aravind-h-v's picture
self correcting human parsing repo copy
cf5e00a
raw
history blame
11.9 kB
import argparse
import cv2
import os
import json
import numpy as np
from PIL import Image as PILImage
import joblib
def mask_nms(masks, bbox_scores, instances_confidence_threshold=0.5, overlap_threshold=0.7):
"""
NMS-like procedure used in Panoptic Segmentation
Remove the overlap areas of different instances in Instance Segmentation
"""
panoptic_seg = np.zeros(masks.shape[:2], dtype=np.uint8)
sorted_inds = list(range(len(bbox_scores)))
current_segment_id = 0
segments_score = []
for inst_id in sorted_inds:
score = bbox_scores[inst_id]
if score < instances_confidence_threshold:
break
mask = masks[:, :, inst_id]
mask_area = mask.sum()
if mask_area == 0:
continue
intersect = (mask > 0) & (panoptic_seg > 0)
intersect_area = intersect.sum()
if intersect_area * 1.0 / mask_area > overlap_threshold:
continue
if intersect_area > 0:
mask = mask & (panoptic_seg == 0)
current_segment_id += 1
# panoptic_seg[np.where(mask==1)] = current_segment_id
# panoptic_seg = panoptic_seg + current_segment_id*mask
panoptic_seg = np.where(mask == 0, panoptic_seg, current_segment_id)
segments_score.append(score)
# print(np.unique(panoptic_seg))
return panoptic_seg, segments_score
def extend(si, sj, instance_label, global_label, panoptic_seg_mask, class_map):
"""
"""
directions = [[-1, 0], [0, 1], [1, 0], [0, -1],
[1, 1], [1, -1], [-1, 1], [-1, -1]]
inst_class = instance_label[si, sj]
human_class = panoptic_seg_mask[si, sj]
global_class = class_map[inst_class]
queue = [[si, sj]]
while len(queue) != 0:
cur = queue[0]
queue.pop(0)
for direction in directions:
ni = cur[0] + direction[0]
nj = cur[1] + direction[1]
if ni >= 0 and nj >= 0 and \
ni < instance_label.shape[0] and \
nj < instance_label.shape[1] and \
instance_label[ni, nj] == 0 and \
global_label[ni, nj] == global_class:
instance_label[ni, nj] = inst_class
# Using refined instance label to refine human label
panoptic_seg_mask[ni, nj] = human_class
queue.append([ni, nj])
def refine(instance_label, panoptic_seg_mask, global_label, class_map):
"""
Inputs:
[ instance_label ]
np.array() with shape [h, w]
[ global_label ] with shape [h, w]
np.array()
"""
for i in range(instance_label.shape[0]):
for j in range(instance_label.shape[1]):
if instance_label[i, j] != 0:
extend(i, j, instance_label, global_label, panoptic_seg_mask, class_map)
def get_palette(num_cls):
""" Returns the color map for visualizing the segmentation mask.
Inputs:
=num_cls=
Number of classes.
Returns:
The color map.
"""
n = num_cls
palette = [0] * (n * 3)
for j in range(0, n):
lab = j
palette[j * 3 + 0] = 0
palette[j * 3 + 1] = 0
palette[j * 3 + 2] = 0
i = 0
while lab:
palette[j * 3 + 0] |= (((lab >> 0) & 1) << (7 - i))
palette[j * 3 + 1] |= (((lab >> 1) & 1) << (7 - i))
palette[j * 3 + 2] |= (((lab >> 2) & 1) << (7 - i))
i += 1
lab >>= 3
return palette
def patch2img_output(patch_dir, img_name, img_height, img_width, bbox, bbox_type, num_class):
"""transform bbox patch outputs to image output"""
assert bbox_type == 'gt' or 'msrcnn'
output = np.zeros((img_height, img_width, num_class), dtype='float')
output[:, :, 0] = np.inf
count_predictions = np.zeros((img_height, img_width, num_class), dtype='int32')
for i in range(len(bbox)): # person index starts from 1
file_path = os.path.join(patch_dir, os.path.splitext(img_name)[0] + '_' + str(i + 1) + '_' + bbox_type + '.npy')
bbox_output = np.load(file_path)
output[bbox[i][1]:bbox[i][3] + 1, bbox[i][0]:bbox[i][2] + 1, 1:] += bbox_output[:, :, 1:]
count_predictions[bbox[i][1]:bbox[i][3] + 1, bbox[i][0]:bbox[i][2] + 1, 1:] += 1
output[bbox[i][1]:bbox[i][3] + 1, bbox[i][0]:bbox[i][2] + 1, 0] \
= np.minimum(output[bbox[i][1]:bbox[i][3] + 1, bbox[i][0]:bbox[i][2] + 1, 0], bbox_output[:, :, 0])
