archivartaunik commited on
Commit
56dd203
1 Parent(s): c930ffc

Initial upload of GPT_XTTS_V2 model files H100 NVL TF 32 - на ўсе 3 датасэты 18 хвілін за эпоху

Browse files
best_model_13545.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1e7982b2f596efa8d387a7f2f852352ae9f5b9e4b8b86fedca2d2c254924a1e3
3
+ size 5780141753
config.json ADDED
@@ -0,0 +1,195 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "output_path": "/checkpoints/",
3
+ "logger_uri": null,
4
+ "run_name": "GPT_XTTS_FT",
5
+ "project_name": "XTTS_trainer",
6
+ "run_description": [
7
+ "\n GPT XTTS training\n "
8
+ ],
9
+ "print_step": 50,
10
+ "plot_step": 100,
11
+ "model_param_stats": false,
12
+ "wandb_entity": null,
13
+ "dashboard_logger": "tensorboard",
14
+ "save_on_interrupt": true,
15
+ "log_model_step": 100,
16
+ "save_step": 6000,
17
+ "save_n_checkpoints": 1,
18
+ "save_checkpoints": true,
19
+ "save_all_best": false,
20
+ "save_best_after": 10000,
21
+ "target_loss": null,
22
+ "print_eval": false,
23
+ "test_delay_epochs": 0,
24
+ "run_eval": true,
25
+ "run_eval_steps": null,
26
+ "distributed_backend": "nccl",
27
+ "distributed_url": "tcp://localhost:54321",
28
+ "mixed_precision": false,
29
+ "precision": "fp16",
30
+ "epochs": 7,
31
+ "batch_size": 24,
32
+ "eval_batch_size": 16,
33
+ "grad_clip": 0.0,
34
+ "scheduler_after_epoch": true,
35
+ "lr": 5e-06,
36
+ "optimizer": "AdamW",
37
+ "optimizer_params": {
38
+ "betas": [
39
+ 0.9,
40
+ 0.96
41
+ ],
42
+ "eps": 1e-08,
43
+ "weight_decay": 0.01
44
+ },
45
+ "lr_scheduler": "MultiStepLR",
46
+ "lr_scheduler_params": {
47
+ "milestones": [
48
+ 18000,
49
+ 36000,
50
+ 54000
51
+ ],
52
+ "gamma": 0.5,
53
+ "last_epoch": -1
54
+ },
55
+ "use_grad_scaler": false,
56
+ "allow_tf32": false,
57
+ "cudnn_enable": true,
58
+ "cudnn_deterministic": false,
59
+ "cudnn_benchmark": false,
60
+ "training_seed": 54321,
61
+ "model": "xtts",
62
+ "num_loader_workers": 4,
63
+ "num_eval_loader_workers": 0,
64
+ "use_noise_augment": false,
65
+ "audio": {
66
+ "sample_rate": 22050,
67
+ "output_sample_rate": 24000,
68
+ "dvae_sample_rate": 22050
69
+ },
70
+ "use_phonemes": false,
71
+ "phonemizer": null,
72
+ "phoneme_language": null,
73
+ "compute_input_seq_cache": false,
74
+ "text_cleaner": null,
75
+ "enable_eos_bos_chars": false,
76
+ "test_sentences_file": "",
77
+ "phoneme_cache_path": null,
78
+ "characters": null,
79
+ "add_blank": false,
80
+ "batch_group_size": 0,
81
+ "loss_masking": null,
82
+ "min_audio_len": 1,
83
+ "max_audio_len": Infinity,
84
+ "min_text_len": 1,
85
+ "max_text_len": Infinity,
86
+ "compute_f0": false,
87
+ "compute_energy": false,
88
+ "compute_linear_spec": false,
89
+ "precompute_num_workers": 0,
90
+ "start_by_longest": false,
91
+ "shuffle": false,
92
+ "drop_last": false,
93
+ "datasets": [
94
+ {
95
+ "formatter": "",
96
+ "dataset_name": "",
97
+ "path": "",
98
+ "meta_file_train": "",
99
+ "ignored_speakers": null,
100
+ "language": "",
101
+ "phonemizer": "",
102
+ "meta_file_val": "",
103
+ "meta_file_attn_mask": ""
104
+ }
105
+ ],
106
+ "test_sentences": [],
107
+ "eval_split_max_size": 256,
108
+ "eval_split_size": 0.01,
109
+ "use_speaker_weighted_sampler": false,
110
+ "speaker_weighted_sampler_alpha": 1.0,
111
+ "use_language_weighted_sampler": false,
112
+ "language_weighted_sampler_alpha": 1.0,
113
+ "use_length_weighted_sampler": false,
114
+ "length_weighted_sampler_alpha": 1.0,
115
+ "model_args": {
116
+ "gpt_batch_size": 1,
117
+ "enable_redaction": false,
118
+ "kv_cache": true,
119
