|
import os |
|
import gc |
|
import torch |
|
|
|
from trainer import Trainer, TrainerArgs |
|
|
|
from TTS.config.shared_configs import BaseDatasetConfig |
|
from TTS.tts.datasets import load_tts_samples |
|
from TTS.tts.layers.xtts.trainer.gpt_trainer import GPTArgs, GPTTrainer, GPTTrainerConfig, XttsAudioConfig |
|
from TTS.utils.manage import ModelManager |
|
|
|
from dataclasses import dataclass, field |
|
from typing import Optional |
|
from transformers import HfArgumentParser |
|
|
|
import argparse |
|
|
|
|
|
def create_xtts_trainer_parser(): |
|
parser = argparse.ArgumentParser(description="Arguments for XTTS Trainer") |
|
|
|
parser.add_argument("--output_path", type=str, required=True, |
|
help="Path to pretrained + checkpoint model") |
|
parser.add_argument("--metadatas", nargs='+', type=str, required=True, |
|
help="train_csv_path,eval_csv_path,language") |
|
parser.add_argument("--num_epochs", type=int, default=1, |
|
help="Number of epochs") |
|
parser.add_argument("--batch_size", type=int, default=1, |
|
help="Mini batch size") |
|
parser.add_argument("--grad_acumm", type=int, default=1, |
|
help="Grad accumulation steps") |
|
parser.add_argument("--max_audio_length", type=int, default=255995, |
|
help="Max audio length") |
|
parser.add_argument("--max_text_length", type=int, default=200, |
|
help="Max text length") |
|
parser.add_argument("--weight_decay", type=float, default=1e-2, |
|
help="Weight decay") |
|
parser.add_argument("--lr", type=float, default=5e-6, |
|
help="Learning rate") |
|
parser.add_argument("--save_step", type=int, default=5000, |
|
help="Save step") |
|
parser.add_argument("--tf32_matmul", type=bool, default=False, |
|
help="Enable or disable Torch TF32 MatMul") |
|
parser.add_argument("--tf32_cudnn", type=bool, default=False, |
|
help="Enable or disable Torch TF32 CUDNN") |
|
|
|
return parser |
|
|
|
|
|
def train_gpt(metadatas, num_epochs, batch_size, grad_acumm, output_path, max_audio_length, max_text_length, lr, weight_decay, save_step): |
|
|
|
RUN_NAME = "GPT_XTTS_FT" |
|
PROJECT_NAME = "XTTS_trainer" |
|
DASHBOARD_LOGGER = "tensorboard" |
|
LOGGER_URI = None |
|
|
|
|
|
|
|
OUT_PATH = output_path |
|
|
|
|
|
|
|
OPTIMIZER_WD_ONLY_ON_WEIGHTS = True |
|
START_WITH_EVAL = False |
|
BATCH_SIZE = batch_size |
|
GRAD_ACUMM_STEPS = grad_acumm |
|
|
|
|
|
DATASETS_CONFIG_LIST = [] |
|
for metadata in metadatas: |
|
train_csv, eval_csv, language = metadata.split(",") |
|
print(train_csv, eval_csv, language) |
|
|
|
config_dataset = BaseDatasetConfig( |
|
formatter="coqui", |
|
dataset_name="ft_dataset", |
|
path=os.path.dirname(train_csv), |
|
meta_file_train=os.path.basename(train_csv), |
|
meta_file_val=os.path.basename(eval_csv), |
|
language=language, |
|
) |
|
|
|
DATASETS_CONFIG_LIST.append(config_dataset) |
|
|
|
|
|
CHECKPOINTS_OUT_PATH = os.path.join( |
|
OUT_PATH, "XTTS_v2.0_original_model_files/") |
|
os.makedirs(CHECKPOINTS_OUT_PATH, exist_ok=True) |
|
|
|
|
|
DVAE_CHECKPOINT_LINK = "https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v2/main/dvae.pth" |
|
MEL_NORM_LINK = "https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v2/main/mel_stats.pth" |
|
|
|
|
|
DVAE_CHECKPOINT = os.path.join( |
|
CHECKPOINTS_OUT_PATH, os.path.basename(DVAE_CHECKPOINT_LINK)) |
|
MEL_NORM_FILE = os.path.join( |
|
CHECKPOINTS_OUT_PATH, os.path.basename(MEL_NORM_LINK)) |
|
|
|
|
|
if not os.path.isfile(DVAE_CHECKPOINT) or not os.path.isfile(MEL_NORM_FILE): |
|
print(" > Downloading DVAE files!") |
|
ModelManager._download_model_files( |
|
[MEL_NORM_LINK, DVAE_CHECKPOINT_LINK], CHECKPOINTS_OUT_PATH, progress_bar=True) |
|
|
|
|
|
TOKENIZER_FILE_LINK = "https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v2/main/vocab.json" |
|
XTTS_CHECKPOINT_LINK = "https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v2/main/model.pth" |
|
XTTS_CONFIG_LINK = "https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v2/main/config.json" |
|
|
|
|
|
TOKENIZER_FILE = os.path.join(CHECKPOINTS_OUT_PATH, os.path.basename( |
|
TOKENIZER_FILE_LINK)) |
|
XTTS_CHECKPOINT = os.path.join(CHECKPOINTS_OUT_PATH, os.path.basename( |
|
XTTS_CHECKPOINT_LINK)) |
|
XTTS_CONFIG_FILE = os.path.join( |
