607, keep_dims = var_504, x = zero_mean_sq_15_cast_fp16)[name = tensor<string, []>("op_608_cast_fp16")];
|
436 |
tensor<fp16, []> var_609_to_fp16 = const()[name = tensor<string, []>("op_609_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
437 |
-
tensor<fp16, [1,
|
438 |
-
tensor<fp16, []> denom_15_epsilon_0_to_fp16 = const()[name = tensor<string, []>("denom_15_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1p-24)];
|
439 |
-
tensor<fp16, [1, 1, 1, 1]> denom_15_cast_fp16 = rsqrt(epsilon = denom_15_epsilon_0_to_fp16, x = var_610_cast_fp16)[name = tensor<string, []>("denom_15_cast_fp16")];
|
440 |
-
tensor<fp16, [1, 384, 1, 1]> out_15_cast_fp16 = mul(x = zero_mean_15_cast_fp16, y = denom_15_cast_fp16)[name = tensor<string, []>("out_15_cast_fp16")];
|
441 |
tensor<fp16, [384]> obj_37_gamma_0_to_fp16 = const()[name = tensor<string, []>("obj_37_gamma_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(50827904)))];
|
442 |
tensor<fp16, [384]> obj_37_beta_0_to_fp16 = const()[name = tensor<string, []>("obj_37_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(50828736)))];
|
443 |
tensor<fp16, []> obj_37_epsilon_0_to_fp16 = const()[name = tensor<string, []>("obj_37_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
@@ -487,17 +420,9 @@ program(1.0)
|
|
487 |
tensor<fp16, [384]> layers_2_encoder_attn_o_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_2_encoder_attn_o_proj_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(52011136)))];
|
488 |
tensor<fp16, [1, 384, 1, 1]> obj_39_cast_fp16 = conv(bias = layers_2_encoder_attn_o_proj_bias_to_fp16, dilations = var_663, groups = var_503, pad = obj_39_pad_0, pad_type = obj_39_pad_type_0, strides = var_661, weight = layers_2_encoder_attn_o_proj_weight_to_fp16, x = input_23_cast_fp16)[name = tensor<string, []>("obj_39_cast_fp16")];
|
489 |
tensor<fp16, [1, 384, 1, 1]> inputs_17_cast_fp16 = add(x = inputs_15_cast_fp16, y = obj_39_cast_fp16)[name = tensor<string, []>("inputs_17_cast_fp16")];
|
490 |
-
tensor<int32, [1]>
|
491 |
-
tensor<fp16, [1, 1, 1, 1]> channels_mean_17_cast_fp16 = reduce_mean(axes = var_672, keep_dims = var_504, x = inputs_17_cast_fp16)[name = tensor<string, []>("channels_mean_17_cast_fp16")];
|
492 |
-
tensor<fp16, [1, 384, 1, 1]> zero_mean_17_cast_fp16 = sub(x = inputs_17_cast_fp16, y = channels_mean_17_cast_fp16)[name = tensor<string, []>("zero_mean_17_cast_fp16")];
|
493 |
-
tensor<fp16, [1, 384, 1, 1]> zero_mean_sq_17_cast_fp16 = mul(x = zero_mean_17_cast_fp16, y = zero_mean_17_cast_fp16)[name = tensor<string, []>("zero_mean_sq_17_cast_fp16")];
|
494 |
-
tensor<int32, [1]> var_676 = const()[name = tensor<string, []>("op_676"), val = tensor<int32, [1]>([1])];
|
495 |
-
tensor<fp16, [1, 1, 1, 1]> var_677_cast_fp16 = reduce_mean(axes = var_676, keep_dims = var_504, x = zero_mean_sq_17_cast_fp16)[name = tensor<string, []>("op_677_cast_fp16")];
|
496 |
tensor<fp16, []> var_678_to_fp16 = const()[name = tensor<string, []>("op_678_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
497 |
-
tensor<fp16, [1,
|
498 |
-
tensor<fp16, []> denom_17_epsilon_0_to_fp16 = const()[name = tensor<string, []>("denom_17_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1p-24)];
|
499 |
-
tensor<fp16, [1, 1, 1, 1]> denom_17_cast_fp16 = rsqrt(epsilon = denom_17_epsilon_0_to_fp16, x = var_679_cast_fp16)[name = tensor<string, []>("denom_17_cast_fp16")];
|
500 |
-
tensor<fp16, [1, 384, 1, 1]> out_17_cast_fp16 = mul(x = zero_mean_17_cast_fp16, y = denom_17_cast_fp16)[name = tensor<string, []>("out_17_cast_fp16")];
|
501 |
tensor<fp16, [384]> input_25_gamma_0_to_fp16 = const()[name = tensor<string, []>("input_25_gamma_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(52011968)))];
|
502 |
tensor<fp16, [384]> input_25_beta_0_to_fp16 = const()[name = tensor<string, []>("input_25_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(52012800)))];
|
503 |
tensor<fp16, []> input_25_epsilon_0_to_fp16 = const()[name = tensor<string, []>("input_25_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
@@ -521,18 +446,9 @@ program(1.0)
|
|
521 |
tensor<fp16, [1, 384, 1, 1]> inputs_19_cast_fp16 = add(x = inputs_17_cast_fp16, y = hidden_states_7_cast_fp16)[name = tensor<string, []>("inputs_19_cast_fp16")];
|
522 |
tensor<int32, []> var_714 = const()[name = tensor<string, []>("op_714"), val = tensor<int32, []>(3)];
|
523 |
tensor<int32, []> var_721 = const()[name = tensor<string, []>("op_721"), val = tensor<int32, []>(1)];
|
524 |
-
tensor<
|
525 |
-
tensor<int32, [1]> var_734 = const()[name = tensor<string, []>("op_734"), val = tensor<int32, [1]>([1])];
