trained model 1e+06 steps
Browse files- .gitattributes +1 -0
- LunarLander-v2-ppo.zip +3 -0
- LunarLander-v2-ppo/_stable_baselines3_version +1 -0
- LunarLander-v2-ppo/data +94 -0
- LunarLander-v2-ppo/policy.optimizer.pth +3 -0
- LunarLander-v2-ppo/policy.pth +3 -0
- LunarLander-v2-ppo/pytorch_variables.pth +3 -0
- LunarLander-v2-ppo/system_info.txt +7 -0
- README.md +28 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
LunarLander-v2-ppo.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1eff3fec59c257a42c4c70340f1707a6dd346b3e142449d71ccb79ba2343aa54
|
3 |
+
size 144024
|
LunarLander-v2-ppo/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
LunarLander-v2-ppo/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f308decaf80>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f308ded2050>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f308ded20e0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f308ded2170>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f308ded2200>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f308ded2290>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f308ded2320>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f308ded23b0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f308ded2440>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f308ded24d0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f308ded2560>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f308df10d80>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 1015808,
|
46 |
+
"_total_timesteps": 1000000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1652018691.4813957,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": "runs/2vvfdjhg",
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADPMwz0pIjA9ynGgPiBDvL57fQu/dyoDPwAAgD8AAAAA82e3PVE1mD064pK9WbjUvUfemLwzCe48AAAAAAAAAACmer89Cid0uYtRezQezOEwroxgO5ghkLMAAIA/AAAAACaiur32UFK6AilwOLG/DjNEnQW7bwSLtwAAgD8AAAAA7ZgyvtTonbyWBnS7VnwJusuRDT4gado6AACAPwAAgD+myoO9uGuGu6Ae4TvbQpA8Gc3SvKL3dT0AAIA/AACAPwb+E769bA8+ZGOEPYy6gL5Pc288ucmIPAAAAAAAAAAAs6mWPdd4Ibs0pwq+juhDvkNATL05nCI+AACAPwAAAACgLzO+KI+KvP44p7rloN24oTf3PQAN2DkAAIA/AACAP5o3grxfTKk/AkAzvivCCr/TXEC8cvvdvAAAAAAAAAAApiIuviHal7yylN+8er9oupoyBT6HFDs7AACAPwAAgD8NlNe9PfAMu5ax0juL4QC7wUcTPNLwyjsAAIA/AACAP0aJJz729F+8PXgBO9DLH7lHdcS93YonugAAgD8AAIA