aravindhv10's picture
Routine updates
0010613
* COMMENT Sample
** Shell script to download
#+begin_src sh :shebang #!/bin/sh :results output :tangle ./download.sh
#+end_src
** MVANet_inference import
#+begin_src python :shebang #!/usr/bin/python3 :results output :tangle ./MVANet_inference.import.py
#+end_src
** MVANet_inference function
#+begin_src python :shebang #!/usr/bin/python3 :results output :tangle ./MVANet_inference.function.py
#+end_src
** MVANet_inference class
#+begin_src python :shebang #!/usr/bin/python3 :results output :tangle ./MVANet_inference.class.py
#+end_src
** MVANet_inference execute
#+begin_src python :shebang #!/usr/bin/python3 :results output :tangle ./MVANet_inference.execute.py
#+end_src
** MVANet_inference unify
#+begin_src sh :shebang #!/bin/sh :results output :tangle ./MVANet_inference.unify.sh
#+end_src
** MVANet_inference run
#+begin_src sh :shebang #!/bin/sh :results output :tangle ./MVANet_inference.run.sh
#+end_src
* Download the code:
** Function to download
#+begin_src sh :shebang #!/bin/sh :results output :tangle ./download.sh
get_repo(){
DIR_REPO="${HOME}/GITHUB/$('echo' "${1}" | 'sed' 's/^git@github.com://g ; s@^https://github.com/@@g ; s@.git$@@g' )"
DIR_BASE="$('dirname' '--' "${DIR_REPO}")"
mkdir -pv -- "${DIR_BASE}"
cd "${DIR_BASE}"
git clone "${1}"
cd "${DIR_REPO}"
git pull
git submodule update --recursive --init
}
#+end_src
** Download
#+begin_src sh :shebang #!/bin/sh :results output :tangle ./download.sh
get_repo 'https://github.com/qianyu-dlut/MVANet.git'
#+end_src
* Dependencies
pip3 install mmdet==2.23.0
pip3 install mmcv==1.4.8
pip3 install ttach
* Python inference
** Important configs
#+begin_src python :shebang #!/usr/bin/python3 :results output :tangle ./MVANet_inference.import.py
import os
import sys
HOME_DIR = os.environ.get('HOME', '/root')
MVANET_SOURCE_DIR = HOME_DIR + '/GITHUB/qianyu-dlut/MVANet'
finetuned_MVANet_model_path = MVANET_SOURCE_DIR + '/model/Model_80.pth'
pretrained_SwinB_model_path = MVANET_SOURCE_DIR + '/model/swin_base_patch4_window12_384_22kto1k.pth'
#+end_src
** MVANet_inference import
#+begin_src python :shebang #!/usr/bin/python3 :results output :tangle ./MVANet_inference.import.py
import math
import numpy as np
from PIL import Image
import time
# import ttach as tta
import cv2
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint as checkpoint
from torch.autograd import Variable
from torch import nn
from torchvision import transforms
from einops import rearrange
from timm.models import load_checkpoint
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
#+end_src
** Load image using CV
#+begin_src python :shebang #!/usr/bin/python3 :results output :tangle ./MVANet_inference.function.py
def load_image(input_image_path):
img = cv2.imread(input_image_path, cv2.IMREAD_COLOR)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
return img
def load_image_torch(input_image_path):
img = cv2.imread(input_image_path, cv2.IMREAD_COLOR)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img = torch.from_numpy(img)
img = img.to(dtype=torch.float32)
img /= 255.0
img = img.unsqueeze(0)
return img
def save_mask(output_image_path, mask):
cv2.imwrite(output_image_path, mask)
def save_mask_torch(output_image_path, mask):
mask = mask.detach().cpu()
mask *= 255.0
mask = mask.clamp(0, 255)
print(mask.shape)
mask = mask.squeeze(0)
mask = mask.to(dtype=torch.uint8)
print(mask.shape)
mask = mask.numpy()
print(mask.shape)
cv2.imwrite(output_image_path, mask)
#+end_src
** Device configs
#+begin_src python :shebang #!/usr/bin/python3 :results output :tangle ./MVANet_inference.execute.py
torch_device = 'cuda'
torch_dtype = torch.float16
#+end_src
to(dtype=torch_dtype, device=torch_device)
** MVANet_inference function
#+begin_src python :shebang #!/usr/bin/python3 :results output :tangle ./MVANet_inference.function.py
def check_mkdir(dir_name):
if not os.path.isdir(dir_name):
os.makedirs(dir_name)
def SwinT(pretrained=True):
model = SwinTransformer(embed_dim=96,
depths=[2, 2, 6, 2],
num_heads=[3, 6, 12, 24],
window_size=7)
if pretrained is True:
model.load_state_dict(torch.load(
'data/backbone_ckpt/swin_tiny_patch4_window7_224.pth',
map_location='cpu')['model'],
strict=False)
return model
def SwinS(pretrained=True):
model = SwinTransformer(embed_dim=96,
depths=[2, 2, 18, 2],
num_heads=[3, 6, 12, 24],
window_size=7)
if pretrained is True:
model.load_state_dict(torch.load(
'data/backbone_ckpt/swin_small_patch4_window7_224.pth',
map_location='cpu')['model'],
strict=False)
return model
def SwinB(pretrained=True):
model = SwinTransformer(embed_dim=128,
depths=[2, 2, 18, 2],
num_heads=[4, 8, 16, 32],
window_size=12)
if pretrained is True:
import os
model.load_state_dict(torch.load(pretrained_SwinB_model_path,
map_location='cpu')['model'],
strict=False)
return model
def SwinL(pretrained=True):
model = SwinTransformer(embed_dim=192,
depths=[2, 2, 18, 2],
num_heads=[6, 12, 24, 48],
window_size=12)
if pretrained is True:
model.load_state_dict(torch.load(
'data/backbone_ckpt/swin_large_patch4_window12_384_22kto1k.pth',
map_location='cpu')['model'],
strict=False)
return model
def get_activation_fn(activation):
"""Return an activation function given a string"""
if activation == "relu":
return F.relu
if activation == "gelu":
return F.gelu
if activation == "glu":
return F.glu
raise RuntimeError(F"activation should be relu/gelu, not {activation}.")
def make_cbr(in_dim, out_dim):
return nn.Sequential(nn.Conv2d(in_dim, out_dim, kernel_size=3, padding=1),
nn.BatchNorm2d(out_dim), nn.PReLU())
def make_cbg(in_dim, out_dim):
return nn.Sequential(nn.Conv2d(in_dim, out_dim, kernel_size=3, padding=1),
nn.BatchNorm2d(out_dim), nn.GELU())
def rescale_to(x, scale_factor: float = 2, interpolation='nearest'):
return F.interpolate(x, scale_factor=scale_factor, mode=interpolation)
def resize_as(x, y, interpolation='bilinear'):
return F.interpolate(x, size=y.shape[-2:], mode=interpolation)
def image2patches(x):
"""b c (hg h) (wg w) -> (hg wg b) c h w"""
x = rearrange(x, 'b c (hg h) (wg w) -> (hg wg b) c h w', hg=2, wg=2)
return x
def patches2image(x):
"""(hg wg b) c h w -> b c (hg h) (wg w)"""
x = rearrange(x, '(hg wg b) c h w -> b c (hg h) (wg w)', hg=2, wg=2)
return x
def window_partition(x, window_size):
"""
Args:
x: (B, H, W, C)
window_size (int): window size
Returns:
windows: (num_windows*B, window_size, window_size, C)
"""
B, H, W, C = x.shape
x = x.view(B, H // window_size, window_size, W // window_size, window_size,
C)
windows = x.permute(0, 1, 3, 2, 4,
5).contiguous().view(-1, window_size, window_size, C)
return windows
def window_reverse(windows, window_size, H, W):
"""
Args:
windows: (num_windows*B, window_size, window_size, C)
window_size (int): Window size
H (int): Height of image
W (int): Width of image
Returns:
x: (B, H, W, C)
"""
B = int(windows.shape[0] / (H * W / window_size / window_size))
x = windows.view(B, H // window_size, W // window_size, window_size,
window_size, -1)
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
return x
#+end_src
** MVANet_inference class
#+begin_src python :shebang #!/usr/bin/python3 :results output :tangle ./MVANet_inference.class.py
class Mlp(nn.Module):
""" Multilayer perceptron."""
def __init__(self,
in_features,
hidden_features=None,
out_features=None,
act_layer=nn.GELU,
drop=0.):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
class WindowAttention(nn.Module):
""" Window based multi-head self attention (W-MSA) module with relative position bias.
It supports both of shifted and non-shifted window.
Args:
dim (int): Number of input channels.
window_size (tuple[int]): The height and width of the window.
num_heads (int): Number of attention heads.
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set
attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
proj_drop (float, optional): Dropout ratio of output. Default: 0.0
"""
def __init__(self,
dim,
window_size,
num_heads,
qkv_bias=True,
qk_scale=None,
attn_drop=0.,
proj_drop=0.):
super().__init__()
self.dim = dim
self.window_size = window_size # Wh, Ww
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = qk_scale or head_dim**-0.5
# define a parameter table of relative position bias
self.relative_position_bias_table = nn.Parameter(
torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1),
num_heads)) # 2*Wh-1 * 2*Ww-1, nH
# get pair-wise relative position index for each token inside the window
coords_h = torch.arange(self.window_size[0])
coords_w = torch.arange(self.window_size[1])
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
relative_coords = coords_flatten[:, :,
None] - coords_flatten[:,
None, :] # 2, Wh*Ww, Wh*Ww
relative_coords = relative_coords.permute(
1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
relative_coords[:, :,
0] += self.window_size[0] - 1 # shift to start from 0
relative_coords[:, :, 1] += self.window_size[1] - 1
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
self.register_buffer("relative_position_index",
relative_position_index)
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
trunc_normal_(self.relative_position_bias_table, std=.02)
self.softmax = nn.Softmax(dim=-1)
def forward(self, x, mask=None):
""" Forward function.