|
526 |
-
tensor<fp16, [1, 1, 1, 1]> channels_mean_19_cast_fp16 = reduce_mean(axes = var_734, keep_dims = var_722, x = inputs_19_cast_fp16)[name = tensor<string, []>("channels_mean_19_cast_fp16")];
|
527 |
-
tensor<fp16, [1, 384, 1, 1]> zero_mean_19_cast_fp16 = sub(x = inputs_19_cast_fp16, y = channels_mean_19_cast_fp16)[name = tensor<string, []>("zero_mean_19_cast_fp16")];
|
528 |
-
tensor<fp16, [1, 384, 1, 1]> zero_mean_sq_19_cast_fp16 = mul(x = zero_mean_19_cast_fp16, y = zero_mean_19_cast_fp16)[name = tensor<string, []>("zero_mean_sq_19_cast_fp16")];
|
529 |
-
tensor<int32, [1]> var_738 = const()[name = tensor<string, []>("op_738"), val = tensor<int32, [1]>([1])];
|
530 |
-
tensor<fp16, [1, 1, 1, 1]> var_739_cast_fp16 = reduce_mean(axes = var_738, keep_dims = var_722, x = zero_mean_sq_19_cast_fp16)[name = tensor<string, []>("op_739_cast_fp16")];
|
531 |
tensor<fp16, []> var_740_to_fp16 = const()[name = tensor<string, []>("op_740_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
532 |
-
tensor<fp16, [1,
|
533 |
-
tensor<fp16, []> denom_19_epsilon_0_to_fp16 = const()[name = tensor<string, []>("denom_19_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1p-24)];
|
534 |
-
tensor<fp16, [1, 1, 1, 1]> denom_19_cast_fp16 = rsqrt(epsilon = denom_19_epsilon_0_to_fp16, x = var_741_cast_fp16)[name = tensor<string, []>("denom_19_cast_fp16")];
|
535 |
-
tensor<fp16, [1, 384, 1, 1]> out_19_cast_fp16 = mul(x = zero_mean_19_cast_fp16, y = denom_19_cast_fp16)[name = tensor<string, []>("out_19_cast_fp16")];
|
536 |
tensor<fp16, [384]> obj_43_gamma_0_to_fp16 = const()[name = tensor<string, []>("obj_43_gamma_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(54377024)))];
|
537 |
tensor<fp16, [384]> obj_43_beta_0_to_fp16 = const()[name = tensor<string, []>("obj_43_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(54377856)))];
|
538 |
tensor<fp16, []> obj_43_epsilon_0_to_fp16 = const()[name = tensor<string, []>("obj_43_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
@@ -589,17 +505,9 @@ program(1.0)
|
|
589 |
tensor<fp16, [384]> layers_3_self_attn_o_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_3_self_attn_o_proj_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(55560256)))];
|
590 |
tensor<fp16, [1, 384, 1, 1]> obj_49_cast_fp16 = conv(bias = layers_3_self_attn_o_proj_bias_to_fp16, dilations = var_811, groups = var_721, pad = obj_49_pad_0, pad_type = obj_49_pad_type_0, strides = var_809, weight = layers_3_self_attn_o_proj_weight_to_fp16, x = input_31_cast_fp16)[name = tensor<string, []>("obj_49_cast_fp16")];
|
591 |
tensor<fp16, [1, 384, 1, 1]> inputs_21_cast_fp16 = add(x = inputs_19_cast_fp16, y = obj_49_cast_fp16)[name = tensor<string, []>("inputs_21_cast_fp16")];
|
592 |
-
tensor<int32, [1]>
|
593 |
-
tensor<fp16, [1, 1, 1, 1]> channels_mean_21_cast_fp16 = reduce_mean(axes = var_821, keep_dims = var_722, x = inputs_21_cast_fp16)[name = tensor<string, []>("channels_mean_21_cast_fp16")];
|
594 |
-
tensor<fp16, [1, 384, 1, 1]> zero_mean_21_cast_fp16 = sub(x = inputs_21_cast_fp16, y = channels_mean_21_cast_fp16)[name = tensor<string, []>("zero_mean_21_cast_fp16")];
|
595 |
-
tensor<fp16, [1, 384, 1, 1]> zero_mean_sq_21_cast_fp16 = mul(x = zero_mean_21_cast_fp16, y = zero_mean_21_cast_fp16)[name = tensor<string, []>("zero_mean_sq_21_cast_fp16")];
|
596 |
-
tensor<int32, [1]> var_825 = const()[name = tensor<string, []>("op_825"), val = tensor<int32, [1]>([1])];
|
597 |
-
tensor<fp16, [1, 1, 1, 1]> var_826_cast_fp16 = reduce_mean(axes = var_825, keep_dims = var_722, x = zero_mean_sq_21_cast_fp16)[name = tensor<string, []>("op_826_cast_fp16")];
|
598 |
tensor<fp16, []> var_827_to_fp16 = const()[name = tensor<string, []>("op_827_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
599 |
-
tensor<fp16, [1,
|
600 |
-
tensor<fp16, []> denom_21_epsilon_0_to_fp16 = const()[name = tensor<string, []>("denom_21_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1p-24)];
|
601 |
-
tensor<fp16, [1, 1, 1, 1]> denom_21_cast_fp16 = rsqrt(epsilon = denom_21_epsilon_0_to_fp16, x = var_828_cast_fp16)[name = tensor<string, []>("denom_21_cast_fp16")];
|
602 |
-
tensor<fp16, [1, 384, 1, 1]> out_21_cast_fp16 = mul(x = zero_mean_21_cast_fp16, y = denom_21_cast_fp16)[name = tensor<string, []>("out_21_cast_fp16")];
|
603 |
tensor<fp16, [384]> obj_51_gamma_0_to_fp16 = const()[name = tensor<string, []>("obj_51_gamma_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(55561088)))];
|
604 |
tensor<fp16, [384]> obj_51_beta_0_to_fp16 = const()[name = tensor<string, []>("obj_51_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(55561920)))];