# Caution zero dividing.
count_predictions[count_predictions == 0] = 1
return output / count_predictions
def get_instance(cat_gt, panoptic_seg_mask):
"""
"""
instance_gt = np.zeros_like(cat_gt, dtype=np.uint8)
num_humans = len(np.unique(panoptic_seg_mask)) - 1
class_map = {}
total_part_num = 0
for id in range(1, num_humans + 1):
human_part_label = np.where(panoptic_seg_mask == id, cat_gt, 0).astype(np.uint8)
# human_part_label = (np.where(panoptic_seg_mask==id) * cat_gt).astype(np.uint8)
part_classes = np.unique(human_part_label)
exceed = False
for part_id in part_classes:
if part_id == 0: # background
continue
total_part_num += 1
if total_part_num > 255:
print("total_part_num exceed, return current instance map: {}".format(total_part_num))
exceed = True
break
class_map[total_part_num] = part_id
instance_gt[np.where(human_part_label == part_id)] = total_part_num
if exceed:
break
# Make instance id continous.
ori_cur_labels = np.unique(instance_gt)
total_num_label = len(ori_cur_labels)
if instance_gt.max() + 1 != total_num_label:
for label in range(1, total_num_label):
instance_gt[instance_gt == ori_cur_labels[label]] = label
final_class_map = {}
for label in range(1, total_num_label):
if label >= 1:
final_class_map[label] = class_map[ori_cur_labels[label]]
return instance_gt, final_class_map
def compute_confidence(im_name, feature_map, class_map,
instance_label, output_dir,
panoptic_seg_mask, seg_score_list):
"""
"""
conf_file = open(os.path.join(output_dir, os.path.splitext(im_name)[0] + '.txt'), 'w')
weighted_map = np.zeros_like(feature_map[:, :, 0])
for index, score in enumerate(seg_score_list):
weighted_map += (panoptic_seg_mask == index + 1) * score
for label in class_map.keys():
cls = class_map[label]
confidence = feature_map[:, :, cls].reshape(-1)[np.where(instance_label.reshape(-1) == label)]
confidence = (weighted_map * feature_map[:, :, cls].copy()).reshape(-1)[
np.where(instance_label.reshape(-1) == label)]
confidence = confidence.sum() / len(confidence)
conf_file.write('{} {}\n'.format(cls, confidence))
conf_file.close()
def result_saving(fused_output, img_name, img_height, img_width, output_dir, mask_output_path, bbox_score, msrcnn_bbox):
if not os.path.exists(output_dir):
os.makedirs(output_dir)
global_root = os.path.join(output_dir, 'global_parsing')
instance_root = os.path.join(output_dir, 'instance_parsing')
tag_dir = os.path.join(output_dir, 'global_tag')
if not os.path.exists(global_root):
os.makedirs(global_root)
if not os.path.exists(instance_root):
os.makedirs(instance_root)
if not os.path.exists(tag_dir):
os.makedirs(tag_dir)