Args:
x: input features with shape of (num_windows*B, N, C)
mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
"""
x = x.to(dtype=torch_dtype, device=torch_device)
B_, N, C = x.shape
qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads,
C // self.num_heads).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[
2] # make torchscript happy (cannot use tensor as tuple)
q = q * self.scale
attn = (q @ k.transpose(-2, -1))
relative_position_bias = self.relative_position_bias_table[
self.relative_position_index.view(-1)].view(
self.window_size[0] * self.window_size[1],
self.window_size[0] * self.window_size[1],
-1) # Wh*Ww,Wh*Ww,nH
relative_position_bias = relative_position_bias.permute(
2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
attn = attn + relative_position_bias.unsqueeze(0)
if mask is not None:
nW = mask.shape[0]
attn = attn.view(B_ // nW, nW, self.num_heads, N,
N) + mask.unsqueeze(1).unsqueeze(0)
attn = attn.view(-1, self.num_heads, N, N)
attn = self.softmax(attn)
else:
attn = self.softmax(attn)
attn = self.attn_drop(attn)
attn = attn.to(dtype=torch_dtype, device=torch_device)
v = v.to(dtype=torch_dtype, device=torch_device)
x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
class SwinTransformerBlock(nn.Module):
""" Swin Transformer Block.
Args:
dim (int): Number of input channels.
num_heads (int): Number of attention heads.
window_size (int): Window size.
shift_size (int): Shift size for SW-MSA.
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
drop (float, optional): Dropout rate. Default: 0.0
attn_drop (float, optional): Attention dropout rate. Default: 0.0
drop_path (float, optional): Stochastic depth rate. Default: 0.0
act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
"""
def __init__(self,
dim,
num_heads,
window_size=7,
shift_size=0,
mlp_ratio=4.,
qkv_bias=True,
qk_scale=None,
drop=0.,
attn_drop=0.,
drop_path=0.,
act_layer=nn.GELU,
norm_layer=nn.LayerNorm):
super().__init__()
self.dim = dim
self.num_heads = num_heads
self.window_size = window_size
self.shift_size = shift_size
self.mlp_ratio = mlp_ratio
assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size"
self.norm1 = norm_layer(dim)
self.attn = WindowAttention(dim,
window_size=to_2tuple(self.window_size),
num_heads=num_heads,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
attn_drop=attn_drop,
proj_drop=drop)
self.drop_path = DropPath(
drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim,
hidden_features=mlp_hidden_dim,
act_layer=act_layer,
drop=drop)
self.H = None
self.W = None
def forward(self, x, mask_matrix):
""" Forward function.
Args:
x: Input feature, tensor size (B, H*W, C).
H, W: Spatial resolution of the input feature.
mask_matrix: Attention mask for cyclic shift.
"""
B, L, C = x.shape
H, W = self.H, self.W
assert L == H * W, "input feature has wrong size"
shortcut = x
x = self.norm1(x)
x = x.view(B, H, W, C)
# pad feature maps to multiples of window size
pad_l = pad_t = 0
pad_r = (self.window_size - W % self.window_size) % self.window_size
pad_b = (self.window_size - H % self.window_size) % self.window_size
x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b))
_, Hp, Wp, _ = x.shape
# cyclic shift
if self.shift_size > 0:
shifted_x = torch.roll(x,
shifts=(-self.shift_size, -self.shift_size),
dims=(1, 2))
attn_mask = mask_matrix
else:
shifted_x = x
attn_mask = None
# partition windows
x_windows = window_partition(
shifted_x, self.window_size) # nW*B, window_size, window_size, C
x_windows = x_windows.view(-1, self.window_size * self.window_size,
C) # nW*B, window_size*window_size, C
# W-MSA/SW-MSA
attn_windows = self.attn(
x_windows, mask=attn_mask) # nW*B, window_size*window_size, C
# merge windows
attn_windows = attn_windows.view(-1, self.window_size,
self.window_size, C)
shifted_x = window_reverse(attn_windows, self.window_size, Hp,
Wp) # B H' W' C
# reverse cyclic shift
if self.shift_size > 0:
x = torch.roll(shifted_x,
shifts=(self.shift_size, self.shift_size),
dims=(1, 2))
else:
x = shifted_x
if pad_r > 0 or pad_b > 0:
x = x[:, :H, :W, :].contiguous()
x = x.view(B, H * W, C)
# FFN
x = shortcut + self.drop_path(x)
x = x + self.drop_path(self.mlp(self.norm2(x)))
return x
class PatchMerging(nn.Module):
""" Patch Merging Layer
Args:
dim (int): Number of input channels.
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
"""
def __init__(self, dim, norm_layer=nn.LayerNorm):
super().__init__()
self.dim = dim
self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
self.norm = norm_layer(4 * dim)
def forward(self, x, H, W):
""" Forward function.
Args:
x: Input feature, tensor size (B, H*W, C).
H, W: Spatial resolution of the input feature.
"""
B, L, C = x.shape
assert L == H * W, "input feature has wrong size"
x = x.view(B, H, W, C)
# padding
pad_input = (H % 2 == 1) or (W % 2 == 1)
if pad_input:
x = F.pad(x, (0, 0, 0, W % 2, 0, H % 2))
x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C
x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C
x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C
x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C
x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C
x = x.view(B, -1, 4 * C) # B H/2*W/2 4*C
x = self.norm(x)
x = self.reduction(x)
return x
class BasicLayer(nn.Module):
""" A basic Swin Transformer layer for one stage.
Args:
dim (int): Number of feature channels
depth (int): Depths of this stage.
num_heads (int): Number of attention head.
window_size (int): Local window size. Default: 7.
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
drop (float, optional): Dropout rate. Default: 0.0
attn_drop (float, optional): Attention dropout rate. Default: 0.0
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
"""
def __init__(self,
dim,
depth,
num_heads,
window_size=7,
mlp_ratio=4.,
qkv_bias=True,
qk_scale=None,
drop=0.,
attn_drop=0.,
drop_path=0.,
norm_layer=nn.LayerNorm,
downsample=None,
use_checkpoint=False):
super().__init__()
self.window_size = window_size
self.shift_size = window_size // 2
self.depth = depth
self.use_checkpoint = use_checkpoint
# build blocks
self.blocks = nn.ModuleList([
SwinTransformerBlock(dim=dim,
num_heads=num_heads,
window_size=window_size,
shift_size=0 if
(i % 2 == 0) else window_size // 2,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
drop=drop,
attn_drop=attn_drop,
drop_path=drop_path[i] if isinstance(
drop_path, list) else drop_path,
norm_layer=norm_layer) for i in range(depth)
])
# patch merging layer
if downsample is not None:
self.downsample = downsample(dim=dim, norm_layer=norm_layer)
else:
self.downsample = None
def forward(self, x, H, W):
""" Forward function.
Args:
x: Input feature, tensor size (B, H*W, C).
H, W: Spatial resolution of the input feature.
"""
# calculate attention mask for SW-MSA
Hp = int(np.ceil(H / self.window_size)) * self.window_size
Wp = int(np.ceil(W / self.window_size)) * self.window_size
img_mask = torch.zeros((1, Hp, Wp, 1), device=x.device) # 1 Hp Wp 1
h_slices = (slice(0, -self.window_size),
slice(-self.window_size,
-self.shift_size), slice(-self.shift_size, None))
w_slices = (slice(0, -self.window_size),
slice(-self.window_size,
-self.shift_size), slice(-self.shift_size, None))
cnt = 0
for h in h_slices:
for w in w_slices:
img_mask[:, h, w, :] = cnt
cnt += 1
mask_windows = window_partition(
img_mask, self.window_size) # nW, window_size, window_size, 1
mask_windows = mask_windows.view(-1,
self.window_size * self.window_size)
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
attn_mask = attn_mask.masked_fill(attn_mask != 0,
float(-100.0)).masked_fill(
attn_mask == 0, float(0.0))
for blk in self.blocks:
blk.H, blk.W = H, W
if self.use_checkpoint:
x = checkpoint.checkpoint(blk, x, attn_mask)
else:
x = blk(x, attn_mask)
if self.downsample is not None:
x_down = self.downsample(x, H, W)
Wh, Ww = (H + 1) // 2, (W + 1) // 2
return x, H, W, x_down, Wh, Ww
else:
return x, H, W, x, H, W
class PatchEmbed(nn.Module):
""" Image to Patch Embedding
Args:
patch_size (int): Patch token size. Default: 4.
in_chans (int): Number of input image channels. Default: 3.
embed_dim (int): Number of linear projection output channels. Default: 96.
norm_layer (nn.Module, optional): Normalization layer. Default: None
"""
def __init__(self,
patch_size=4,
in_chans=3,
embed_dim=96,
norm_layer=None):
super().__init__()
patch_size = to_2tuple(patch_size)
self.patch_size = patch_size
self.in_chans = in_chans
self.embed_dim = embed_dim
self.proj = nn.Conv2d(in_chans,
embed_dim,
kernel_size=patch_size,
stride=patch_size)
if norm_layer is not None:
self.norm = norm_layer(embed_dim)
else:
self.norm = None
def forward(self, x):
"""Forward function."""