|
605 |
tensor<fp16, []> obj_51_epsilon_0_to_fp16 = const()[name = tensor<string, []>("obj_51_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
@@ -649,17 +557,9 @@ program(1.0)
|
|
649 |
tensor<fp16, [384]> layers_3_encoder_attn_o_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_3_encoder_attn_o_proj_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(56744320)))];
|
650 |
tensor<fp16, [1, 384, 1, 1]> obj_53_cast_fp16 = conv(bias = layers_3_encoder_attn_o_proj_bias_to_fp16, dilations = var_881, groups = var_721, pad = obj_53_pad_0, pad_type = obj_53_pad_type_0, strides = var_879, weight = layers_3_encoder_attn_o_proj_weight_to_fp16, x = input_33_cast_fp16)[name = tensor<string, []>("obj_53_cast_fp16")];
|
651 |
tensor<fp16, [1, 384, 1, 1]> inputs_23_cast_fp16 = add(x = inputs_21_cast_fp16, y = obj_53_cast_fp16)[name = tensor<string, []>("inputs_23_cast_fp16")];
|
652 |
-
tensor<int32, [1]>
|
653 |
-
tensor<fp16, [1, 1, 1, 1]> channels_mean_23_cast_fp16 = reduce_mean(axes = var_890, keep_dims = var_722, x = inputs_23_cast_fp16)[name = tensor<string, []>("channels_mean_23_cast_fp16")];
|
654 |
-
tensor<fp16, [1, 384, 1, 1]> zero_mean_23_cast_fp16 = sub(x = inputs_23_cast_fp16, y = channels_mean_23_cast_fp16)[name = tensor<string, []>("zero_mean_23_cast_fp16")];
|
655 |
-
tensor<fp16, [1, 384, 1, 1]> zero_mean_sq_23_cast_fp16 = mul(x = zero_mean_23_cast_fp16, y = zero_mean_23_cast_fp16)[name = tensor<string, []>("zero_mean_sq_23_cast_fp16")];
|
656 |
-
tensor<int32, [1]> var_894 = const()[name = tensor<string, []>("op_894"), val = tensor<int32, [1]>([1])];
|
657 |
-
tensor<fp16, [1, 1, 1, 1]> var_895_cast_fp16 = reduce_mean(axes = var_894, keep_dims = var_722, x = zero_mean_sq_23_cast_fp16)[name = tensor<string, []>("op_895_cast_fp16")];
|
658 |
tensor<fp16, []> var_896_to_fp16 = const()[name = tensor<string, []>("op_896_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
659 |
-
tensor<fp16, [1,
|
660 |
-
tensor<fp16, []> denom_23_epsilon_0_to_fp16 = const()[name = tensor<string, []>("denom_23_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1p-24)];
|
661 |
-
tensor<fp16, [1, 1, 1, 1]> denom_23_cast_fp16 = rsqrt(epsilon = denom_23_epsilon_0_to_fp16, x = var_897_cast_fp16)[name = tensor<string, []>("denom_23_cast_fp16")];
|
662 |
-
tensor<fp16, [1, 384, 1, 1]> out_23_cast_fp16 = mul(x = zero_mean_23_cast_fp16, y = denom_23_cast_fp16)[name = tensor<string, []>("out_23_cast_fp16")];
|
663 |
tensor<fp16, [384]> input_35_gamma_0_to_fp16 = const()[name = tensor<string, []>("input_35_gamma_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(56745152)))];
|
664 |
tensor<fp16, [384]> input_35_beta_0_to_fp16 = const()[name = tensor<string, []>("input_35_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(56745984)))];
|
665 |
tensor<fp16, []> input_35_epsilon_0_to_fp16 = const()[name = tensor<string, []>("input_35_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
@@ -681,18 +581,9 @@ program(1.0)
|
|
681 |
tensor<fp16, [384]> layers_3_fc2_bias_to_fp16 = const()[name = tensor<string, []>("layers_3_fc2_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(59109376)))];
|
682 |
tensor<fp16, [1, 384, 1, 1]> hidden_states_9_cast_fp16 = conv(bias = layers_3_fc2_bias_to_fp16, dilations = var_918, groups = var_721, pad = hidden_states_9_pad_0, pad_type = hidden_states_9_pad_type_0, strides = var_916, weight = layers_3_fc2_weight_to_fp16, x = input_cast_fp16)[name = tensor<string, []>("hidden_states_9_cast_fp16")];
|
683 |
tensor<fp16, [1, 384, 1, 1]> inputs_cast_fp16 = add(x = inputs_23_cast_fp16, y = hidden_states_9_cast_fp16)[name = tensor<string, []>("inputs_cast_fp16")];
|
684 |
-
tensor<
|
685 |
-
tensor<int32, [1]> var_933 = const()[name = tensor<string, []>("op_933"), val = tensor<int32, [1]>([1])];
|
686 |
-
tensor<fp16, [1, 1, 1, 1]> channels_mean_cast_fp16 = reduce_mean(axes = var_933, keep_dims = var_929, x = inputs_cast_fp16)[name = tensor<string, []>("channels_mean_cast_fp16")];
|
687 |
-
tensor<fp16, [1, 384, 1, 1]> zero_mean_cast_fp16 = sub(x = inputs_cast_fp16, y = channels_mean_cast_fp16)[name = tensor<string, []>("zero_mean_cast_fp16")];
|
688 |
-
tensor<fp16, [1, 384, 1, 1]> zero_mean_sq_cast_fp16 = mul(x = zero_mean_cast_fp16, y = zero_mean_cast_fp16)[name = tensor<string, []>("zero_mean_sq_cast_fp16")];
|
689 |
-
tensor<int32, [1]> var_937 = const()[name = tensor<string, []>("op_937"), val = tensor<int32, [1]>([1])];
|
690 |
-
tensor<fp16, [1, 1, 1, 1]> var_938_cast_fp16 = reduce_mean(axes = var_937, keep_dims = var_929, x = zero_mean_sq_cast_fp16)[name = tensor<string, []>("op_938_cast_fp16")];