+ "gpt_checkpoint": "",
120
+ "clvp_checkpoint": null,
121
+ "decoder_checkpoint": null,
122
+ "num_chars": 255,
123
+ "tokenizer_file": "/checkpoints/XTTS_v2.0_original_model_files/vocab.json",
124
+ "gpt_max_audio_tokens": 605,
125
+ "gpt_max_text_tokens": 402,
126
+ "gpt_max_prompt_tokens": 70,
127
+ "gpt_layers": 30,
128
+ "gpt_n_model_channels": 1024,
129
+ "gpt_n_heads": 16,
130
+ "gpt_number_text_tokens": 13685,
131
+ "gpt_start_text_token": 261,
132
+ "gpt_stop_text_token": 0,
133
+ "gpt_num_audio_tokens": 1026,
134
+ "gpt_start_audio_token": 1024,
135
+ "gpt_stop_audio_token": 1025,
136
+ "gpt_code_stride_len": 1024,
137
+ "gpt_use_masking_gt_prompt_approach": true,
138
+ "gpt_use_perceiver_resampler": true,
139
+ "input_sample_rate": 22050,
140
+ "output_sample_rate": 24000,
141
+ "output_hop_length": 256,
142
+ "decoder_input_dim": 1024,
143
+ "d_vector_dim": 512,
144
+ "cond_d_vector_in_each_upsampling_layer": true,
145
+ "duration_const": 102400,
146
+ "min_conditioning_length": 88200,
147
+ "max_conditioning_length": 264600,
148
+ "gpt_loss_text_ce_weight": 0.01,
149
+ "gpt_loss_mel_ce_weight": 1.0,
150
+ "debug_loading_failures": false,
151
+ "max_wav_length": 5000750,
152
+ "max_text_length": 500,
153
+ "mel_norm_file": "/checkpoints/XTTS_v2.0_original_model_files/mel_stats.pth",
154
+ "dvae_checkpoint": "/checkpoints/XTTS_v2.0_original_model_files/dvae.pth",
155
+ "xtts_checkpoint": "/checkpoints/XTTS_v2.0_original_model_files/model.pth",
156
+ "vocoder": ""
157
+ },
158
+ "model_dir": null,
159
+ "languages": [
160
+ "en",
161
+ "es",
162
+ "fr",
163
+ "de",
164
+ "it",
165
+ "pt",
166
+ "pl",
167
+ "tr",
168
+ "ru",
169
+ "nl",
170
+ "cs",
171
+ "ar",
172
+ "zh-cn",
173
+ "hu",
174
+ "ko",
175
+ "ja",
176
+ "hi",
177
+ "be",
178
+ "be",
179
+ "be"
180
+ ],
181
+ "temperature": 0.75,
182
+ "length_penalty": 1.0,
183
+ "repetition_penalty": 5.0,
184
+ "top_k": 50,
185
+ "top_p": 0.85,
186
+ "num_gpt_outputs": 1,
187
+ "gpt_cond_len": 30,
188
+ "gpt_cond_chunk_len": 4,
189
+ "max_ref_len": 30,
190
+ "sound_norm_refs": false,
191
+ "optimizer_wd_only_on_weights": true,
192
+ "weighted_loss_attrs": null,
193
+ "weighted_loss_multipliers": null,
194
+ "github_branch": "inside_docker"
195
+ }
dvae.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b29bc227d410d4991e0a8c09b858f77415013eeb9fba9650258e96095557d97a
3
+ size 210514388
events.out.tfevents.1734961691.e8c7ccf1330b.3059.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7d505478e68829dcb1ca36440585e0d03819ad02c5283e55c130181e7e879475
3
+ size 73380
mel_stats.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1f69422a8a8f344c4fca2f0c6b8d41d2151d6615b7321e48e6bb15ae949b119c
3
+ size 1067
model.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1e7982b2f596efa8d387a7f2f852352ae9f5b9e4b8b86fedca2d2c254924a1e3
3
+ size 5780141753
train_gpt_xtts.py ADDED
@@ -0,0 +1,258 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import gc
3
+ import torch
4
+
5
+ from trainer import Trainer, TrainerArgs
6
+
7
+ from TTS.config.shared_configs import BaseDatasetConfig
8
+ from TTS.tts.datasets import load_tts_samples
9
+ from TTS.tts.layers.xtts.trainer.gpt_trainer import GPTArgs, GPTTrainer, GPTTrainerConfig, XttsAudioConfig
10
+ from TTS.utils.manage import ModelManager
11
+
12
+ from dataclasses import dataclass, field
13
+ from typing import Optional
14
+ from transformers import HfArgumentParser
15
+
16
+ import argparse
17
+
18
+
19
+ def create_xtts_trainer_parser():
20