/mrn4vY12BT5juYM91GaHvlzAXLwLQFk9AAAAAAAAAADGdJm+hrwTP+/0qD5qAfK+Oh9bPA8sFjoAAAAAAAAAABqD6b3QN4M/IMdovkFbC78NKT2+UboEvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVNBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIyhr1EA2bb0CUhpRSlIwBbJRL2YwBdJRHQLJMRz6rNnp1fZQoaAZoCWgPQwg2PpP9M6pxQJSGlFKUaBVL62gWR0CyTKiiudPMdX2UKGgGaAloD0MIAi7IluW7c0CUhpRSlGgVS/ZoFkdAsk0BqJuVHHV9lChoBmgJaA9DCKyql98pOHFAlIaUUpRoFUvuaBZHQLJNY6w+t8x1fZQoaAZoCWgPQwjXbVD7LcRyQJSGlFKUaBVL52gWR0CyTbMVUModdX2UKGgGaAloD0MIiULLuv/ubkCUhpRSlGgVS8xoFkdAsk4I3Ov+wXV9lChoBmgJaA9DCKJjB5U472BAlIaUUpRoFU3oA2gWR0CyTgivgWJrdX2UKGgGaAloD0MIg6Pk1XkicUCUhpRSlGgVS+JoFkdAsk46LOzIFXV9lChoBmgJaA9DCHi2R2+4+nFAlIaUUpRoFU0DAWgWR0CyTt+PmxMWdX2UKGgGaAloD0MIkUWaeIc3c0CUhpRSlGgVS+BoFkdAsk7ffYSQHXV9lChoBmgJaA9DCDJzgcvjsHJAlIaUUpRoFUvNaBZHQLJPDSamXPZ1fZQoaAZoCWgPQwi3RZkNMq9xQJSGlFKUaBVL2WgWR0CyT44iTt9hdX2UKGgGaAloD0MIbToCuBkzcUCUhpRSlGgVS81oFkdAslAm8ujASHV9lChoBmgJaA9DCHOdRlpq3XJAlIaUUpRoFUvqaBZHQLJQLNipeeF1fZQoaAZoCWgPQwgogGJkyTRxQJSGlFKUaBVL0GgWR0CyUIZb2USqdX2UKGgGaAloD0MIjQxyF2FJYECUhpRSlGgVTegDaBZHQLJQn53Tuv51fZQoaAZoCWgPQwjYfjLGB4txQJSGlFKUaBVL7mgWR0CyUOZ4Oc2BdX2UKGgGaAloD0MIVKwahDmWYUCUhpRSlGgVTegDaBZHQLJRE85S3sp1fZQoaAZoCWgPQwjACYUIuJpyQJSGlFKUaBVL52gWR0CyUeYacZtOdX2UKGgGaAloD0MI5sqg2qA0cECUhpRSlGgVTUEBaBZHQLJSKIO6NER1fZQoaAZoCWgPQwhSuB6FqzhxQJSGlFKUaBVNIQFoFkdAslJ8Cih37nV9lChoBmgJaA9DCFTiOsYVPmJAlIaUUpRoFU3oA2gWR0CyUowoG6f8dX2UKGgGaAloD0MIf/W4b3U6cECUhpRSlGgVS8doFkdAslKtEWqLj3V9lChoBmgJaA9DCEFK7NoegHJAlIaUUpRoFUvraBZHQLJTEeuV5bB1fZQoaAZoCWgPQwgnEkw1M+9tQJSGlFKUaBVLxmgWR0CyUxbM5fdAdX2UKGgGaAloD0MIdQMF3smzW0CUhpRSlGgVTegDaBZHQLJTPk5ZKWd1fZQoaAZoCWgPQwiwOJz51dByQJSGlFKUaBVNAAFoFkdAslOk2zfJm3V9lChoBmgJaA9DCKuTMxR3BGNAlIaUUpRoFU3oA2gWR0CyU6o/JNj9dX2UKGgGaAloD0MIiujX1k8EcUCUhpRSlGgVS+VoFkdAslOumXPZ7HV9lChoBmgJaA9DCBFV+DN8dXBAlIaUUpRoFUvqaBZHQLJT2arFOwh1fZQoaAZoCWgPQwibV3VWyxBxQJSGlFKUaBVL4WgWR0CyVGn9JjDsdX2UKGgGaAloD0MIZCKl2TwQc0CUhpRSlGgVS91oFkdAslTSB3A2ynV9lChoBmgJaA9DCLx0kxiEwXBAlIaUUpRoFUv4aBZHQLJU2Vqesgd1fZQoaAZoCWgPQwgFNufgWfxxQJSGlFKUaBVN0wFoFkdAslT39ZRsM3V9lChoBmgJaA9DCGlU4GSbOmxAlIaUUpRoFUvwaBZHQLJVL1oxpL51fZQoaAZoCWgPQwjzkv/JHwlyQJSGlFKUaBVL2WgWR0CyVU/wI+nqdX2UKGgGaAloD0MId554zhaUcECUhpRSlGgVTQ0BaBZHQLJVYQXAM2F1fZQoaAZoCWgPQwjK3HwjuoZzQJSGlFKUaBVL5mgWR0CyVXc5fdAPdX2UKGgGaAloD0MIPITx0zgXcUCUhpRSlGgVS+BoFkdAslWHRTjvNXV9lChoBmgJaA9DCP8JLlZUCnJAlIaUUpRoFUvQaBZHQLJVuLfk3jx1fZQoaAZoCWgPQwgxfa8hOLRxQJSGlFKUaBVL2WgWR0CyVdVFDv3KdX2UKGgGaAloD0MIvRjKifaubkCUhpRSlGgVS8poFkdAslXd6IFeOXV9lChoBmgJaA9DCMOf4c0aNWVAlIaUUpRoFU3oA2gWR0CyVeQx8D0UdX2UKGgGaAloD0MIVgxXB0D6XECUhpRSlGgVTegDaBZHQLJWIWGh24d1fZQoaAZoCWgPQwgn3gGetDByQJSGlFKUaBVNFAFoFkdAslZUVARkE3V9lChoBmgJaA9DCOZ0WUzs3XBAlIaUUpRoFUvSaBZHQLJWxwKjSG91fZQoaAZoCWgPQwgnUMQiRihyQJSGlFKUaBVL/GgWR0CyVscySFGodX2UKGgGaAloD0MI1edqK/ZscECUhpRSlGgVS99oFkdAslbdhoduHnV9lChoBmgJaA9DCPWdX5SgPHJAlIaUUpRoFUveaBZHQLJW+SjQAuJ1fZQoaAZoCWgPQwiwkSQI10ltQJSGlFKUaBVLzmgWR0CyVzAM+eOGdX2UKGgGaAloD0MIwqT4+MT5ckCUhpRSlGgVS/VoFkdAsld/ua4MF3V9lChoBmgJaA9DCKGDLuHQyHFAlIaUUpRoFUvhaBZHQLJXg2K2rn11fZQoaAZoCWgPQwho6nWLwMBuQJSGlFKUaBVL0mgWR0CyV5FNL128dX2UKGgGaAloD0MINlZinpXXcECUhpRSlGgVS/hoFkdAslenG6wt8XV9lChoBmgJaA9DCN/7G7SXpHBAlIaUUpRoFUvkaBZHQLJX3AGjbi91fZQoaAZoCWgPQwgDzlKynGpuQJSGlFKUaBVL8GgWR0CyV+70rbxmdX2UKGgGaAloD0MIQblt36OvcUCUhpRSlGgVS+poFkdAslfwQ7LdN3V9lChoBmgJaA9DCLAdjNjnfnFAlIaUUpRoFU1JAWgWR0CyWCKtT1kEdX2UKGgGaAloD0MI2/eov96acUCUhpRSlGgVS/RoFkdAslhItVaOgnV9lChoBmgJaA9DCK1LjdBPyHBAlIaUUpRoFUviaBZHQLJYUUPhAGB1fZQoaAZoCWgPQwjiIvd09Q9vQJSGlFKUaBVLumgWR0CyWILwnYxtdX2UKGgGaAloD0MI0ZSdflAwc0CUhpRSlGgVS91oFkdAsli1JqZc9nV9lChoBmgJaA9DCF9dFajFNHFAlIaUUpRoFUvQaBZHQLJYynNPgvV1fZQoaAZoCWgPQwjEeTiBaedxQJSGlFKUaBVL4WgWR0CyWSkZJkGzdX2UKGgGaAloD0MIrwlpjUEVY0CUhpRSlGgVTegDaBZHQLJZN4hllK91fZQoaAZoCWgPQwhXs874Pg1uQJSGlFKUaBVLxGgWR0CyWVsRcu8LdX2UKGgGaAloD0MIUg5mE2BBbkCUhpRSlGgVS95oFkdAsllxERaouXV9lChoBmgJaA9DCBWpMLaQnG9AlIaUUpRoFUvaaBZHQLJZdk+X7ch1fZQoaAZoCWgPQwiq86j4/8ZwQJSGlFKUaBVLyGgWR0CyWavzSThYdX2UKGgGaAloD0MIHomXp7PzckCUhpRSlGgVS+1oFkdAslnwQPI4l3V9lChoBmgJaA9DCGzNVl5ynHBAlIaUUpRoFU0aAWgWR0CyWfiR0U48dX2UKGgGaAloD0MIyECeXT72ckCUhpRSlGgVS+5oFkdAsloHEGZ/kXV9lChoBmgJaA9DCA2K5gEsO3NAlIaUUpRoFUvgaBZHQLJaPpyIYWN1fZQoaAZoCWgPQwhF8wAWeRVyQJSGlFKUaBVL7mgWR0CyWmgxWT5gdX2UKGgGaAloD0MIbxKDwAqecECUhpRSlGgVTQ8BaBZHQLJag6UaAFx1fZQoaAZoCWgPQwipE9BEmFRzQJSGlFKUaBVL4mgWR0CyWsFr/KhddX2UKGgGaAloD0MITWVR2IX7ckCUhpRSlGgVTQMBaBZHQLJa1KjBVMp1fZQoaAZoCWgPQwh5A8x8hz9zQJSGlFKUaBVL5mgWR0CyWuFtO2y+dX2UKGgGaAloD0MIdNL7xtf9cUCUhpRSlGgVS95oFkdAslspUMoc73V9lChoBmgJaA9DCBlXXByVT29AlIaUUpRoFUveaBZHQLJbN4SHuZ11fZQoaAZoCWgPQwh4DI/97MRwQJSGlFKUaBVLx2gWR0CyW0EelsP8dX2UKGgGaAloD0MIuTR+4VXDcECUhpRSlGgVS+ZoFkdAslts+fRNRHV9lChoBmgJaA9DCAX52ci1p3JAlIaUUpRoFU0JAWgWR0CyW9ZSBK+SdX2UKGgGaAloD0MIi08BMF4Qc0CUhpRSlGgVS/NoFkdAslvgaAFxGXV9lChoBmgJaA9DCHU90XXhpXBAlIaUUpRoFUvXaBZHQLJb+C9h7Vt1fZQoaAZoCWgPQwhhjh6/Nw1vQJSGlFKUaBVL32gWR0CyW/wKKHfudX2UKGgGaAloD0MI0F59PHTSckCUhpRSlGgVS/hoFkdAslyu8e0XxnV9lChoBmgJaA9DCGIx6lq783FAlIaUUpRoFUv4aBZHQLJcz7ojfN11fZQoaAZoCWgPQwjDoEyjyZJvQJSGlFKUaBVL4mgWR0CyXP2OIZZTdX2UKGgGaAloD0MIGD4ipgQhcUCUhpRSlGgVS/hoFkdAsl0oALiMpHV9lChoBmgJaA9DCDvgumKGjXJAlIaUUpRoFU1WAWgWR0CyXXyPyTY/dX2UKGgGaAloD0MIfF9cqtJ5ckCUhpRSlGgVS+doFkdAsl18c7yQP3V9lChoBmgJaA9DCHNMFvefTm9AlIaUUpRoFUvZaBZHQLJdiS/0ulJ1fZQoaAZoCWgPQwg+l6lJ8M9xQJSGlFKUaBVLy2gWR0CyXeowdsBRdX2UKGgGaAloD0MIuFhRg+mJckCUhpRSlGgVS8hoFkdAsl4CqYJE6XV9lChoBmgJaA9DCD5A9+XMKXFAlIaUUpRoFUvmaBZHQLJeTOS4e911fZQoaAZoCWgPQwjCNAwfEYxyQJSGlFKUaBVNQAFoFkdAsl5PsC1Z1XV9lChoBmgJaA9DCOZXc4BgtW9AlIaUUpRoFUv5aBZHQLJeV0p3HJd1fZQoaAZoCWgPQwhhqMMKNxJzQJSGlFKUaBVL12gWR0CyX0OJ1q33dX2UKGgGaAloD0MI/P1itmQeckCUhpRSlGgVS/5oFkdAsl+E7HQyAXVlLg=="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 310,
|
79 |
+
"n_steps": 2048,
|
80 |
+
"gamma": 0.99,
|
81 |
+
"gae_lambda": 0.95,
|
82 |
+
"ent_coef": 0.0,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 10,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
LunarLander-v2-ppo/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2f50a56f74be6a613ce20503e67e9270f16ece6a7438cb758d43f10b617f8752
|
3 |
+
size 84893
|
LunarLander-v2-ppo/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:df9b05434916f8b2f156df73cc04c4a4281e5f96119faad7d0e70958e35cef95
|
3 |
+
size 43201
|
LunarLander-v2-ppo/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
LunarLander-v2-ppo/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 246.99 +/- 46.61
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f308decaf80>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f308ded2050>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f308ded20e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f308ded2170>", "_build": "<function ActorCriticPolicy._build at 0x7f308ded2200>", "forward": "<function ActorCriticPolicy.forward at 0x7f308ded2290>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f308ded2320>", "_predict": "<function ActorCriticPolicy._predict at 