|
691 |
tensor<fp16, []> var_939_to_fp16 = const()[name = tensor<string, []>("op_939_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
692 |
-
tensor<fp16, [1,
|
693 |
-
tensor<fp16, []> denom_epsilon_0_to_fp16 = const()[name = tensor<string, []>("denom_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1p-24)];
|
694 |
-
tensor<fp16, [1, 1, 1, 1]> denom_cast_fp16 = rsqrt(epsilon = denom_epsilon_0_to_fp16, x = var_940_cast_fp16)[name = tensor<string, []>("denom_cast_fp16")];
|
695 |
-
tensor<fp16, [1, 384, 1, 1]> out_cast_fp16 = mul(x = zero_mean_cast_fp16, y = denom_cast_fp16)[name = tensor<string, []>("out_cast_fp16")];
|
696 |
tensor<fp16, [384]> hidden_states_gamma_0_to_fp16 = const()[name = tensor<string, []>("hidden_states_gamma_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(59110208)))];
|
697 |
tensor<fp16, [384]> hidden_states_beta_0_to_fp16 = const()[name = tensor<string, []>("hidden_states_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(59111040)))];
|
698 |
tensor<fp16, []> hidden_states_epsilon_0_to_fp16 = const()[name = tensor<string, []>("hidden_states_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
|
|
1 |
program(1.0)
|
2 |
+
[buildInfo = dict<tensor<string, []>, tensor<string, []>>({{"coremlc-component-MIL", "3304.5.2"}, {"coremlc-version", "3304.6.2"}, {"coremltools-component-torch", "2.2.2"}, {"coremltools-source-dialect", "TorchScript"}, {"coremltools-version", "7.2"}})]
|
3 |
{
|
4 |
func main<ios16>(tensor<int32, [1]> cache_length, tensor<fp16, [1, 448]> decoder_key_padding_mask, tensor<fp16, [1, 384, 1, 1500]> encoder_output_embeds, tensor<int32, [1]> input_ids, tensor<fp16, [1, 1536, 1, 448]> key_cache, tensor<fp16, [1, 448]> kv_cache_update_mask, tensor<fp16, [1, 1536, 1, 448]> value_cache) {
|
5 |
tensor<int32, []> var_24_axis_0 = const()[name = tensor<string, []>("op_24_axis_0"), val = tensor<int32, []>(0)];
|
|
|
23 |
tensor<fp16, [1, 384, 1, 448]> var_54_cast_fp16_0, tensor<fp16, [1, 384, 1, 448]> var_54_cast_fp16_1, tensor<fp16, [1, 384, 1, 448]> var_54_cast_fp16_2, tensor<fp16, [1, 384, 1, 448]> var_54_cast_fp16_3 = split(axis = var_54_axis_0, split_sizes = tile_1, x = value_cache)[name = tensor<string, []>("op_54_cast_fp16")];
|
24 |
tensor<int32, []> var_64 = const()[name = tensor<string, []>("op_64"), val = tensor<int32, []>(3)];
|
25 |
tensor<int32, []> var_71 = const()[name = tensor<string, []>("op_71"), val = tensor<int32, []>(1)];
|
26 |
+
tensor<int32, [1]> out_1_axes_0 = const()[name = tensor<string, []>("out_1_axes_0"), val = tensor<int32, [1]>([1])];
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
tensor<fp16, []> var_90_to_fp16 = const()[name = tensor<string, []>("op_90_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
28 |
+
tensor<fp16, [1, 384, 1, 1]> out_1_cast_fp16 = layer_norm(axes = out_1_axes_0, epsilon = var_90_to_fp16, x = inputs_1_cast_fp16)[name = tensor<string, []>("out_1_cast_fp16")];
|
|
|
|
|
|
|
29 |
tensor<fp16, [384]> obj_1_mean_0_to_fp16 = const()[name = tensor<string, []>("obj_1_mean_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(40175808)))];
|
30 |
tensor<fp16, [384]> obj_1_variance_0_to_fp16 = const()[name = tensor<string, []>("obj_1_variance_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(40176640)))];
|
31 |
tensor<fp16, [384]> obj_1_gamma_0_to_fp16 = const()[name = tensor<string, []>("obj_1_gamma_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(40177472)))];
|
|
|
94 |
tensor<fp16, [384]> layers_0_self_attn_o_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_0_self_attn_o_proj_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(41360704)))];
|
95 |
tensor<fp16, [1, 384, 1, 1]> obj_7_cast_fp16 = conv(bias = layers_0_self_attn_o_proj_bias_to_fp16, dilations = var_161, groups = var_71, pad = obj_7_pad_0, pad_type = obj_7_pad_type_0, strides = var_159, weight = layers_0_self_attn_o_proj_weight_to_fp16, x = input_1_cast_fp16)[name = tensor<string, []>("obj_7_cast_fp16")];
|
96 |
tensor<fp16, [1, 384, 1, 1]> inputs_3_cast_fp16 = add(x = inputs_1_cast_fp16, y = obj_7_cast_fp16)[name = tensor<string, []>("inputs_3_cast_fp16")];
|
97 |
+
tensor<int32, [1]> out_3_axes_0 = const()[name = tensor<string, []>("out_3_axes_0"), val = tensor<int32, [1]>([1])];
|
|
|
|
|
|
|
|
|
|
|
98 |
tensor<fp16, []> var_177_to_fp16 = const()[name = tensor<string, []>("op_177_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
99 |
+
tensor<fp16, [1, 384, 1, 1]> out_3_cast_fp16 = layer_norm(axes = out_3_axes_0, epsilon = var_177_to_fp16, x = inputs_3_cast_fp16)[name = tensor<string, []>("out_3_cast_fp16")];