+ parser = argparse.ArgumentParser(description="Arguments for XTTS Trainer")
21
+
22
+ parser.add_argument("--output_path", type=str, required=True,
23
+ help="Path to pretrained + checkpoint model")
24
+ parser.add_argument("--metadatas", nargs='+', type=str, required=True,
25
+ help="train_csv_path,eval_csv_path,language")
26
+ parser.add_argument("--num_epochs", type=int, default=1,
27
+ help="Number of epochs")
28
+ parser.add_argument("--batch_size", type=int, default=1,
29
+ help="Mini batch size")
30
+ parser.add_argument("--grad_acumm", type=int, default=1,
31
+ help="Grad accumulation steps")
32
+ parser.add_argument("--max_audio_length", type=int, default=255995,
33
+ help="Max audio length")
34
+ parser.add_argument("--max_text_length", type=int, default=200,
35
+ help="Max text length")
36
+ parser.add_argument("--weight_decay", type=float, default=1e-2,
37
+ help="Weight decay")
38
+ parser.add_argument("--lr", type=float, default=5e-6,
39
+ help="Learning rate")
40
+ parser.add_argument("--save_step", type=int, default=5000,
41
+ help="Save step")
42
+ parser.add_argument("--tf32_matmul", type=bool, default=False,
43
+ help="Enable or disable Torch TF32 MatMul")
44
+ parser.add_argument("--tf32_cudnn", type=bool, default=False,
45
+ help="Enable or disable Torch TF32 CUDNN")
46
+
47
+ return parser
48
+
49
+
50
+ def train_gpt(metadatas, num_epochs, batch_size, grad_acumm, output_path, max_audio_length, max_text_length, lr, weight_decay, save_step):
51
+ # Logging parameters
52
+ RUN_NAME = "GPT_XTTS_FT"
53
+ PROJECT_NAME = "XTTS_trainer"
54
+ DASHBOARD_LOGGER = "tensorboard"
55
+ LOGGER_URI = None
56
+
57
+ # Set here the path that the checkpoints will be saved. Default: ./run/training/
58
+ # OUT_PATH = os.path.join(output_path, "run", "training")
59
+ OUT_PATH = output_path
60
+
61
+ # Training Parameters
62
+ # for multi-gpu training please make it False
63
+ OPTIMIZER_WD_ONLY_ON_WEIGHTS = True
64
+ START_WITH_EVAL = False # if True it will star with evaluation
65
+ BATCH_SIZE = batch_size # set here the batch size
66
+ GRAD_ACUMM_STEPS = grad_acumm # set here the grad accumulation steps
67
+
68
+ # Define here the dataset that you want to use for the fine-tuning on.
69
+ DATASETS_CONFIG_LIST = []
70
+ for metadata in metadatas:
71
+ train_csv, eval_csv, language = metadata.split(",")
72
+ print(train_csv, eval_csv, language)
73
+
74
+ config_dataset = BaseDatasetConfig(
75
+ formatter="coqui",
76
+ dataset_name="ft_dataset",
77
+ path=os.path.dirname(train_csv),
78
+ meta_file_train=os.path.basename(train_csv),
79
+ meta_file_val=os.path.basename(eval_csv),
80
+ language=language,
81
+ )
82
+
83
+ DATASETS_CONFIG_LIST.append(config_dataset)
84
+
85
+ # Define the path where XTTS v2.0.1 files will be downloaded
86
+ CHECKPOINTS_OUT_PATH = os.path.join(
87
+ OUT_PATH, "XTTS_v2.0_original_model_files/")
88
+ os.makedirs(CHECKPOINTS_OUT_PATH, exist_ok=True)
89
+
90
+ # DVAE files
91
+ DVAE_CHECKPOINT_LINK = "https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v2/main/dvae.pth"
92
+ MEL_NORM_LINK = "https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v2/main/mel_stats.pth"
93
+
94
+ # Set the path to the downloaded files
95
+ DVAE_CHECKPOINT = os.path.join(
96
+ CHECKPOINTS_OUT_PATH, os.path.basename(DVAE_CHECKPOINT_LINK))
97
+ MEL_NORM_FILE = os.path.join(
98
+ CHECKPOINTS_OUT_PATH, os.path.basename(MEL_NORM_LINK))
99
+
100
+ # download DVAE files if needed
101
+ if not os.path.isfile(DVAE_CHECKPOINT) or not os.path.isfile(MEL_NORM_FILE):
102
+ print(" > Downloading DVAE files!")
