Upload model distil-whisper_distil-large-v3_turbo_600MB - QLoRA compressed encoder variant
95db02e
verified
program(1.0) | |
[buildInfo = dict<tensor<string, []>, tensor<string, []>>({{"coremlc-component-MIL", "5.33.5"}, {"coremlc-version", "1877.40.3"}, {"coremltools-component-torch", "2.2.1"}, {"coremltools-source-dialect", "TorchScript"}, {"coremltools-version", "7.1"}})] | |
{ | |
func main<ios17>(tensor<int32, [1]> language, tensor<int32, [1]> task) { | |
tensor<int32, []> var_6 = const()[name = tensor<string, []>("op_6"), val = tensor<int32, []>(50259)]; | |
tensor<int32, [1]> var_7 = sub(x = language, y = var_6)[name = tensor<string, []>("op_7")]; | |
tensor<int32, []> var_8 = const()[name = tensor<string, []>("op_8"), val = tensor<int32, []>(2)]; | |
tensor<int32, [1]> var_9 = mul(x = var_7, y = var_8)[name = tensor<string, []>("op_9")]; | |
tensor<int32, [1]> input = add(x = var_9, y = task)[name = tensor<string, []>("input")]; | |
tensor<int32, []> var_15_axis_0 = const()[name = tensor<string, []>("op_15_axis_0"), val = tensor<int32, []>(0)]; | |
tensor<int32, []> var_15_batch_dims_0 = const()[name = tensor<string, []>("op_15_batch_dims_0"), val = tensor<int32, []>(0)]; | |
tensor<bool, []> var_15_validate_indices_0 = const()[name = tensor<string, []>("op_15_validate_indices_0"), val = tensor<bool, []>(false)]; | |
tensor<fp16, [200, 7680]> key_cache_lut_weight_to_fp16 = const()[name = tensor<string, []>("key_cache_lut_weight_to_fp16"), val = tensor<fp16, [200, 7680]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(64)))]; | |
tensor<string, []> input_to_int16_dtype_0 = const()[name = tensor<string, []>("input_to_int16_dtype_0"), val = tensor<string, []>("int16")]; | |
tensor<int16, [1]> cast_6 = cast(dtype = input_to_int16_dtype_0, x = input)[name = tensor<string, []>("cast_6")]; | |
tensor<fp16, [1, 7680]> var_15_cast_fp16_cast_int16 = gather(axis = var_15_axis_0, batch_dims = var_15_batch_dims_0, indices = cast_6, validate_indices = var_15_validate_indices_0, x = key_cache_lut_weight_to_fp16)[name = tensor<string, []>("op_15_cast_fp16_cast_int16")]; | |
tensor<int32, [4]> var_20 = const()[name = tensor<string, []>("op_20"), val = tensor<int32, [4]>([1, 2560, 1, 3])]; | |
tensor<fp16, [1, 2560, 1, 3]> key_cache_prefill = reshape(shape = var_20, x = var_15_cast_fp16_cast_int16)[name = tensor<string, []>("op_21_cast_fp16")]; | |
tensor<int32, []> var_25_axis_0 = const()[name = tensor<string, []>("op_25_axis_0"), val = tensor<int32, []>(0)]; | |
tensor<int32, []> var_25_batch_dims_0 = const()[name = tensor<string, []>("op_25_batch_dims_0"), val = tensor<int32, []>(0)]; | |
tensor<bool, []> var_25_validate_indices_0 = const()[name = tensor<string, []>("op_25_validate_indices_0"), val = tensor<bool, []>(false)]; | |
tensor<fp16, [200, 7680]> value_cache_lut_weight_to_fp16 = const()[name = tensor<string, []>("value_cache_lut_weight_to_fp16"), val = tensor<fp16, [200, 7680]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(3072128)))]; | |
tensor<fp16, [1, 7680]> var_25_cast_fp16_cast_int16 = gather(axis = var_25_axis_0, batch_dims = var_25_batch_dims_0, indices = cast_6, validate_indices = var_25_validate_indices_0, x = value_cache_lut_weight_to_fp16)[name = tensor<string, []>("op_25_cast_fp16_cast_int16")]; | |
tensor<int32, [4]> var_30 = const()[name = tensor<string, []>("op_30"), val = tensor<int32, [4]>([1, 2560, 1, 3])]; | |
tensor<fp16, [1, 2560, 1, 3]> value_cache_prefill = reshape(shape = var_30, x = var_25_cast_fp16_cast_int16)[name = tensor<string, []>("op_31_cast_fp16")]; | |
} -> (key_cache_prefill, value_cache_prefill); | |
} |