|
|
|
|
|
|
|
100 |
tensor<fp16, [384]> obj_9_gamma_0_to_fp16 = const()[name = tensor<string, []>("obj_9_gamma_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(41361536)))];
|
101 |
tensor<fp16, [384]> obj_9_beta_0_to_fp16 = const()[name = tensor<string, []>("obj_9_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(41362368)))];
|
102 |
tensor<fp16, []> obj_9_epsilon_0_to_fp16 = const()[name = tensor<string, []>("obj_9_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
|
|
146 |
tensor<fp16, [384]> layers_0_encoder_attn_o_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_0_encoder_attn_o_proj_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(42544768)))];
|
147 |
tensor<fp16, [1, 384, 1, 1]> obj_11_cast_fp16 = conv(bias = layers_0_encoder_attn_o_proj_bias_to_fp16, dilations = var_231, groups = var_71, pad = obj_11_pad_0, pad_type = obj_11_pad_type_0, strides = var_229, weight = layers_0_encoder_attn_o_proj_weight_to_fp16, x = input_3_cast_fp16)[name = tensor<string, []>("obj_11_cast_fp16")];
|
148 |
tensor<fp16, [1, 384, 1, 1]> inputs_5_cast_fp16 = add(x = inputs_3_cast_fp16, y = obj_11_cast_fp16)[name = tensor<string, []>("inputs_5_cast_fp16")];
|
149 |
+
tensor<int32, [1]> out_5_axes_0 = const()[name = tensor<string, []>("out_5_axes_0"), val = tensor<int32, [1]>([1])];
|
|
|
|
|
|
|
|
|
|
|
150 |
tensor<fp16, []> var_243_to_fp16 = const()[name = tensor<string, []>("op_243_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
151 |
+
tensor<fp16, [1, 384, 1, 1]> out_5_cast_fp16 = layer_norm(axes = out_5_axes_0, epsilon = var_243_to_fp16, x = inputs_5_cast_fp16)[name = tensor<string, []>("out_5_cast_fp16")];
|
|
|
|
|
|
|
152 |
tensor<fp16, [384]> input_5_gamma_0_to_fp16 = const()[name = tensor<string, []>("input_5_gamma_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(42545600)))];
|
153 |
tensor<fp16, [384]> input_5_beta_0_to_fp16 = const()[name = tensor<string, []>("input_5_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(42546432)))];
|
154 |
tensor<fp16, []> input_5_epsilon_0_to_fp16 = const()[name = tensor<string, []>("input_5_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
|
|
172 |
tensor<fp16, [1, 384, 1, 1]> inputs_7_cast_fp16 = add(x = inputs_5_cast_fp16, y = hidden_states_3_cast_fp16)[name = tensor<string, []>("inputs_7_cast_fp16")];
|
173 |
tensor<int32, []> var_278 = const()[name = tensor<string, []>("op_278"), val = tensor<int32, []>(3)];
|
174 |
tensor<int32, []> var_285 = const()[name = tensor<string, []>("op_285"), val = tensor<int32, []>(1)];
|
175 |
+
tensor<int32, [1]> out_7_axes_0 = const()[name = tensor<string, []>("out_7_axes_0"), val = tensor<int32, [1]>([1])];
|
|
|
|
|
|
|
|
|
|
|
|
|
176 |
tensor<fp16, []> var_304_to_fp16 = const()[name = tensor<string, []>("op_304_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
177 |
+
tensor<fp16, [1, 384, 1, 1]> out_7_cast_fp16 = layer_norm(axes = out_7_axes_0, epsilon = var_304_to_fp16, x = inputs_7_cast_fp16)[name = tensor<string, []>("out_7_cast_fp16")];
|
|
|
|
|
|
|
178 |
tensor<fp16, [384]> obj_15_gamma_0_to_fp16 = const()[name = tensor<string, []>("obj_15_gamma_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(44910656)))];
|
179 |
tensor<fp16, [384]> obj_15_beta_0_to_fp16 = const()[name = tensor<string, []>("obj_15_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(44911488)))];
|
180 |
tensor<fp16, []> obj_15_epsilon_0_to_fp16 = const()[name = tensor<string, []>("obj_15_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
|
|
231 |
tensor<fp16, [384]> layers_1_self_attn_o_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_1_self_attn_o_proj_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(46093888)))];
|
232 |
tensor<fp16, [1, 384, 1, 1]> obj_21_cast_fp16 = conv(bias = layers_1_self_attn_o_proj_bias_to_fp16, dilations = var_375, groups = var_285, pad = obj_21_pad_0, pad_type = obj_21_pad_type_0, strides = var_373, weight = layers_1_self_attn_o_proj_weight_to_fp16, x = input_11_cast_fp16)[name = tensor<string, []>("obj_21_cast_fp16")];
|
233 |
tensor<fp16, [1, 384, 1, 1]> inputs_9_cast_fp16 = add(x = inputs_7_cast_fp16, y = obj_21_cast_fp16)[name = tensor<string, []>("inputs_9_cast_fp16")];
|
234 |
+
tensor<int32, [1]> out_9_axes_0 = const()[name = tensor<string, []>("out_9_axes_0"), val = tensor<int32, [1]>([1])];
|
|
|
|
|
|
|
|
|
|
|
235 |
tensor<fp16, []> var_391_to_fp16 = const()[name = tensor<string, []>("op_391_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
236 |
+