|
|
|
CHECKPOINTS_OUT_PATH, os.path.basename(XTTS_CONFIG_LINK)) |
|
|
|
|
|
if not os.path.isfile(TOKENIZER_FILE): |
|
print(" > Downloading XTTS v2.0 tokenizer!") |
|
ModelManager._download_model_files( |
|
[TOKENIZER_FILE_LINK], CHECKPOINTS_OUT_PATH, progress_bar=True |
|
) |
|
if not os.path.isfile(XTTS_CHECKPOINT): |
|
print(" > Downloading XTTS v2.0 checkpoint!") |
|
ModelManager._download_model_files( |
|
[XTTS_CHECKPOINT_LINK], CHECKPOINTS_OUT_PATH, progress_bar=True |
|
) |
|
if not os.path.isfile(XTTS_CONFIG_FILE): |
|
print(" > Downloading XTTS v2.0 config!") |
|
ModelManager._download_model_files( |
|
[XTTS_CONFIG_LINK], CHECKPOINTS_OUT_PATH, progress_bar=True |
|
) |
|
|
|
|
|
model_args = GPTArgs( |
|
max_conditioning_length=264600, |
|
min_conditioning_length=88200, |
|
debug_loading_failures=False, |
|
max_wav_length=max_audio_length, |
|
max_text_length=max_text_length, |
|
mel_norm_file=MEL_NORM_FILE, |
|
dvae_checkpoint=DVAE_CHECKPOINT, |
|
|
|
xtts_checkpoint=XTTS_CHECKPOINT, |
|
tokenizer_file=TOKENIZER_FILE, |
|
gpt_num_audio_tokens=1026, |
|
gpt_start_audio_token=1024, |
|
gpt_stop_audio_token=1025, |
|
gpt_use_masking_gt_prompt_approach=True, |
|
gpt_use_perceiver_resampler=True, |
|
) |
|
|
|
audio_config = XttsAudioConfig( |
|
sample_rate=22050, dvae_sample_rate=22050, output_sample_rate=24000) |
|
|
|
|
|
config = GPTTrainerConfig() |
|
|
|
config.load_json(XTTS_CONFIG_FILE) |
|
|
|
config.epochs = num_epochs |
|
config.output_path = OUT_PATH |
|
config.model_args = model_args |
|
config.run_name = RUN_NAME |
|
config.project_name = PROJECT_NAME |
|
config.run_description = """ |
|
GPT XTTS training |
|
""", |
|
config.dashboard_logger = DASHBOARD_LOGGER |
|
config.logger_uri = LOGGER_URI |
|
config.audio = audio_config |
|
config.batch_size = BATCH_SIZE |
|
config.num_loader_workers = 4 |
|
config.eval_split_max_size = 256 |
|
config.print_step = 50 |
|
config.plot_step = 100 |
|
config.log_model_step = 100 |
|
config.save_step = save_step |
|
config.save_n_checkpoints = 1 |
|
config.save_checkpoints = True |
|
config.print_eval = False |
|
config.optimizer = "AdamW" |
|
config.optimizer_wd_only_on_weights = OPTIMIZER_WD_ONLY_ON_WEIGHTS |
|
config.optimizer_params = { |
|
"betas": [0.9, 0.96], "eps": 1e-8, "weight_decay": weight_decay} |
|
config.lr = lr |
|
config.lr_scheduler = "MultiStepLR" |
|
config.lr_scheduler_params = {"milestones": [ |
|
save_step * 3, save_step * 3 * 2, save_step * 3 * 3], "gamma": 0.5, "last_epoch": -1} |
|
config.test_sentences = [] |
|
|
|
|
|
model = GPTTrainer.init_from_config(config) |
|
|
|
|
|
train_samples, eval_samples = load_tts_samples( |
|
DATASETS_CONFIG_LIST, |
|
eval_split=True, |
|
eval_split_max_size=config.eval_split_max_size, |
|
eval_split_size=config.eval_split_size, |
|
) |
|
|
|
|
|
trainer = Trainer( |
|
TrainerArgs( |
|
restore_path=None, |
|
skip_train_epoch=False, |
|
start_with_eval=START_WITH_EVAL, |
|
grad_accum_steps=GRAD_ACUMM_STEPS |
|
), |
|
config, |
|
|
|
output_path=os.path.join(output_path), |
|
model=model, |
|
train_samples=train_samples, |
|
eval_samples=eval_samples, |
|
) |
|
trainer.fit() |
|
|
|
|
|
samples_len = [len(item["text"].split(" ")) for item in train_samples] |
|
longest_text_idx = samples_len.index(max(samples_len)) |
|
speaker_ref = train_samples[longest_text_idx]["audio_file"] |
|
|
|
trainer_out_path = trainer.output_path |
|
|
|
|
|
del model, trainer, train_samples, eval_samples |
|
gc.collect() |
|
|
|
return trainer_out_path |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = create_xtts_trainer_parser() |
|
args = parser.parse_args() |
|
|
|
|
|
torch.backends.cuda.matmul.allow_tf32 = args.tf32_matmul |
|
torch.backends.cudnn.allow_tf32 = args.tf32_cudnn |
|
|
|
trainer_out_path = train_gpt( |
|
metadatas=args.metadatas, |
|
output_path=args.output_path, |
|
num_epochs=args.num_epochs, |
|
batch_size=args.batch_size, |
|
grad_acumm=args.grad_acumm, |
|
weight_decay=args.weight_decay, |
|
lr=args.lr, |
|
max_text_length=args.max_text_length, |
|
max_audio_length=args.max_audio_length, |
|
save_step=args.save_step |
|
) |
|
|
|
print(f"Checkpoint saved in dir: {trainer_out_path}") |
|
|