# padding
_, _, H, W = x.size()
if W % self.patch_size[1] != 0:
x = F.pad(x, (0, self.patch_size[1] - W % self.patch_size[1]))
if H % self.patch_size[0] != 0:
x = F.pad(x,
(0, 0, 0, self.patch_size[0] - H % self.patch_size[0]))
x = self.proj(x) # B C Wh Ww
if self.norm is not None:
Wh, Ww = x.size(2), x.size(3)
x = x.flatten(2).transpose(1, 2)
x = self.norm(x)
x = x.transpose(1, 2).view(-1, self.embed_dim, Wh, Ww)
return x
class SwinTransformer(nn.Module):
""" Swin Transformer backbone.
A PyTorch impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows` -
https://arxiv.org/pdf/2103.14030
Args:
pretrain_img_size (int): Input image size for training the pretrained model,
used in absolute postion embedding. Default 224.
patch_size (int | tuple(int)): Patch size. Default: 4.
in_chans (int): Number of input image channels. Default: 3.
embed_dim (int): Number of linear projection output channels. Default: 96.
depths (tuple[int]): Depths of each Swin Transformer stage.
num_heads (tuple[int]): Number of attention head of each stage.
window_size (int): Window size. Default: 7.
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.
qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
qk_scale (float): Override default qk scale of head_dim ** -0.5 if set.
drop_rate (float): Dropout rate.
attn_drop_rate (float): Attention dropout rate. Default: 0.
drop_path_rate (float): Stochastic depth rate. Default: 0.2.
norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
ape (bool): If True, add absolute position embedding to the patch embedding. Default: False.
patch_norm (bool): If True, add normalization after patch embedding. Default: True.
out_indices (Sequence[int]): Output from which stages.
frozen_stages (int): Stages to be frozen (stop grad and set eval mode).
-1 means not freezing any parameters.
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
"""
def __init__(self,
pretrain_img_size=224,
patch_size=4,
in_chans=3,
embed_dim=96,
depths=[2, 2, 6, 2],
num_heads=[3, 6, 12, 24],
window_size=7,
mlp_ratio=4.,
qkv_bias=True,
qk_scale=None,
drop_rate=0.,
attn_drop_rate=0.,
drop_path_rate=0.2,
norm_layer=nn.LayerNorm,
ape=False,
patch_norm=True,
out_indices=(0, 1, 2, 3),
frozen_stages=-1,
use_checkpoint=False):
super().__init__()
self.pretrain_img_size = pretrain_img_size
self.num_layers = len(depths)
self.embed_dim = embed_dim
self.ape = ape
self.patch_norm = patch_norm
self.out_indices = out_indices
self.frozen_stages = frozen_stages
# split image into non-overlapping patches
self.patch_embed = PatchEmbed(
patch_size=patch_size,
in_chans=in_chans,
embed_dim=embed_dim,
norm_layer=norm_layer if self.patch_norm else None)
# absolute position embedding
if self.ape:
pretrain_img_size = to_2tuple(pretrain_img_size)
patch_size = to_2tuple(patch_size)
patches_resolution = [
pretrain_img_size[0] // patch_size[0],
pretrain_img_size[1] // patch_size[1]
]
self.absolute_pos_embed = nn.Parameter(
torch.zeros(1, embed_dim, patches_resolution[0],
patches_resolution[1]))
trunc_normal_(self.absolute_pos_embed, std=.02)
self.pos_drop = nn.Dropout(p=drop_rate)
# stochastic depth
dpr = [
x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))
] # stochastic depth decay rule
# build layers
self.layers = nn.ModuleList()
for i_layer in range(self.num_layers):
layer = BasicLayer(
dim=int(embed_dim * 2**i_layer),
depth=depths[i_layer],
num_heads=num_heads[i_layer],
window_size=window_size,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
drop=drop_rate,
attn_drop=attn_drop_rate,
drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])],
norm_layer=norm_layer,
downsample=PatchMerging if
(i_layer < self.num_layers - 1) else None,
use_checkpoint=use_checkpoint)
self.layers.append(layer)
num_features = [int(embed_dim * 2**i) for i in range(self.num_layers)]
self.num_features = num_features
# add a norm layer for each output
for i_layer in out_indices:
layer = norm_layer(num_features[i_layer])
layer_name = f'norm{i_layer}'
self.add_module(layer_name, layer)
self._freeze_stages()
def _freeze_stages(self):
if self.frozen_stages >= 0:
self.patch_embed.eval()
for param in self.patch_embed.parameters():
param.requires_grad = False
if self.frozen_stages >= 1 and self.ape:
self.absolute_pos_embed.requires_grad = False
if self.frozen_stages >= 2:
self.pos_drop.eval()
for i in range(0, self.frozen_stages - 1):
m = self.layers[i]
m.eval()
for param in m.parameters():
param.requires_grad = False
def init_weights(self, pretrained=None):
"""Initialize the weights in backbone.
Args:
pretrained (str, optional): Path to pre-trained weights.
Defaults to None.
"""
def _init_weights(m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
if isinstance(pretrained, str):
self.apply(_init_weights)
load_checkpoint(self, pretrained, strict=False, logger=None)
elif pretrained is None:
self.apply(_init_weights)
else:
raise TypeError('pretrained must be a str or None')
def forward(self, x):
x = self.patch_embed(x)
Wh, Ww = x.size(2), x.size(3)
if self.ape:
# interpolate the position embedding to the corresponding size
absolute_pos_embed = F.interpolate(self.absolute_pos_embed,
size=(Wh, Ww),
mode='bicubic')
x = (x + absolute_pos_embed) # B Wh*Ww C
outs = [x.contiguous()]
x = x.flatten(2).transpose(1, 2)
x = self.pos_drop(x)
for i in range(self.num_layers):
layer = self.layers[i]
x_out, H, W, x, Wh, Ww = layer(x, Wh, Ww)
if i in self.out_indices:
norm_layer = getattr(self, f'norm{i}')
x_out = norm_layer(x_out)
out = x_out.view(-1, H, W,
self.num_features[i]).permute(0, 3, 1,
2).contiguous()
outs.append(out)
return tuple(outs)
def train(self, mode=True):
"""Convert the model into training mode while keep layers freezed."""
super(SwinTransformer, self).train(mode)
self._freeze_stages()
class PositionEmbeddingSine:
def __init__(self,
num_pos_feats=64,
temperature=10000,
normalize=False,
scale=None):
super().__init__()
self.num_pos_feats = num_pos_feats
self.temperature = temperature
self.normalize = normalize
if scale is not None and normalize is False:
raise ValueError("normalize should be True if scale is passed")
if scale is None:
scale = 2 * math.pi
self.scale = scale
self.dim_t = torch.arange(0,
self.num_pos_feats,
dtype=torch_dtype,
device=torch_device)
def __call__(self, b, h, w):
mask = torch.zeros([b, h, w], dtype=torch.bool, device=torch_device)
assert mask is not None
not_mask = ~mask
y_embed = not_mask.cumsum(dim=1, dtype=torch_dtype)
x_embed = not_mask.cumsum(dim=2, dtype=torch_dtype)
if self.normalize:
eps = 1e-6
y_embed = ((y_embed - 0.5) / (y_embed[:, -1:, :] + eps) *
self.scale).to(device=torch_device, dtype=torch_dtype)
x_embed = ((x_embed - 0.5) / (x_embed[:, :, -1:] + eps) *
self.scale).to(device=torch_device, dtype=torch_dtype)
dim_t = self.temperature**(2 * (self.dim_t // 2) / self.num_pos_feats)
pos_x = x_embed[:, :, :, None] / dim_t
pos_y = y_embed[:, :, :, None] / dim_t
pos_x = torch.stack(
(pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()),
dim=4).flatten(3)
pos_y = torch.stack(
(pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()),
dim=4).flatten(3)
return torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2)
class MCLM(nn.Module):
def __init__(self, d_model, num_heads, pool_ratios=[1, 4, 8]):
super(MCLM, self).__init__()
self.attention = nn.ModuleList([
nn.MultiheadAttention(d_model, num_heads, dropout=0.1),
nn.MultiheadAttention(d_model, num_heads, dropout=0.1),
nn.MultiheadAttention(d_model, num_heads, dropout=0.1),
nn.MultiheadAttention(d_model, num_heads, dropout=0.1),