tensor<fp16, [1, 384, 1, 1]> out_9_cast_fp16 = layer_norm(axes = out_9_axes_0, epsilon = var_391_to_fp16, x = inputs_9_cast_fp16)[name = tensor<string, []>("out_9_cast_fp16")];
|
|
|
|
|
|
|
237 |
tensor<fp16, [384]> obj_23_gamma_0_to_fp16 = const()[name = tensor<string, []>("obj_23_gamma_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(46094720)))];
|
238 |
tensor<fp16, [384]> obj_23_beta_0_to_fp16 = const()[name = tensor<string, []>("obj_23_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(46095552)))];
|
239 |
tensor<fp16, []> obj_23_epsilon_0_to_fp16 = const()[name = tensor<string, []>("obj_23_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
|
|
283 |
tensor<fp16, [384]> layers_1_encoder_attn_o_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_1_encoder_attn_o_proj_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(47277952)))];
|
284 |
tensor<fp16, [1, 384, 1, 1]> obj_25_cast_fp16 = conv(bias = layers_1_encoder_attn_o_proj_bias_to_fp16, dilations = var_445, groups = var_285, pad = obj_25_pad_0, pad_type = obj_25_pad_type_0, strides = var_443, weight = layers_1_encoder_attn_o_proj_weight_to_fp16, x = input_13_cast_fp16)[name = tensor<string, []>("obj_25_cast_fp16")];
|
285 |
tensor<fp16, [1, 384, 1, 1]> inputs_11_cast_fp16 = add(x = inputs_9_cast_fp16, y = obj_25_cast_fp16)[name = tensor<string, []>("inputs_11_cast_fp16")];
|
286 |
+
tensor<int32, [1]> out_11_axes_0 = const()[name = tensor<string, []>("out_11_axes_0"), val = tensor<int32, [1]>([1])];
|
|
|
|
|
|
|
|
|
|
|
287 |
tensor<fp16, []> var_460_to_fp16 = const()[name = tensor<string, []>("op_460_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
288 |
+
tensor<fp16, [1, 384, 1, 1]> out_11_cast_fp16 = layer_norm(axes = out_11_axes_0, epsilon = var_460_to_fp16, x = inputs_11_cast_fp16)[name = tensor<string, []>("out_11_cast_fp16")];
|
|
|
|
|
|
|
289 |
tensor<fp16, [384]> input_15_gamma_0_to_fp16 = const()[name = tensor<string, []>("input_15_gamma_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(47278784)))];
|
290 |
tensor<fp16, [384]> input_15_beta_0_to_fp16 = const()[name = tensor<string, []>("input_15_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(47279616)))];
|
291 |
tensor<fp16, []> input_15_epsilon_0_to_fp16 = const()[name = tensor<string, []>("input_15_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
|
|
309 |
tensor<fp16, [1, 384, 1, 1]> inputs_13_cast_fp16 = add(x = inputs_11_cast_fp16, y = hidden_states_5_cast_fp16)[name = tensor<string, []>("inputs_13_cast_fp16")];
|
310 |
tensor<int32, []> var_496 = const()[name = tensor<string, []>("op_496"), val = tensor<int32, []>(3)];
|
311 |
tensor<int32, []> var_503 = const()[name = tensor<string, []>("op_503"), val = tensor<int32, []>(1)];
|
312 |
+
tensor<int32, [1]> out_13_axes_0 = const()[name = tensor<string, []>("out_13_axes_0"), val = tensor<int32, [1]>([1])];
|
|
|
|
|
|
|
|
|
|
|
|
|
313 |
tensor<fp16, []> var_522_to_fp16 = const()[name = tensor<string, []>("op_522_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
314 |
+
tensor<fp16, [1, 384, 1, 1]> out_13_cast_fp16 = layer_norm(axes = out_13_axes_0, epsilon = var_522_to_fp16, x = inputs_13_cast_fp16)[name = tensor<string, []>("out_13_cast_fp16")];
|
|
|
|
|
|
|
315 |
tensor<fp16, [384]> obj_29_gamma_0_to_fp16 = const()[name = tensor<string, []>("obj_29_gamma_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(49643840)))];
|
316 |
tensor<fp16, [384]> obj_29_beta_0_to_fp16 = const()[name = tensor<string, []>("obj_29_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(49644672)))];
|
317 |
tensor<fp16, []> obj_29_epsilon_0_to_fp16 = const()[name = tensor<string, []>("obj_29_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
|
|
368 |
tensor<fp16, [384]> layers_2_self_attn_o_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_2_self_attn_o_proj_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(50827072)))];
|
369 |
tensor<fp16, [1, 384, 1, 1]> obj_35_cast_fp16 = conv(bias = layers_2_self_attn_o_proj_bias_to_fp16, dilations = var_593, groups = var_503, pad = obj_35_pad_0, pad_type = obj_35_pad_type_0, strides = var_591, weight = layers_2_self_attn_o_proj_weight_to_fp16, x = input_21_cast_fp16)[name = tensor<string, []>("obj_35_cast_fp16")];
|
370 |
tensor<fp16, [1, 384, 1, 1]> inputs_15_cast_fp16 = add(x = inputs_13_cast_fp16, y = obj_35_cast_fp16)[name = tensor<string, []>("inputs_15_cast_fp16")];
|
371 |
+
tensor<int32, [1]> out_15_axes_0 = const()[name = tensor<string, []>("out_15_axes_0"), val = tensor<int32, [1]>([1])];
|
|
|
|
|
|
|
|
|
|
|
372 |