# For visualizing indexed png image.
palette = get_palette(256)
fused_output = cv2.resize(fused_output, dsize=(img_width, img_height), interpolation=cv2.INTER_LINEAR)
seg_pred = np.asarray(np.argmax(fused_output, axis=2), dtype=np.uint8)
masks = np.load(mask_output_path)
masks[np.where(seg_pred == 0)] = 0
panoptic_seg_mask = masks
seg_score_list = bbox_score
instance_pred, class_map = get_instance(seg_pred, panoptic_seg_mask)
refine(instance_pred, panoptic_seg_mask, seg_pred, class_map)
compute_confidence(img_name, fused_output, class_map, instance_pred, instance_root,
panoptic_seg_mask, seg_score_list)
ins_seg_results = open(os.path.join(tag_dir, os.path.splitext(img_name)[0] + '.txt'), "a")
keep_human_id_list = list(np.unique(panoptic_seg_mask))
if 0 in keep_human_id_list:
keep_human_id_list.remove(0)
for i in keep_human_id_list:
ins_seg_results.write('{:.6f} {} {} {} {}\n'.format(seg_score_list[i - 1],
int(msrcnn_bbox[i - 1][1]), int(msrcnn_bbox[i - 1][0]),
int(msrcnn_bbox[i - 1][3]), int(msrcnn_bbox[i - 1][2])))
ins_seg_results.close()
output_im_global = PILImage.fromarray(seg_pred)
output_im_instance = PILImage.fromarray(instance_pred)
output_im_tag = PILImage.fromarray(panoptic_seg_mask)
output_im_global.putpalette(palette)
output_im_instance.putpalette(palette)
output_im_tag.putpalette(palette)
output_im_global.save(os.path.join(global_root, os.path.splitext(img_name)[0] + '.png'))
output_im_instance.save(os.path.join(instance_root, os.path.splitext(img_name)[0] + '.png'))
output_im_tag.save(os.path.join(tag_dir, os.path.splitext(img_name)[0] + '.png'))
def multi_process(a, args):
img_name = a['im_name']
img_height = a['img_height']
img_width = a['img_width']
msrcnn_bbox = a['person_bbox']
bbox_score = a['person_bbox_score']
######### loading outputs from gloabl and local models #########
global_output = np.load(os.path.join(args.global_output_dir, os.path.splitext(img_name)[0] + '.npy'))
msrcnn_output = patch2img_output(args.msrcnn_output_dir, img_name, img_height, img_width, msrcnn_bbox,
bbox_type='msrcnn', num_class=20)
gt_output = patch2img_output(args.gt_output_dir, img_name, img_height, img_width, msrcnn_bbox, bbox_type='msrcnn',
num_class=20)
#### global and local branch logits fusion #####
# fused_output = global_output + msrcnn_output + gt_output
fused_output = global_output + gt_output
mask_output_path = os.path.join(args.mask_output_dir, os.path.splitext(img_name)[0] + '_mask.npy')
result_saving(fused_output, img_name, img_height, img_width, args.save_dir, mask_output_path, bbox_score, msrcnn_bbox)
return
def main(args):
json_file = open(args.test_json_path)
anno = json.load(json_file)['root']
results = joblib.Parallel(n_jobs=24, verbose=10, pre_dispatch="all")(
[joblib.delayed(multi_process)(a, args) for i, a in enumerate(anno)]
)
def get_arguments():
parser = argparse.ArgumentParser(description="obtain final prediction by logits fusion")
parser.add_argument("--test_json_path", type=str, default='./data/CIHP/cascade_152_finetune/test.json')
parser.add_argument("--global_output_dir", type=str,
default='./data/CIHP/global/global_result-cihp-resnet101/global_output')
# parser.add_argument("--msrcnn_output_dir", type=str,
# default='./data/CIHP/cascade_152__finetune/msrcnn_result-cihp-resnet101/msrcnn_output')
parser.add_argument("--gt_output_dir", type=str,
default='./data/CIHP/cascade_152__finetune/gt_result-cihp-resnet101/gt_output')
parser.add_argument("--mask_output_dir", type=str, default='./data/CIHP/cascade_152_finetune/mask')
parser.add_argument("--save_dir", type=str, default='./data/CIHP/fusion_results/cihp-msrcnn_finetune')
return parser.parse_args()
if __name__ == '__main__':
args = get_arguments()
main(args)