nn.MultiheadAttention(d_model, num_heads, dropout=0.1)
])
self.linear1 = nn.Linear(d_model, d_model * 2)
self.linear2 = nn.Linear(d_model * 2, d_model)
self.linear3 = nn.Linear(d_model, d_model * 2)
self.linear4 = nn.Linear(d_model * 2, d_model)
self.norm1 = nn.LayerNorm(d_model)
self.norm2 = nn.LayerNorm(d_model)
self.dropout = nn.Dropout(0.1)
self.dropout1 = nn.Dropout(0.1)
self.dropout2 = nn.Dropout(0.1)
self.activation = get_activation_fn('relu')
self.pool_ratios = pool_ratios
self.p_poses = []
self.g_pos = None
self.positional_encoding = PositionEmbeddingSine(
num_pos_feats=d_model // 2, normalize=True)
def forward(self, l, g):
"""
l: 4,c,h,w
g: 1,c,h,w
"""
b, c, h, w = l.size()
# 4,c,h,w -> 1,c,2h,2w
concated_locs = rearrange(l,
'(hg wg b) c h w -> b c (hg h) (wg w)',
hg=2,
wg=2)
pools = []
for pool_ratio in self.pool_ratios:
# b,c,h,w
tgt_hw = (round(h / pool_ratio), round(w / pool_ratio))
pool = F.adaptive_avg_pool2d(concated_locs, tgt_hw)
pools.append(rearrange(pool, 'b c h w -> (h w) b c'))
if self.g_pos is None:
pos_emb = self.positional_encoding(pool.shape[0],
pool.shape[2],
pool.shape[3])
pos_emb = rearrange(pos_emb, 'b c h w -> (h w) b c')
self.p_poses.append(pos_emb)
pools = torch.cat(pools, 0)
if self.g_pos is None:
self.p_poses = torch.cat(self.p_poses, dim=0)
pos_emb = self.positional_encoding(g.shape[0], g.shape[2],
g.shape[3])
self.g_pos = rearrange(pos_emb, 'b c h w -> (h w) b c')
# attention between glb (q) & multisensory concated-locs (k,v)
g_hw_b_c = rearrange(g, 'b c h w -> (h w) b c')
g_hw_b_c = g_hw_b_c + self.dropout1(self.attention[0](
g_hw_b_c + self.g_pos, pools + self.p_poses, pools)[0])
g_hw_b_c = self.norm1(g_hw_b_c)
g_hw_b_c = g_hw_b_c + self.dropout2(
self.linear2(
self.dropout(self.activation(self.linear1(g_hw_b_c)).clone())))
g_hw_b_c = self.norm2(g_hw_b_c)
# attention between origin locs (q) & freashed glb (k,v)
l_hw_b_c = rearrange(l, "b c h w -> (h w) b c")
_g_hw_b_c = rearrange(g_hw_b_c, '(h w) b c -> h w b c', h=h, w=w)
_g_hw_b_c = rearrange(_g_hw_b_c,
"(ng h) (nw w) b c -> (h w) (ng nw b) c",
ng=2,
nw=2)
outputs_re = []
for i, (_l, _g) in enumerate(
zip(l_hw_b_c.chunk(4, dim=1), _g_hw_b_c.chunk(4, dim=1))):
outputs_re.append(self.attention[i + 1](_l, _g,
_g)[0]) # (h w) 1 c
outputs_re = torch.cat(outputs_re, 1) # (h w) 4 c
l_hw_b_c = l_hw_b_c + self.dropout1(outputs_re)
l_hw_b_c = self.norm1(l_hw_b_c)
l_hw_b_c = l_hw_b_c + self.dropout2(
self.linear4(
self.dropout(self.activation(self.linear3(l_hw_b_c)).clone())))
l_hw_b_c = self.norm2(l_hw_b_c)
l = torch.cat((l_hw_b_c, g_hw_b_c), 1) # hw,b(5),c
return rearrange(l, "(h w) b c -> b c h w", h=h, w=w) ## (5,c,h*w)
class inf_MCLM(nn.Module):
def __init__(self, d_model, num_heads, pool_ratios=[1, 4, 8]):
super(inf_MCLM, self).__init__()
self.attention = nn.ModuleList([
nn.MultiheadAttention(d_model, num_heads, dropout=0.1),
nn.MultiheadAttention(d_model, num_heads, dropout=0.1),
nn.MultiheadAttention(d_model, num_heads, dropout=0.1),
nn.MultiheadAttention(d_model, num_heads, dropout=0.1),
nn.MultiheadAttention(d_model, num_heads, dropout=0.1)
])
self.linear1 = nn.Linear(d_model, d_model * 2)
self.linear2 = nn.Linear(d_model * 2, d_model)
self.linear3 = nn.Linear(d_model, d_model * 2)
self.linear4 = nn.Linear(d_model * 2, d_model)
self.norm1 = nn.LayerNorm(d_model)
self.norm2 = nn.LayerNorm(d_model)
self.dropout = nn.Dropout(0.1)
self.dropout1 = nn.Dropout(0.1)
self.dropout2 = nn.Dropout(0.1)
self.activation = get_activation_fn('relu')
self.pool_ratios = pool_ratios
self.p_poses = []
self.g_pos = None
self.positional_encoding = PositionEmbeddingSine(
num_pos_feats=d_model // 2, normalize=True)
def forward(self, l, g):
"""
l: 4,c,h,w
g: 1,c,h,w
"""
b, c, h, w = l.size()
# 4,c,h,w -> 1,c,2h,2w
concated_locs = rearrange(l,
'(hg wg b) c h w -> b c (hg h) (wg w)',
hg=2,
wg=2)
self.p_poses = []
pools = []
for pool_ratio in self.pool_ratios:
# b,c,h,w
tgt_hw = (round(h / pool_ratio), round(w / pool_ratio))
pool = F.adaptive_avg_pool2d(concated_locs, tgt_hw)
pools.append(rearrange(pool, 'b c h w -> (h w) b c'))
# if self.g_pos is None:
pos_emb = self.positional_encoding(pool.shape[0], pool.shape[2],
pool.shape[3])
pos_emb = rearrange(pos_emb, 'b c h w -> (h w) b c')
self.p_poses.append(pos_emb)
pools = torch.cat(pools, 0)
# if self.g_pos is None:
self.p_poses = torch.cat(self.p_poses, dim=0)
pos_emb = self.positional_encoding(g.shape[0], g.shape[2], g.shape[3])
self.g_pos = rearrange(pos_emb, 'b c h w -> (h w) b c')
# attention between glb (q) & multisensory concated-locs (k,v)
g_hw_b_c = rearrange(g, 'b c h w -> (h w) b c')
g_hw_b_c = g_hw_b_c + self.dropout1(self.attention[0](
g_hw_b_c + self.g_pos, pools + self.p_poses, pools)[0])
g_hw_b_c = self.norm1(g_hw_b_c)
g_hw_b_c = g_hw_b_c + self.dropout2(
self.linear2(
self.dropout(self.activation(self.linear1(g_hw_b_c)).clone())))
g_hw_b_c = self.norm2(g_hw_b_c)
# attention between origin locs (q) & freashed glb (k,v)
l_hw_b_c = rearrange(l, "b c h w -> (h w) b c")
_g_hw_b_c = rearrange(g_hw_b_c, '(h w) b c -> h w b c', h=h, w=w)
_g_hw_b_c = rearrange(_g_hw_b_c,
"(ng h) (nw w) b c -> (h w) (ng nw b) c",
ng=2,
nw=2)
outputs_re = []
for i, (_l, _g) in enumerate(
zip(l_hw_b_c.chunk(4, dim=1), _g_hw_b_c.chunk(4, dim=1))):
outputs_re.append(self.attention[i + 1](_l, _g,
_g)[0]) # (h w) 1 c
outputs_re = torch.cat(outputs_re, 1) # (h w) 4 c
l_hw_b_c = l_hw_b_c + self.dropout1(outputs_re)
l_hw_b_c = self.norm1(l_hw_b_c)
l_hw_b_c = l_hw_b_c + self.dropout2(
self.linear4(
self.dropout(self.activation(self.linear3(l_hw_b_c)).clone())))
l_hw_b_c = self.norm2(l_hw_b_c)
l = torch.cat((l_hw_b_c, g_hw_b_c), 1) # hw,b(5),c
return rearrange(l, "(h w) b c -> b c h w", h=h, w=w) ## (5,c,h*w)
class MCRM(nn.Module):
def __init__(self, d_model, num_heads, pool_ratios=[4, 8, 16], h=None):
super(MCRM, self).__init__()
self.attention = nn.ModuleList([
nn.MultiheadAttention(d_model, num_heads, dropout=0.1),
nn.MultiheadAttention(d_model, num_heads, dropout=0.1),
nn.MultiheadAttention(d_model, num_heads, dropout=0.1),
nn.MultiheadAttention(d_model, num_heads, dropout=0.1)
])
self.linear3 = nn.Linear(d_model, d_model * 2)
self.linear4 = nn.Linear(d_model * 2, d_model)
self.norm1 = nn.LayerNorm(d_model)
self.norm2 = nn.LayerNorm(d_model)
self.dropout = nn.Dropout(0.1)
self.dropout1 = nn.Dropout(0.1)
self.dropout2 = nn.Dropout(0.1)
self.sigmoid = nn.Sigmoid()
self.activation = get_activation_fn('relu')
self.sal_conv = nn.Conv2d(d_model, 1, 1)
self.pool_ratios = pool_ratios
self.positional_encoding = PositionEmbeddingSine(
num_pos_feats=d_model // 2, normalize=True)
def forward(self, x):
b, c, h, w = x.size()
loc, glb = x.split([4, 1], dim=0) # 4,c,h,w; 1,c,h,w
# b(4),c,h,w
patched_glb = rearrange(glb,
'b c (hg h) (wg w) -> (hg wg b) c h w',
hg=2,
wg=2)
# generate token attention map
token_attention_map = self.sigmoid(self.sal_conv(glb))
token_attention_map = F.interpolate(token_attention_map,
size=patches2image(loc).shape[-2:],
mode='nearest')
loc = loc * rearrange(token_attention_map,
'b c (hg h) (wg w) -> (hg wg b) c h w',
hg=2,
wg=2)
pools = []
for pool_ratio in self.pool_ratios:
tgt_hw = (round(h / pool_ratio), round(w / pool_ratio))
pool = F.adaptive_avg_pool2d(patched_glb, tgt_hw)
pools.append(rearrange(pool,
'nl c h w -> nl c (h w)')) # nl(4),c,hw
# nl(4),c,nphw -> nl(4),nphw,1,c
pools = rearrange(torch.cat(pools, 2), "nl c nphw -> nl nphw 1 c")
loc_ = rearrange(loc, 'nl c h w -> nl (h w) 1 c')
outputs = []