103
+ ModelManager._download_model_files(
104
+ [MEL_NORM_LINK, DVAE_CHECKPOINT_LINK], CHECKPOINTS_OUT_PATH, progress_bar=True)
105
+
106
+ # Download XTTS v2.0 checkpoint if needed
107
+ TOKENIZER_FILE_LINK = "https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v2/main/vocab.json"
108
+ XTTS_CHECKPOINT_LINK = "https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v2/main/model.pth"
109
+ XTTS_CONFIG_LINK = "https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v2/main/config.json"
110
+
111
+ # XTTS transfer learning parameters: You we need to provide the paths of XTTS model checkpoint that you want to do the fine tuning.
112
+ TOKENIZER_FILE = os.path.join(CHECKPOINTS_OUT_PATH, os.path.basename(
113
+ TOKENIZER_FILE_LINK)) # vocab.json file
114
+ XTTS_CHECKPOINT = os.path.join(CHECKPOINTS_OUT_PATH, os.path.basename(
115
+ XTTS_CHECKPOINT_LINK)) # model.pth file
116
+ XTTS_CONFIG_FILE = os.path.join(
117
+ # config.json file
118
+ CHECKPOINTS_OUT_PATH, os.path.basename(XTTS_CONFIG_LINK))
119
+
120
+ # download XTTS v2.0 files if needed
121
+ if not os.path.isfile(TOKENIZER_FILE):
122
+ print(" > Downloading XTTS v2.0 tokenizer!")
123
+ ModelManager._download_model_files(
124
+ [TOKENIZER_FILE_LINK], CHECKPOINTS_OUT_PATH, progress_bar=True
125
+ )
126
+ if not os.path.isfile(XTTS_CHECKPOINT):
127
+ print(" > Downloading XTTS v2.0 checkpoint!")
128
+ ModelManager._download_model_files(
129
+ [XTTS_CHECKPOINT_LINK], CHECKPOINTS_OUT_PATH, progress_bar=True
130
+ )
131
+ if not os.path.isfile(XTTS_CONFIG_FILE):
132
+ print(" > Downloading XTTS v2.0 config!")
133
+ ModelManager._download_model_files(
134
+ [XTTS_CONFIG_LINK], CHECKPOINTS_OUT_PATH, progress_bar=True
135
+ )
136
+
137
+ # init args and config
138
+ model_args = GPTArgs(
139
+ max_conditioning_length=264600, # 12 secs
140
+ min_conditioning_length=88200, # 4 secs
141
+ debug_loading_failures=False,
142
+ max_wav_length=max_audio_length, # ~11.6 seconds
143
+ max_text_length=max_text_length,
144
+ mel_norm_file=MEL_NORM_FILE,
145
+ dvae_checkpoint=DVAE_CHECKPOINT,
146
+ # checkpoint path of the model that you want to fine-tune
147
+ xtts_checkpoint=XTTS_CHECKPOINT,
148
+ tokenizer_file=TOKENIZER_FILE,
149
+ gpt_num_audio_tokens=1026,
150
+ gpt_start_audio_token=1024,
151
+ gpt_stop_audio_token=1025,
152
+ gpt_use_masking_gt_prompt_approach=True,
153
+ gpt_use_perceiver_resampler=True,
154
+ )
155
+ # define audio config
156
+ audio_config = XttsAudioConfig(
157
+ sample_rate=22050, dvae_sample_rate=22050, output_sample_rate=24000)
158
+ # training parameters config
159
+
160
+ config = GPTTrainerConfig()
161
+
162
+ config.load_json(XTTS_CONFIG_FILE)
163
+
164
+ config.epochs = num_epochs
165
+ config.output_path = OUT_PATH
166
+ config.model_args = model_args
167
+ config.run_name = RUN_NAME
168
+ config.project_name = PROJECT_NAME
169
+ config.run_description = """
170
+ GPT XTTS training
171
+ """,
172
+ config.dashboard_logger = DASHBOARD_LOGGER
173
+ config.logger_uri = LOGGER_URI
174
+ config.audio = audio_config
175
+ config.batch_size = BATCH_SIZE
176