tensor<fp16, []> var_609_to_fp16 = const()[name = tensor<string, []>("op_609_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
373 |
+
tensor<fp16, [1, 384, 1, 1]> out_15_cast_fp16 = layer_norm(axes = out_15_axes_0, epsilon = var_609_to_fp16, x = inputs_15_cast_fp16)[name = tensor<string, []>("out_15_cast_fp16")];
|
|
|
|
|
|
|
374 |
tensor<fp16, [384]> obj_37_gamma_0_to_fp16 = const()[name = tensor<string, []>("obj_37_gamma_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(50827904)))];
|
375 |
tensor<fp16, [384]> obj_37_beta_0_to_fp16 = const()[name = tensor<string, []>("obj_37_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(50828736)))];
|
376 |
tensor<fp16, []> obj_37_epsilon_0_to_fp16 = const()[name = tensor<string, []>("obj_37_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
|
|
420 |
tensor<fp16, [384]> layers_2_encoder_attn_o_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_2_encoder_attn_o_proj_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(52011136)))];
|
421 |
tensor<fp16, [1, 384, 1, 1]> obj_39_cast_fp16 = conv(bias = layers_2_encoder_attn_o_proj_bias_to_fp16, dilations = var_663, groups = var_503, pad = obj_39_pad_0, pad_type = obj_39_pad_type_0, strides = var_661, weight = layers_2_encoder_attn_o_proj_weight_to_fp16, x = input_23_cast_fp16)[name = tensor<string, []>("obj_39_cast_fp16")];
|
422 |
tensor<fp16, [1, 384, 1, 1]> inputs_17_cast_fp16 = add(x = inputs_15_cast_fp16, y = obj_39_cast_fp16)[name = tensor<string, []>("inputs_17_cast_fp16")];
|
423 |
+
tensor<int32, [1]> out_17_axes_0 = const()[name = tensor<string, []>("out_17_axes_0"), val = tensor<int32, [1]>([1])];
|
|
|
|
|
|
|
|
|
|
|
424 |
tensor<fp16, []> var_678_to_fp16 = const()[name = tensor<string, []>("op_678_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
425 |
+
tensor<fp16, [1, 384, 1, 1]> out_17_cast_fp16 = layer_norm(axes = out_17_axes_0, epsilon = var_678_to_fp16, x = inputs_17_cast_fp16)[name = tensor<string, []>("out_17_cast_fp16")];
|
|
|
|
|
|
|
426 |
tensor<fp16, [384]> input_25_gamma_0_to_fp16 = const()[name = tensor<string, []>("input_25_gamma_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(52011968)))];
|
427 |
tensor<fp16, [384]> input_25_beta_0_to_fp16 = const()[name = tensor<string, []>("input_25_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(52012800)))];
|
428 |
tensor<fp16, []> input_25_epsilon_0_to_fp16 = const()[name = tensor<string, []>("input_25_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
|
|
446 |
tensor<fp16, [1, 384, 1, 1]> inputs_19_cast_fp16 = add(x = inputs_17_cast_fp16, y = hidden_states_7_cast_fp16)[name = tensor<string, []>("inputs_19_cast_fp16")];
|
447 |
tensor<int32, []> var_714 = const()[name = tensor<string, []>("op_714"), val = tensor<int32, []>(3)];
|
448 |
tensor<int32, []> var_721 = const()[name = tensor<string, []>("op_721"), val = tensor<int32, []>(1)];
|
449 |
+
tensor<int32, [1]> out_19_axes_0 = const()[name = tensor<string, []>("out_19_axes_0"), val = tensor<int32, [1]>([1])];
|
|
|
|
|
|
|
|
|
|
|
|
|
450 |
tensor<fp16, []> var_740_to_fp16 = const()[name = tensor<string, []>("op_740_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
451 |
+
tensor<fp16, [1, 384, 1, 1]> out_19_cast_fp16 = layer_norm(axes = out_19_axes_0, epsilon = var_740_to_fp16, x = inputs_19_cast_fp16)[name = tensor<string, []>("out_19_cast_fp16")];
|
|
|
|
|
|
|
452 |
tensor<fp16, [384]> obj_43_gamma_0_to_fp16 = const()[name = tensor<string, []>("obj_43_gamma_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(54377024)))];
|
453 |
tensor<fp16, [384]> obj_43_beta_0_to_fp16 = const()[name = tensor<string, []>("obj_43_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(54377856)))];
|
454 |
tensor<fp16, []> obj_43_epsilon_0_to_fp16 = const()[name = tensor<string, []>("obj_43_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
|
|
505 |
tensor<fp16, [384]> layers_3_self_attn_o_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_3_self_attn_o_proj_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(55560256)))];
|
506 |
tensor<fp16, [1, 384, 1, 1]> obj_49_cast_fp16 = conv(bias = layers_3_self_attn_o_proj_bias_to_fp16, dilations = var_811, groups = var_721, pad = obj_49_pad_0, pad_type = obj_49_pad_type_0, strides = var_809, weight = layers_3_self_attn_o_proj_weight_to_fp16, x = input_31_cast_fp16)[name = tensor<string, []>("obj_49_cast_fp16")];
|
507 |
tensor<fp16, [1, 384, 1, 1]> inputs_21_cast_fp16 = add(x = inputs_19_cast_fp16, y = obj_49_cast_fp16)[name = tensor<string, []>("inputs_21_cast_fp16")];
|
508 |
+