for i, q in enumerate(
loc_.unbind(dim=0)): # traverse all local patches
# np*hw,1,c
v = pools[i]
k = v
outputs.append(self.attention[i](q, k, v)[0])
outputs = torch.cat(outputs, 1)
src = loc.view(4, c, -1).permute(2, 0, 1) + self.dropout1(outputs)
src = self.norm1(src)
src = src + self.dropout2(
self.linear4(
self.dropout(self.activation(self.linear3(src)).clone())))
src = self.norm2(src)
src = src.permute(1, 2, 0).reshape(4, c, h, w) # freshed loc
glb = glb + F.interpolate(patches2image(src),
size=glb.shape[-2:],
mode='nearest') # freshed glb
return torch.cat((src, glb), 0), token_attention_map
class inf_MCRM(nn.Module):
def __init__(self, d_model, num_heads, pool_ratios=[4, 8, 16], h=None):
super(inf_MCRM, self).__init__()
self.attention = nn.ModuleList([
nn.MultiheadAttention(d_model, num_heads, dropout=0.1),
nn.MultiheadAttention(d_model, num_heads, dropout=0.1),
nn.MultiheadAttention(d_model, num_heads, dropout=0.1),
nn.MultiheadAttention(d_model, num_heads, dropout=0.1)
])
self.linear3 = nn.Linear(d_model, d_model * 2)
self.linear4 = nn.Linear(d_model * 2, d_model)
self.norm1 = nn.LayerNorm(d_model)
self.norm2 = nn.LayerNorm(d_model)
self.dropout = nn.Dropout(0.1)
self.dropout1 = nn.Dropout(0.1)
self.dropout2 = nn.Dropout(0.1)
self.sigmoid = nn.Sigmoid()
self.activation = get_activation_fn('relu')
self.sal_conv = nn.Conv2d(d_model, 1, 1)
self.pool_ratios = pool_ratios
self.positional_encoding = PositionEmbeddingSine(
num_pos_feats=d_model // 2, normalize=True)
def forward(self, x):
b, c, h, w = x.size()
loc, glb = x.split([4, 1], dim=0) # 4,c,h,w; 1,c,h,w
# b(4),c,h,w
patched_glb = rearrange(glb,
'b c (hg h) (wg w) -> (hg wg b) c h w',
hg=2,
wg=2)
# generate token attention map
token_attention_map = self.sigmoid(self.sal_conv(glb))
token_attention_map = F.interpolate(token_attention_map,
size=patches2image(loc).shape[-2:],
mode='nearest')
loc = loc * rearrange(token_attention_map,
'b c (hg h) (wg w) -> (hg wg b) c h w',
hg=2,
wg=2)
pools = []
for pool_ratio in self.pool_ratios:
tgt_hw = (round(h / pool_ratio), round(w / pool_ratio))
pool = F.adaptive_avg_pool2d(patched_glb, tgt_hw)
pools.append(rearrange(pool,
'nl c h w -> nl c (h w)')) # nl(4),c,hw
# nl(4),c,nphw -> nl(4),nphw,1,c
pools = rearrange(torch.cat(pools, 2), "nl c nphw -> nl nphw 1 c")
loc_ = rearrange(loc, 'nl c h w -> nl (h w) 1 c')
outputs = []
for i, q in enumerate(
loc_.unbind(dim=0)): # traverse all local patches
# np*hw,1,c
v = pools[i]
k = v
outputs.append(self.attention[i](q, k, v)[0])
outputs = torch.cat(outputs, 1)
src = loc.view(4, c, -1).permute(2, 0, 1) + self.dropout1(outputs)
src = self.norm1(src)
src = src + self.dropout2(
self.linear4(
self.dropout(self.activation(self.linear3(src)).clone())))
src = self.norm2(src)
src = src.permute(1, 2, 0).reshape(4, c, h, w) # freshed loc
glb = glb + F.interpolate(patches2image(src),
size=glb.shape[-2:],
mode='nearest') # freshed glb
return torch.cat((src, glb), 0)
# model for single-scale training
class MVANet(nn.Module):
def __init__(self):
super().__init__()
self.backbone = SwinB(pretrained=True)
emb_dim = 128
self.sideout5 = nn.Sequential(
nn.Conv2d(emb_dim, 1, kernel_size=3, padding=1))
self.sideout4 = nn.Sequential(
nn.Conv2d(emb_dim, 1, kernel_size=3, padding=1))
self.sideout3 = nn.Sequential(
nn.Conv2d(emb_dim, 1, kernel_size=3, padding=1))
self.sideout2 = nn.Sequential(
nn.Conv2d(emb_dim, 1, kernel_size=3, padding=1))
self.sideout1 = nn.Sequential(
nn.Conv2d(emb_dim, 1, kernel_size=3, padding=1))
self.output5 = make_cbr(1024, emb_dim)
self.output4 = make_cbr(512, emb_dim)
self.output3 = make_cbr(256, emb_dim)
self.output2 = make_cbr(128, emb_dim)
self.output1 = make_cbr(128, emb_dim)
self.multifieldcrossatt = MCLM(emb_dim, 1, [1, 4, 8])
self.conv1 = make_cbr(emb_dim, emb_dim)
self.conv2 = make_cbr(emb_dim, emb_dim)
self.conv3 = make_cbr(emb_dim, emb_dim)
self.conv4 = make_cbr(emb_dim, emb_dim)
self.dec_blk1 = MCRM(emb_dim, 1, [2, 4, 8])
self.dec_blk2 = MCRM(emb_dim, 1, [2, 4, 8])
self.dec_blk3 = MCRM(emb_dim, 1, [2, 4, 8])
self.dec_blk4 = MCRM(emb_dim, 1, [2, 4, 8])
self.insmask_head = nn.Sequential(
nn.Conv2d(emb_dim, 384, kernel_size=3, padding=1),
nn.BatchNorm2d(384), nn.PReLU(),
nn.Conv2d(384, 384, kernel_size=3, padding=1), nn.BatchNorm2d(384),
nn.PReLU(), nn.Conv2d(384, emb_dim, kernel_size=3, padding=1))
self.shallow = nn.Sequential(
nn.Conv2d(3, emb_dim, kernel_size=3, padding=1))
self.upsample1 = make_cbg(emb_dim, emb_dim)
self.upsample2 = make_cbg(emb_dim, emb_dim)
self.output = nn.Sequential(
nn.Conv2d(emb_dim, 1, kernel_size=3, padding=1))
for m in self.modules():
if isinstance(m, nn.ReLU) or isinstance(m, nn.Dropout):
m.inplace = True
def forward(self, x):
x = x.to(dtype=torch_dtype, device=torch_device)
shallow = self.shallow(x)
glb = rescale_to(x, scale_factor=0.5, interpolation='bilinear')
loc = image2patches(x)
input = torch.cat((loc, glb), dim=0)
feature = self.backbone(input)
e5 = self.output5(feature[4]) # (5,128,16,16)
e4 = self.output4(feature[3]) # (5,128,32,32)
e3 = self.output3(feature[2]) # (5,128,64,64)
e2 = self.output2(feature[1]) # (5,128,128,128)
e1 = self.output1(feature[0]) # (5,128,128,128)
loc_e5, glb_e5 = e5.split([4, 1], dim=0)
e5 = self.multifieldcrossatt(loc_e5, glb_e5) # (4,128,16,16)
e4, tokenattmap4 = self.dec_blk4(e4 + resize_as(e5, e4))
e4 = self.conv4(e4)
e3, tokenattmap3 = self.dec_blk3(e3 + resize_as(e4, e3))
e3 = self.conv3(e3)
e2, tokenattmap2 = self.dec_blk2(e2 + resize_as(e3, e2))
e2 = self.conv2(e2)
e1, tokenattmap1 = self.dec_blk1(e1 + resize_as(e2, e1))
e1 = self.conv1(e1)
loc_e1, glb_e1 = e1.split([4, 1], dim=0)
output1_cat = patches2image(loc_e1) # (1,128,256,256)
# add glb feat in
output1_cat = output1_cat + resize_as(glb_e1, output1_cat)
# merge
final_output = self.insmask_head(output1_cat) # (1,128,256,256)
# shallow feature merge
final_output = final_output + resize_as(shallow, final_output)
final_output = self.upsample1(rescale_to(final_output))
final_output = rescale_to(final_output +
resize_as(shallow, final_output))
final_output = self.upsample2(final_output)
final_output = self.output(final_output)
####
sideout5 = self.sideout5(e5).to(dtype=torch_dtype, device=torch_device)
sideout4 = self.sideout4(e4)
sideout3 = self.sideout3(e3)
sideout2 = self.sideout2(e2)
sideout1 = self.sideout1(e1)
#######glb_sideouts ######
glb5 = self.sideout5(glb_e5)
glb4 = sideout4[-1, :, :, :].unsqueeze(0)
glb3 = sideout3[-1, :, :, :].unsqueeze(0)
glb2 = sideout2[-1, :, :, :].unsqueeze(0)
glb1 = sideout1[-1, :, :, :].unsqueeze(0)
####### concat 4 to 1 #######
sideout1 = patches2image(sideout1[:-1]).to(dtype=torch_dtype,
device=torch_device)
sideout2 = patches2image(sideout2[:-1]).to(
dtype=torch_dtype,
device=torch_device) ####(5,c,h,w) -> (1 c 2h,2w)
sideout3 = patches2image(sideout3[:-1]).to(dtype=torch_dtype,
device=torch_device)
sideout4 = patches2image(sideout4[:-1]).to(dtype=torch_dtype,
device=torch_device)
sideout5 = patches2image(sideout5[:-1]).to(dtype=torch_dtype,
device=torch_device)
if self.training:
return sideout5, sideout4, sideout3, sideout2, sideout1, final_output, glb5, glb4, glb3, glb2, glb1, tokenattmap4, tokenattmap3, tokenattmap2, tokenattmap1
else:
return final_output
# model for multi-scale testing
class inf_MVANet(nn.Module):
def __init__(self):
super().__init__()
# self.backbone = SwinB(pretrained=True)
self.backbone = SwinB(pretrained=False)
emb_dim = 128
self.output5 = make_cbr(1024, emb_dim)
self.output4 = make_cbr(512, emb_dim)