+ config.num_loader_workers = 4
177
+ config.eval_split_max_size = 256
178
+ config.print_step = 50
179
+ config.plot_step = 100
180
+ config.log_model_step = 100
181
+ config.save_step = save_step
182
+ config.save_n_checkpoints = 1
183
+ config.save_checkpoints = True
184
+ config.print_eval = False
185
+ config.optimizer = "AdamW"
186
+ config.optimizer_wd_only_on_weights = OPTIMIZER_WD_ONLY_ON_WEIGHTS
187
+ config.optimizer_params = {
188
+ "betas": [0.9, 0.96], "eps": 1e-8, "weight_decay": weight_decay}
189
+ config.lr = lr
190
+ config.lr_scheduler = "MultiStepLR"
191
+ config.lr_scheduler_params = {"milestones": [
192
+ save_step * 3, save_step * 3 * 2, save_step * 3 * 3], "gamma": 0.5, "last_epoch": -1}
193
+ config.test_sentences = []
194
+
195
+ # init the model from config
196
+ model = GPTTrainer.init_from_config(config)
197
+
198
+ # load training samples
199
+ train_samples, eval_samples = load_tts_samples(
200
+ DATASETS_CONFIG_LIST,
201
+ eval_split=True,
202
+ eval_split_max_size=config.eval_split_max_size,
203
+ eval_split_size=config.eval_split_size,
204
+ )
205
+
206
+ # init the trainer and 🚀
207
+ trainer = Trainer(
208
+ TrainerArgs(
209
+ restore_path=None, # xtts checkpoint is restored via xtts_checkpoint key so no need of restore it using Trainer restore_path parameter
210
+ skip_train_epoch=False,
211
+ start_with_eval=START_WITH_EVAL,
212
+ grad_accum_steps=GRAD_ACUMM_STEPS
213
+ ),
214
+ config,
215
+ # output_path=os.path.join(output_path, "run", "training"),
216
+ output_path=os.path.join(output_path),
217
+ model=model,
218
+ train_samples=train_samples,
219
+ eval_samples=eval_samples,
220
+ )
221
+ trainer.fit()
222
+
223
+ # get the longest text audio file to use as speaker reference
224
+ samples_len = [len(item["text"].split(" ")) for item in train_samples]
225
+ longest_text_idx = samples_len.index(max(samples_len))
226
+ speaker_ref = train_samples[longest_text_idx]["audio_file"]
227
+
228
+ trainer_out_path = trainer.output_path
229
+
230
+ # deallocate VRAM and RAM
231
+ del model, trainer, train_samples, eval_samples
232
+ gc.collect()
233
+
234
+ return trainer_out_path
235
+
236
+
237
+ if __name__ == "__main__":
238
+ parser = create_xtts_trainer_parser()
239
+ args = parser.parse_args()
240
+
241
+ # Set Torch TF32 MatMul and CUDNN based on the command line arguments
242
+ torch.backends.cuda.matmul.allow_tf32 = args.tf32_matmul
243
+ torch.backends.cudnn.allow_tf32 = args.tf32_cudnn
244
+
245
+ trainer_out_path = train_gpt(
246
+ metadatas=args.metadatas,
247
+ output_path=args.output_path,
248
+ num_epochs=args.num_epochs,
249
+ batch_size=args.batch_size,
250
+ grad_acumm=args.grad_acumm,
251
+ weight_decay=args.weight_decay,
252
+ lr=args.lr,
253
+ max_text_length=args.max_text_length,
254
+ max_audio_length=args.max_audio_length,
255
+ save_step=args.save_step
256
+ )
257
+
258
+ print(f"Checkpoint saved in dir: {trainer_out_path}")
trainer_0_log.txt ADDED
The diff for this file is too large to render. See raw diff
 
vocab.json ADDED
The diff for this file is too large to render. See raw diff