tensor<int32, [1]> out_21_axes_0 = const()[name = tensor<string, []>("out_21_axes_0"), val = tensor<int32, [1]>([1])];
|
|
|
|
|
|
|
|
|
|
|
509 |
tensor<fp16, []> var_827_to_fp16 = const()[name = tensor<string, []>("op_827_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
510 |
+
tensor<fp16, [1, 384, 1, 1]> out_21_cast_fp16 = layer_norm(axes = out_21_axes_0, epsilon = var_827_to_fp16, x = inputs_21_cast_fp16)[name = tensor<string, []>("out_21_cast_fp16")];
|
|
|
|
|
|
|
511 |
tensor<fp16, [384]> obj_51_gamma_0_to_fp16 = const()[name = tensor<string, []>("obj_51_gamma_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(55561088)))];
|
512 |
tensor<fp16, [384]> obj_51_beta_0_to_fp16 = const()[name = tensor<string, []>("obj_51_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(55561920)))];
|
513 |
tensor<fp16, []> obj_51_epsilon_0_to_fp16 = const()[name = tensor<string, []>("obj_51_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
|
|
557 |
tensor<fp16, [384]> layers_3_encoder_attn_o_proj_bias_to_fp16 = const()[name = tensor<string, []>("layers_3_encoder_attn_o_proj_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(56744320)))];
|
558 |
tensor<fp16, [1, 384, 1, 1]> obj_53_cast_fp16 = conv(bias = layers_3_encoder_attn_o_proj_bias_to_fp16, dilations = var_881, groups = var_721, pad = obj_53_pad_0, pad_type = obj_53_pad_type_0, strides = var_879, weight = layers_3_encoder_attn_o_proj_weight_to_fp16, x = input_33_cast_fp16)[name = tensor<string, []>("obj_53_cast_fp16")];
|
559 |
tensor<fp16, [1, 384, 1, 1]> inputs_23_cast_fp16 = add(x = inputs_21_cast_fp16, y = obj_53_cast_fp16)[name = tensor<string, []>("inputs_23_cast_fp16")];
|
560 |
+
tensor<int32, [1]> out_23_axes_0 = const()[name = tensor<string, []>("out_23_axes_0"), val = tensor<int32, [1]>([1])];
|
|
|
|
|
|
|
|
|
|
|
561 |
tensor<fp16, []> var_896_to_fp16 = const()[name = tensor<string, []>("op_896_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
562 |
+
tensor<fp16, [1, 384, 1, 1]> out_23_cast_fp16 = layer_norm(axes = out_23_axes_0, epsilon = var_896_to_fp16, x = inputs_23_cast_fp16)[name = tensor<string, []>("out_23_cast_fp16")];
|
|
|
|
|
|
|
563 |
tensor<fp16, [384]> input_35_gamma_0_to_fp16 = const()[name = tensor<string, []>("input_35_gamma_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(56745152)))];
|
564 |
tensor<fp16, [384]> input_35_beta_0_to_fp16 = const()[name = tensor<string, []>("input_35_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(56745984)))];
|
565 |
tensor<fp16, []> input_35_epsilon_0_to_fp16 = const()[name = tensor<string, []>("input_35_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
|
|
581 |
tensor<fp16, [384]> layers_3_fc2_bias_to_fp16 = const()[name = tensor<string, []>("layers_3_fc2_bias_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(59109376)))];
|
582 |
tensor<fp16, [1, 384, 1, 1]> hidden_states_9_cast_fp16 = conv(bias = layers_3_fc2_bias_to_fp16, dilations = var_918, groups = var_721, pad = hidden_states_9_pad_0, pad_type = hidden_states_9_pad_type_0, strides = var_916, weight = layers_3_fc2_weight_to_fp16, x = input_cast_fp16)[name = tensor<string, []>("hidden_states_9_cast_fp16")];
|
583 |
tensor<fp16, [1, 384, 1, 1]> inputs_cast_fp16 = add(x = inputs_23_cast_fp16, y = hidden_states_9_cast_fp16)[name = tensor<string, []>("inputs_cast_fp16")];
|
584 |
+
tensor<int32, [1]> out_axes_0 = const()[name = tensor<string, []>("out_axes_0"), val = tensor<int32, [1]>([1])];
|
|
|
|
|
|
|
|
|
|
|
|
|
585 |
tensor<fp16, []> var_939_to_fp16 = const()[name = tensor<string, []>("op_939_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
586 |
+
tensor<fp16, [1, 384, 1, 1]> out_cast_fp16 = layer_norm(axes = out_axes_0, epsilon = var_939_to_fp16, x = inputs_cast_fp16)[name = tensor<string, []>("out_cast_fp16")];
|
|
|
|
|
|
|
587 |
tensor<fp16, [384]> hidden_states_gamma_0_to_fp16 = const()[name = tensor<string, []>("hidden_states_gamma_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(59110208)))];
|
588 |
tensor<fp16, [384]> hidden_states_beta_0_to_fp16 = const()[name = tensor<string, []>("hidden_states_beta_0_to_fp16"), val = tensor<fp16, [384]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(59111040)))];
|
589 |
tensor<fp16, []> hidden_states_epsilon_0_to_fp16 = const()[name = tensor<string, []>("hidden_states_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
openai_whisper-tiny.en/TextDecoder.mlmodelc/weights/weight.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 59215664
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:12c57bf53565400bb60c09b13e9a6e31fdaa147585a8e21aeea1b60a96e3400e
|
3 |
size 59215664
|