self.output3 = make_cbr(256, emb_dim)
self.output2 = make_cbr(128, emb_dim)
self.output1 = make_cbr(128, emb_dim)
self.multifieldcrossatt = inf_MCLM(emb_dim, 1, [1, 4, 8])
self.conv1 = make_cbr(emb_dim, emb_dim)
self.conv2 = make_cbr(emb_dim, emb_dim)
self.conv3 = make_cbr(emb_dim, emb_dim)
self.conv4 = make_cbr(emb_dim, emb_dim)
self.dec_blk1 = inf_MCRM(emb_dim, 1, [2, 4, 8])
self.dec_blk2 = inf_MCRM(emb_dim, 1, [2, 4, 8])
self.dec_blk3 = inf_MCRM(emb_dim, 1, [2, 4, 8])
self.dec_blk4 = inf_MCRM(emb_dim, 1, [2, 4, 8])
self.insmask_head = nn.Sequential(
nn.Conv2d(emb_dim, 384, kernel_size=3, padding=1),
nn.BatchNorm2d(384), nn.PReLU(),
nn.Conv2d(384, 384, kernel_size=3, padding=1), nn.BatchNorm2d(384),
nn.PReLU(), nn.Conv2d(384, emb_dim, kernel_size=3, padding=1))
self.shallow = nn.Sequential(
nn.Conv2d(3, emb_dim, kernel_size=3, padding=1))
self.upsample1 = make_cbg(emb_dim, emb_dim)
self.upsample2 = make_cbg(emb_dim, emb_dim)
self.output = nn.Sequential(
nn.Conv2d(emb_dim, 1, kernel_size=3, padding=1))
for m in self.modules():
if isinstance(m, nn.ReLU) or isinstance(m, nn.Dropout):
m.inplace = True
def forward(self, x):
shallow = self.shallow(x)
glb = rescale_to(x, scale_factor=0.5, interpolation='bilinear')
loc = image2patches(x)
input = torch.cat((loc, glb), dim=0)
feature = self.backbone(input)
e5 = self.output5(feature[4])
e4 = self.output4(feature[3])
e3 = self.output3(feature[2])
e2 = self.output2(feature[1])
e1 = self.output1(feature[0])
loc_e5, glb_e5 = e5.split([4, 1], dim=0)
e5_cat = self.multifieldcrossatt(loc_e5, glb_e5)
e4 = self.conv4(self.dec_blk4(e4 + resize_as(e5_cat, e4)))
e3 = self.conv3(self.dec_blk3(e3 + resize_as(e4, e3)))
e2 = self.conv2(self.dec_blk2(e2 + resize_as(e3, e2)))
e1 = self.conv1(self.dec_blk1(e1 + resize_as(e2, e1)))
loc_e1, glb_e1 = e1.split([4, 1], dim=0)
# after decoder, concat loc features to a whole one, and merge
output1_cat = patches2image(loc_e1)
# add glb feat in
output1_cat = output1_cat + resize_as(glb_e1, output1_cat)
# merge
final_output = self.insmask_head(output1_cat)
# shallow feature merge
final_output = final_output + resize_as(shallow, final_output)
final_output = self.upsample1(rescale_to(final_output))
final_output = rescale_to(final_output +
resize_as(shallow, final_output))
final_output = self.upsample2(final_output)
final_output = self.output(final_output)
return final_output
#+end_src
** Function to load model
#+begin_src python :shebang #!/usr/bin/python3 :results output :tangle ./MVANet_inference.function.py
def load_model(model_checkpoint_path):
torch.cuda.set_device(0)
net = inf_MVANet().to(dtype=torch_dtype, device=torch_device)
pretrained_dict = torch.load(model_checkpoint_path,
map_location=torch_device)
model_dict = net.state_dict()
pretrained_dict = {
k: v
for k, v in pretrained_dict.items() if k in model_dict
}
model_dict.update(pretrained_dict)
net.load_state_dict(model_dict)
net = net.to(dtype=torch_dtype, device=torch_device)
net.eval()
return net
def load_transforms_stripped():
img_transform = transforms.Compose([
# transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
return img_transform
def load_transforms():
img_transform = transforms.Compose([
# transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
depth_transform = transforms.ToTensor()
target_transform = transforms.ToTensor()
to_pil = transforms.ToPILImage()
transforms_var = tta.Compose([
tta.HorizontalFlip(),
tta.Scale(scales=[0.75, 1, 1.25],
interpolation='bilinear',
align_corners=False),
])
return (img_transform, depth_transform, target_transform, to_pil,
transforms_var)
#+end_src
** Function for modular inference CV
#+begin_src python :shebang #!/usr/bin/python3 :results output :tangle ./MVANet_inference.function.py
def do_infer_tensor2tensor(img, net):
img_transform = transforms.Compose(
[transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])
h_, w_ = img.shape[1], img.shape[2]
with torch.no_grad():
img = rearrange(img, 'B H W C -> B C H W')
img_resize = torch.nn.functional.interpolate(input=img,
size=(1024, 1024),
mode='bicubic',
antialias=True)
img_var = img_transform(img_resize)
img_var = Variable(img_var)
img_var = img_var.to(dtype=torch_dtype, device=torch_device)
mask = []
mask.append(net(img_var))
prediction = torch.mean(torch.stack(mask, dim=0), dim=0)
prediction = prediction.sigmoid()
prediction = torch.nn.functional.interpolate(input=prediction,
size=(h_, w_),
mode='bicubic',
antialias=True)
prediction = prediction.squeeze(0)
prediction = prediction.clamp(0, 1)
return prediction
def do_infer_modular_cv(input_image_path, output_mask_path, net,
all_transforms):
(img_transform, depth_transform, target_transform, to_pil,
transforms_var) = all_transforms
img = load_image_torch(input_image_path)
h_, w_ = img.shape[1], img.shape[2]
with torch.no_grad():
img = rearrange(img, 'B H W C -> B C H W')
img_resize = torch.nn.functional.interpolate(input=img,
size=(1024, 1024),
mode='bicubic',
antialias=True)
img_var = img_transform(img_resize)
img_var = Variable(img_var)
img_var = img_var.to(dtype=torch_dtype, device=torch_device)
mask = []
for transformer in transforms_var:
rgb_trans = img_var.to(dtype=torch_dtype, device=torch_device)
mask.append(net(rgb_trans))
prediction = torch.mean(torch.stack(mask, dim=0), dim=0)
prediction = prediction.sigmoid()
prediction = torch.nn.functional.interpolate(input=prediction,
size=(h_, w_),
mode='bicubic',
antialias=True)
prediction = prediction.squeeze(0)
prediction = prediction.clamp(0, 1)
save_mask_torch(output_image_path=output_mask_path, mask=prediction)
def do_infer_modular_cv_2(input_image_path, output_mask_path, net,
all_transforms):
(img_transform, depth_transform, target_transform, to_pil,
transforms_var) = all_transforms
img = load_image(input_image_path)
w_, h_ = img.shape[0], img.shape[1]
img_resize = cv2.resize(img, (1024, 1024), cv2.INTER_CUBIC)
with torch.no_grad():
# rgb_png_path = input_image_path
# img = Image.open(rgb_png_path).convert('RGB')
# w_, h_ = img.size
# img_resize = img.resize([256 * 4, 256 * 4], Image.BILINEAR)
# img_var = Variable(img_transform(img_resize).unsqueeze(0)).to(
# dtype=torch_dtype, device=torch_device)
img_resize = torch.from_numpy(img_resize)
img_resize = img_resize.to(dtype=torch.float32)
img_resize /= 255.0
img_resize = rearrange(img_resize, 'H W C -> C H W')
img_var = img_transform(img_resize)
img_var = img_var.unsqueeze(0)
img_var = Variable(img_var)
img_var = img_var.to(dtype=torch_dtype, device=torch_device)
mask = []
for transformer in transforms_var:
rgb_trans = transformer.augment_image(img_var)
rgb_trans = rgb_trans.to(dtype=torch_dtype, device=torch_device)
model_output = net(rgb_trans)
deaug_mask = transformer.deaugment_mask(model_output)
mask.append(deaug_mask)
prediction = torch.mean(torch.stack(mask, dim=0), dim=0)
prediction = prediction.sigmoid()
prediction = to_pil(prediction.data.squeeze(0).cpu())
prediction = prediction.resize((w_, h_), Image.BILINEAR)
prediction.save(output_mask_path)
def do_infer_modular_cv_3(input_image_path, output_mask_path, net,
all_transforms):
(img_transform, depth_transform, target_transform, to_pil,
transforms_var) = all_transforms
img = load_image(input_image_path)
w_, h_ = img.shape[0], img.shape[1]
with torch.no_grad():
# rgb_png_path = input_image_path
# img = Image.open(rgb_png_path).convert('RGB')
# w_, h_ = img.size
# img_resize = img.resize([256 * 4, 256 * 4], Image.BILINEAR)
# img_var = Variable(img_transform(img_resize).unsqueeze(0)).to(
# dtype=torch_dtype, device=torch_device)
img_resize = torch.from_numpy(img)
img_resize = img_resize.to(dtype=torch.float32)
img_resize = rearrange(img_resize, 'H W C -> C H W')
img_resize = img_resize.unsqueeze(0)
img_resize = torch.nn.functional.interpolate(input=img_resize,
size=(1024, 1024),
mode='bicubic',
antialias=True)
img_resize = img_resize.squeeze(0)
img_resize = rearrange(img_resize, 'C H W -> H W C')
img_resize = img_resize.to(dtype=torch.float32)
img_resize /= 255.0
img_resize = rearrange(img_resize, 'H W C -> C H W')
img_var = img_transform(img_resize)
img_var = img_var.unsqueeze(0)
img_var = Variable(img_var)
img_var = img_var.to(dtype=torch_dtype, device=torch_device)
mask = []
for transformer in transforms_var:
rgb_trans = transformer.augment_image(img_var)
rgb_trans = rgb_trans.to(dtype=torch_dtype, device=torch_device)
model_output = net(rgb_trans)
deaug_mask = transformer.deaugment_mask(model_output)
mask.append(deaug_mask)
prediction = torch.mean(torch.stack(mask, dim=0), dim=0)
prediction = prediction.sigmoid()
prediction = to_pil(prediction.data.squeeze(0).cpu())
prediction = prediction.resize((w_, h_), Image.BILINEAR)
prediction.save(output_mask_path)
def do_infer_modular_cv_4(input_image_path, output_mask_path, net,
all_transforms):
(img_transform, depth_transform, target_transform, to_pil,
transforms_var) = all_transforms
img = load_image(input_image_path)
w_, h_ = img.shape[0], img.shape[1]
with torch.no_grad():
img_resize = torch.from_numpy(img)
img_resize = img_resize.to(dtype=torch.float32)
img_resize /= 255.0
img_resize = img_resize.unsqueeze(0)
img_resize = rearrange(img_resize, 'B H W C -> B C H W')
img_resize = torch.nn.functional.interpolate(input=img_resize,
size=(1024, 1024),
mode='bicubic',
antialias=True)
img_resize = img_resize.squeeze(0)
img_var = img_transform(img_resize)
img_var = img_var.unsqueeze(0)
img_var = Variable(img_var)
img_var = img_var.to(dtype=torch_dtype, device=torch_device)
mask = []
for transformer in transforms_var:
rgb_trans = transformer.augment_image(img_var)
rgb_trans = rgb_trans.to(dtype=torch_dtype, device=torch_device)
model_output = net(rgb_trans)
deaug_mask = transformer.deaugment_mask(model_output)
mask.append(deaug_mask)
prediction = torch.mean(torch.stack(mask, dim=0), dim=0)
prediction = prediction.sigmoid()
prediction = to_pil(prediction.data.squeeze(0).cpu())
prediction = prediction.resize((w_, h_), Image.BILINEAR)
prediction.save(output_mask_path)
def do_infer_modular_cv_5(input_image_path, output_mask_path, net,
all_transforms):
(img_transform, depth_transform, target_transform, to_pil,
transforms_var) = all_transforms
img = load_image(input_image_path)
w_, h_ = img.shape[0], img.shape[1]
with torch.no_grad():
img_resize = torch.from_numpy(img)
img_resize = img_resize.to(dtype=torch.float32)
img_resize /= 255.0
img_resize = img_resize.unsqueeze(0)
img_resize = rearrange(img_resize, 'B H W C -> B C H W')
img_resize = torch.nn.functional.interpolate(input=img_resize,
size=(1024, 1024),
mode='bicubic',
antialias=True)
img_var = img_transform(img_resize)
img_var = Variable(img_var)
img_var = img_var.to(dtype=torch_dtype, device=torch_device)
mask = []
for transformer in transforms_var:
rgb_trans = transformer.augment_image(img_var)
rgb_trans = rgb_trans.to(dtype=torch_dtype, device=torch_device)
model_output = net(rgb_trans)
deaug_mask = transformer.deaugment_mask(model_output)
mask.append(deaug_mask)
prediction = torch.mean(torch.stack(mask, dim=0), dim=0)
prediction = prediction.sigmoid()
prediction = to_pil(prediction.data.squeeze(0).cpu())
prediction = prediction.resize((w_, h_), Image.BILINEAR)
prediction.save(output_mask_path)
def do_infer_modular_cv_6(input_image_path, output_mask_path, net,
all_transforms):
(img_transform, depth_transform, target_transform, to_pil,
transforms_var) = all_transforms
img = load_image(input_image_path)
w_, h_ = img.shape[0], img.shape[1]
with torch.no_grad():
img_resize = torch.from_numpy(img)
img_resize = img_resize.to(dtype=torch.float32)
img_resize /= 255.0
img_resize = img_resize.unsqueeze(0)
img_resize = rearrange(img_resize, 'B H W C -> B C H W')
img_resize = torch.nn.functional.interpolate(input=img_resize,
size=(1024, 1024),
mode='bicubic',
antialias=True)
img_var = img_transform(img_resize)
img_var = Variable(img_var)
img_var = img_var.to(dtype=torch_dtype, device=torch_device)
mask = []
for transformer in transforms_var:
rgb_trans = img_var.to(dtype=torch_dtype, device=torch_device)
mask.append(net(rgb_trans))
prediction = torch.mean(torch.stack(mask, dim=0), dim=0)
prediction = prediction.sigmoid()
prediction = to_pil(prediction.data.squeeze(0).cpu())
prediction = prediction.resize((w_, h_), Image.BILINEAR)
prediction.save(output_mask_path)
def do_infer_modular_cv_7(input_image_path, output_mask_path, net,
all_transforms):
(img_transform, depth_transform, target_transform, to_pil,
transforms_var) = all_transforms
img = load_image_torch(input_image_path)
h_, w_ = img.shape[1], img.shape[2]
with torch.no_grad():
img = rearrange(img, 'B H W C -> B C H W')
img_resize = torch.nn.functional.interpolate(input=img,
size=(1024, 1024),
mode='bicubic',
antialias=True)
img_var = img_transform(img_resize)
img_var = Variable(img_var)
img_var = img_var.to(dtype=torch_dtype, device=torch_device)
mask = []
for transformer in transforms_var:
rgb_trans = img_var.to(dtype=torch_dtype, device=torch_device)
mask.append(net(rgb_trans))
prediction = torch.mean(torch.stack(mask, dim=0), dim=0)
prediction = prediction.sigmoid()
prediction = to_pil(prediction.data.squeeze(0).cpu())
prediction = prediction.resize((w_, h_), Image.BILINEAR)
prediction.save(output_mask_path)
#+end_src
** Function for modular inference
#+begin_src python :shebang #!/usr/bin/python3 :results output :tangle ./MVANet_inference.function.py
def do_infer_modular(input_image_path, output_mask_path, net, all_transforms):
# net = load_model(finetuned_MVANet_model_path)
(img_transform, depth_transform, target_transform, to_pil,
transforms_var) = all_transforms
with torch.no_grad():
rgb_png_path = input_image_path
img = Image.open(rgb_png_path).convert('RGB')
w_, h_ = img.size
# img_resize = img.resize([(w_ // 2) * 2, (h_ // 2) * 2], Image.BILINEAR)
img_resize = img.resize([256 * 4, 256 * 4], Image.BILINEAR)
# img_resize = img
img_var = Variable(img_transform(img_resize).unsqueeze(0)).to(
dtype=torch_dtype, device=torch_device)
mask = []
for transformer in transforms_var:
rgb_trans = transformer.augment_image(img_var)
rgb_trans = rgb_trans.to(dtype=torch_dtype, device=torch_device)
model_output = net(rgb_trans)
deaug_mask = transformer.deaugment_mask(model_output)
mask.append(deaug_mask)
prediction = torch.mean(torch.stack(mask, dim=0), dim=0)
prediction = prediction.sigmoid()
prediction = to_pil(prediction.data.squeeze(0).cpu())
prediction = prediction.resize((w_, h_), Image.BILINEAR)
prediction.save(output_mask_path)
#+end_src
** Function for inference
#+begin_src python :shebang #!/usr/bin/python3 :results output :tangle ./MVANet_inference.function.py
def do_infer():
torch.cuda.set_device(0)
args = {'crf_refine': True, 'save_results': True}
img_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
depth_transform = transforms.ToTensor()
target_transform = transforms.ToTensor()
to_pil = transforms.ToPILImage()
transforms_var = tta.Compose([
tta.HorizontalFlip(),
tta.Scale(scales=[0.75, 1, 1.25],
interpolation='bilinear',
align_corners=False),
])
net = inf_MVANet().to(dtype=torch_dtype, device=torch_device)
pretrained_dict = torch.load(finetuned_MVANet_model_path,
map_location=torch_device)
model_dict = net.state_dict()
pretrained_dict = {
k: v
for k, v in pretrained_dict.items() if k in model_dict
}
model_dict.update(pretrained_dict)
net.load_state_dict(model_dict)
net = net.to(dtype=torch_dtype, device=torch_device)
net.eval()
with torch.no_grad():
rgb_png_path = '/home/asd/DATASETS/SD_BG_SWAP_TEST/comfyui_outputs/4/output_fooocus/bgswap-output.png'
img = Image.open(rgb_png_path).convert('RGB')
w_, h_ = img.size
# img_resize = img.resize([(w_ // 2) * 2, (h_ // 2) * 2], Image.BILINEAR)
img_resize = img.resize([256 * 4 , 256 * 4 ], Image.BILINEAR)
# img_resize = img
img_var = Variable(img_transform(img_resize).unsqueeze(0),
volatile=True).cuda()
mask = []
for transformer in transforms_var:
rgb_trans = transformer.augment_image(img_var)
rgb_trans = rgb_trans.to(dtype=torch_dtype, device=torch_device)
model_output = net(rgb_trans)
deaug_mask = transformer.deaugment_mask(model_output)
mask.append(deaug_mask)
prediction = torch.mean(torch.stack(mask, dim=0), dim=0)
prediction = prediction.sigmoid()
prediction = to_pil(prediction.data.squeeze(0).cpu())
prediction = prediction.resize((w_, h_), Image.BILINEAR)
prediction.save('./tmp.png')
#+end_src
** MVANet_inference function
#+begin_src python :shebang #!/usr/bin/python3 :results output :tangle ./MVANet_inference.function.py
def main(item):
net = inf_MVANet().cuda()
pretrained_dict = torch.load(os.path.join(ckpt_path, item + '.pth'),
map_location='cuda')
model_dict = net.state_dict()
pretrained_dict = {
k: v
for k, v in pretrained_dict.items() if k in model_dict
}
model_dict.update(pretrained_dict)
net.load_state_dict(model_dict)
net.eval()
with torch.no_grad():
for name, root in to_test.items():
root1 = os.path.join(root, 'images')
img_list = [os.path.splitext(f) for f in os.listdir(root1)]
for idx, img_name in enumerate(img_list):
print('predicting for %s: %d / %d' %
(name, idx + 1, len(img_list)))
rgb_png_path = os.path.join(root, 'images',
img_name[0] + '.png')
rgb_jpg_path = os.path.join(root, 'images',
img_name[0] + '.jpg')
if os.path.exists(rgb_png_path):
img = Image.open(rgb_png_path).convert('RGB')
else:
img = Image.open(rgb_jpg_path).convert('RGB')
w_, h_ = img.size
img_resize = img.resize([1024, 1024], Image.BILINEAR)
img_var = Variable(img_transform(img_resize).unsqueeze(0),
volatile=True).cuda()
mask = []
for transformer in transforms_var:
rgb_trans = transformer.augment_image(img_var)
model_output = net(rgb_trans)
deaug_mask = transformer.deaugment_mask(model_output)
mask.append(deaug_mask)
prediction = torch.mean(torch.stack(mask, dim=0), dim=0)
prediction = prediction.sigmoid()
prediction = to_pil(prediction.data.squeeze(0))
prediction = prediction.resize((w_, h_), Image.BILINEAR)
if args['save_results']:
check_mkdir(os.path.join(ckpt_path, item, name))
prediction.save(
os.path.join(ckpt_path, item, name,
img_name[0] + '.png'))
#+end_src
** MVANet_inference execute
#+begin_src python :shebang #!/usr/bin/python3 :results output :tangle ./MVANet_inference.execute.py
def do_merge(path_image, path_mask, path_out):
image = cv2.imread(path_image, cv2.IMREAD_COLOR)
mask = cv2.imread(path_mask, cv2.IMREAD_GRAYSCALE)
mask = (mask > 127).astype(dtype=np.uint8) * 255
out = np.zeros((image.shape[0], image.shape[1], 4), dtype=np.uint8)
out[:, :, 0:3] = image
out[:, :, 3] = mask
cv2.imwrite(path_out, out)
if __name__ == '__main__':
# do_infer_modular_cv(
# input_image_path=
# '/home/asd/DATASETS/SD_BG_SWAP_TEST/comfyui_outputs/4/output_fooocus/bgswap-output.png',
# output_mask_path='./tmp.png',
# net=load_model(finetuned_MVANet_model_path),
# all_transforms=load_transforms(),
# )
# net = load_model(
# HOME_DIR + '/dreambooth_experiments/MVANet/MVANet_cloth_segment_14.pth')
# net = load_model(
# HOME_DIR +
# '/dreambooth_experiments/MVANet/new_type_crop_with_midshot.pth')
# net = load_model('/home/asd/MODEL_CHECKPOINTS/MVANet/SKIN_SEGMENTATION/1/Model_4.pth')
net = load_model('/home/asd/MODEL_CHECKPOINTS/MVANet/SKIN_SEGMENTATION/3/Model_14.pth')
# net = load_model(HOME_DIR +
# '/dreambooth_experiments/MVANet/mvanet_normal_crop_2.pth')
DATA_DIR_BASE = HOME_DIR + '/DATASETS/cloth_segmentation_test_images.dir/cloth_segmentation_test_images/'
images = (
'1370', '1371', '1372', '1373', '1374', '1375', '1376', '1377', '1378',
'1379', '1380', '1381', '1382', '1383', '1384', '1385', '1386', '1387',
'1388', '1389', '1390', '1391', '1392', '1393', '1394', '1395', '1396',
'1397', '1398', '1399', '1400', '1401', '1402', '1403', '1404', '1405',
'1406', '1407', '1408', '1409', '1410', '1411', '1412', '1413', '1414',
'1415', '1539', '1541', '1542', '1543', '17320', '4129', '4190',
'4191', '4192', '4193', '4202', '4203', '4204', '4207', '4208', '4209',
'4210', '4213', '4214', '4221', '4222', '4223', '4224', '4225', '4226',
'4227', '4228', '4229', '4230', '4231', '4232', '4233', '4234', '4235',
'4236', '4237', '4238', '4239', '4240', '4241', '4242', '4251', '4252',
'4253', '4254', '4255', '4256', '4257', '4258', '4259', '4260', '4261',
'4262', '4263', '4264', '6581', '6642', '6647', '6656', '6660', '6690',
'6696', '6724', '6767', '6771', '6788', '6791', '6807', '6821', '6824',
'6833', '6847', '6850', '6879', '6941', '7001', '7070', '7083', '7092',
'7093', '7119', '7191', '7220', '7252', '7264', '7276', '7278', '7281',
'7290', '7301', '7312', '7340', '7398', '7404', '7412', '7429', '7439',
'7478', '7491', '7631', '7687', '7699', '7719', '7770', '7784', '7793',
'7811', '7829', '7861', '7864', '7868', '7980', '7987', '7990', '8069',
'8083', '8100', '8108', '8227', '8323', '8329', '8358', '8383', '8401',
'8415', '8488', '8515', '8518', '8560', '8565', '8595', '8639', '8676',
'8690', '8691', '8701', '8703', '8723', '8726', '8756', '8783', '8801',
'8820', '8826', '8842', '8865', '8874', '8875', '8882', '8911', '8946',
'8947', '8969', '8979', '8983')
masks = [DATA_DIR_BASE + i + '/garment_mask.png' for i in images]
out = [DATA_DIR_BASE + i + '/garment_transparent.png' for i in images]
images = [DATA_DIR_BASE + i + '/original.jpg' for i in images]
for i in range(len(images)):
image = images[i]
image = load_image_torch(image)
mask = do_infer_tensor2tensor(image, net)
save_mask_torch(output_image_path=masks[i], mask=mask)
do_merge(path_image=images[i], path_mask=masks[i], path_out=out[i])
# img = load_image_torch(
# '/home/asd/DATASETS/SD_BG_SWAP_TEST/comfyui_outputs/4/output_fooocus/bgswap-output.png'
# )
# # all_transforms = load_transforms()
# masks = do_infer_tensor2tensor(img, net)
# save_mask_torch(output_image_path='./tmp.png', mask=masks)
#+end_src
** MVANet_inference unify
#+begin_src sh :shebang #!/bin/sh :results output :tangle ./MVANet_inference.unify.sh
. "${HOME}/dbnew.sh"
(
echo '#!/usr/bin/python3'
cat \
'./MVANet_inference.import.py' \
'./MVANet_inference.function.py' \
'./MVANet_inference.class.py' \
'./MVANet_inference.execute.py' \
| expand | yapf3 \
| grep -v '#!/usr/bin/python3' \
;
) > './MVANet_inference.py' \
;
#+end_src
** MVANet_inference run
#+begin_src sh :shebang #!/bin/sh :results output :tangle ./MVANet_inference.run.sh
. "${HOME}/dbnew.sh"
python3 './MVANet_inference.py'
#+end_src
* WORK SPACE
** elisp
#+begin_src elisp
(save-buffer)
(org-babel-tangle)
(shell-command "./MVANet_inference.unify.sh")
#+end_src
#+RESULTS:
: 0
** sh
#+begin_src sh :shebang #!/bin/sh :results output
realpath .
cd /home/asd/GITHUB/aravind-h-v/dreambooth_experiments/MVANet
#+end_src