0x7f308ded23b0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f308ded2440>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f308ded24d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f308ded2560>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f308df10d80>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652018691.4813957, "learning_rate": 0.0003, "tensorboard_log": "runs/2vvfdjhg", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADPMwz0pIjA9ynGgPiBDvL57fQu/dyoDPwAAgD8AAAAA82e3PVE1mD064pK9WbjUvUfemLwzCe48AAAAAAAAAACmer89Cid0uYtRezQezOEwroxgO5ghkLMAAIA/AAAAACaiur32UFK6AilwOLG/DjNEnQW7bwSLtwAAgD8AAAAA7ZgyvtTonbyWBnS7VnwJusuRDT4gado6AACAPwAAgD+myoO9uGuGu6Ae4TvbQpA8Gc3SvKL3dT0AAIA/AACAPwb+E769bA8+ZGOEPYy6gL5Pc288ucmIPAAAAAAAAAAAs6mWPdd4Ibs0pwq+juhDvkNATL05nCI+AACAPwAAAACgLzO+KI+KvP44p7rloN24oTf3PQAN2DkAAIA/AACAP5o3grxfTKk/AkAzvivCCr/TXEC8cvvdvAAAAAAAAAAApiIuviHal7yylN+8er9oupoyBT6HFDs7AACAPwAAgD8NlNe9PfAMu5ax0juL4QC7wUcTPNLwyjsAAIA/AACAP0aJJz729F+8PXgBO9DLH7lHdcS93YonugAAgD8AAIA/mrn4vY12BT5juYM91GaHvlzAXLwLQFk9AAAAAAAAAADGdJm+hrwTP+/0qD5qAfK+Oh9bPA8sFjoAAAAAAAAAABqD6b3QN4M/IMdovkFbC78NKT2+UboEvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVNBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIyhr1EA2bb0CUhpRSlIwBbJRL2YwBdJRHQLJMRz6rNnp1fZQoaAZoCWgPQwg2PpP9M6pxQJSGlFKUaBVL62gWR0CyTKiiudPMdX2UKGgGaAloD0MIAi7IluW7c0CUhpRSlGgVS/ZoFkdAsk0BqJuVHHV9lChoBmgJaA9DCKyql98pOHFAlIaUUpRoFUvuaBZHQLJNY6w+t8x1fZQoaAZoCWgPQwjXbVD7LcRyQJSGlFKUaBVL52gWR0CyTbMVUModdX2UKGgGaAloD0MIiULLuv/ubkCUhpRSlGgVS8xoFkdAsk4I3Ov+wXV9lChoBmgJaA9DCKJjB5U472BAlIaUUpRoFU3oA2gWR0CyTgivgWJrdX2UKGgGaAloD0MIg6Pk1XkicUCUhpRSlGgVS+JoFkdAsk46LOzIFXV9lChoBmgJaA9DCHi2R2+4+nFAlIaUUpRoFU0DAWgWR0CyTt+PmxMWdX2UKGgGaAloD0MIkUWaeIc3c0CUhpRSlGgVS+BoFkdAsk7ffYSQHXV9lChoBmgJaA9DCDJzgcvjsHJAlIaUUpRoFUvNaBZHQLJPDSamXPZ1fZQoaAZoCWgPQwi3RZkNMq9xQJSGlFKUaBVL2WgWR0CyT44iTt9hdX2UKGgGaAloD0MIbToCuBkzcUCUhpRSlGgVS81oFkdAslAm8ujASHV9lChoBmgJaA9DCHOdRlpq3XJAlIaUUpRoFUvqaBZHQLJQLNipeeF1fZQoaAZoCWgPQwgogGJkyTRxQJSGlFKUaBVL0GgWR0CyUIZb2USqdX2UKGgGaAloD0MIjQxyF2FJYECUhpRSlGgVTegDaBZHQLJQn53Tuv51fZQoaAZoCWgPQwjYfjLGB4txQJSGlFKUaBVL7mgWR0CyUOZ4Oc2BdX2UKGgGaAloD0MIVKwahDmWYUCUhpRSlGgVTegDaBZHQLJRE85S3sp1fZQoaAZoCWgPQwjACYUIuJpyQJSGlFKUaBVL52gWR0CyUeYacZtOdX2UKGgGaAloD0MI5sqg2qA0cECUhpRSlGgVTUEBaBZHQLJSKIO6NER1fZQoaAZoCWgPQwhSuB6FqzhxQJSGlFKUaBVNIQFoFkdAslJ8Cih37nV9lChoBmgJaA9DCFTiOsYVPmJAlIaUUpRoFU3oA2gWR0CyUowoG6f8dX2UKGgGaAloD0MIf/W4b3U6cECUhpRSlGgVS8doFkdAslKtEWqLj3V9lChoBmgJaA9DCEFK7NoegHJAlIaUUpRoFUvraBZHQLJTEeuV5bB1fZQoaAZoCWgPQwgnEkw1M+9tQJSGlFKUaBVLxmgWR0CyUxbM5fdAdX2UKGgGaAloD0MIdQMF3smzW0CUhpRSlGgVTegDaBZHQLJTPk5ZKWd1fZQoaAZoCWgPQwiwOJz51dByQJSGlFKUaBVNAAFoFkdAslOk2zfJm3V9lChoBmgJaA9DCKuTMxR3BGNAlIaUUpRoFU3oA2gWR0CyU6o/JNj9dX2UKGgGaAloD0MIiujX1k8EcUCUhpRSlGgVS+VoFkdAslOumXPZ7HV9lChoBmgJaA9DCBFV+DN8dXBAlIaUUpRoFUvqaBZHQLJT2arFOwh1fZQoaAZoCWgPQwibV3VWyxBxQJSGlFKUaBVL4WgWR0CyVGn9JjDsdX2UKGgGaAloD0MIZCKl2TwQc0CUhpRSlGgVS91oFkdAslTSB3A2ynV9lChoBmgJaA9DCLx0kxiEwXBAlIaUUpRoFUv4aBZHQLJU2Vqesgd1fZQoaAZoCWgPQwgFNufgWfxxQJSGlFKUaBVN0wFoFkdAslT39ZRsM3V9lChoBmgJaA9DCGlU4GSbOmxAlIaUUpRoFUvwaBZHQLJVL1oxpL51fZQoaAZoCWgPQwjzkv/JHwlyQJSGlFKUaBVL2WgWR0CyVU/wI+nqdX2UKGgGaAloD0MId554zhaUcECUhpRSlGgVTQ0BaBZHQLJVYQXAM2F1fZQoaAZoCWgPQwjK3HwjuoZzQJSGlFKUaBVL5mgWR0CyVXc5fdAPdX2UKGgGaAloD0MIPITx0zgXcUCUhpRSlGgVS+BoFkdAslWHRTjvNXV9lChoBmgJaA9DCP8JLlZUCnJAlIaUUpRoFUvQaBZHQLJVuLfk3jx1fZQoaAZoCWgPQwgxfa8hOLRxQJSGlFKUaBVL2WgWR0CyVdVFDv3KdX2UKGgGaAloD0MIvRjKifaubkCUhpRSlGgVS8poFkdAslXd6IFeOXV9lChoBmgJaA9DCMOf4c0aNWVAlIaUUpRoFU3oA2gWR0CyVeQx8D0UdX2UKGgGaAloD0MIVgxXB0D6XECUhpRSlGgVTegDaBZHQLJWIWGh24d1fZQoaAZoCWgPQwgn3gGetDByQJSGlFKUaBVNFAFoFkdAslZUVARkE3V9lChoBmgJaA9DCOZ0WUzs3XBAlIaUUpRoFUvSaBZHQLJWxwKjSG91fZQoaAZoCWgPQwgnUMQiRihyQJSGlFKUaBVL/GgWR0CyVscySFGodX2UKGgGaAloD0MI1edqK/ZscECUhpRSlGgVS99oFkdAslbdhoduHnV9lChoBmgJaA9DCPWdX5SgPHJAlIaUUpRoFUveaBZHQLJW+SjQAuJ1fZQoaAZoCWgPQwiwkSQI10ltQJSGlFKUaBVLzmgWR0CyVzAM+eOGdX2UKGgGaAloD0MIwqT4+MT5ckCUhpRSlGgVS/VoFkdAsld/ua4MF3V9lChoBmgJaA9DCKGDLuHQyHFAlIaUUpRoFUvhaBZHQLJXg2K2rn11fZQoaAZoCWgPQwho6nWLwMBuQJSGlFKUaBVL0mgWR0CyV5FNL128dX2UKGgGaAloD0MINlZinpXXcECUhpRSlGgVS/hoFkdAslenG6wt8XV9lChoBmgJaA9DCN/7G7SXpHBAlIaUUpRoFUvkaBZHQLJX3AGjbi91fZQoaAZoCWgPQwgDzlKynGpuQJSGlFKUaBVL8GgWR0CyV+70rbxmdX2UKGgGaAloD0MIQblt36OvcUCUhpRSlGgVS+poFkdAslfwQ7LdN3V9lChoBmgJaA9DCLAdjNjnfnFAlIaUUpRoFU1JAWgWR0CyWCKtT1kEdX2UKGgGaAloD0MI2/eov96acUCUhpRSlGgVS/RoFkdAslhItVaOgnV9lChoBmgJaA9DCK1LjdBPyHBAlIaUUpRoFUviaBZHQLJYUUPhAGB1fZQoaAZoCWgPQwjiIvd09Q9vQJSGlFKUaBVLumgWR0CyWILwnYxtdX2UKGgGaAloD0MI0ZSdflAwc0CUhpRSlGgVS91oFkdAsli1JqZc9nV9lChoBmgJaA9DCF9dFajFNHFAlIaUUpRoFUvQaBZHQLJYynNPgvV1fZQoaAZoCWgPQwjEeTiBaedxQJSGlFKUaBVL4WgWR0CyWSkZJkGzdX2UKGgGaAloD0MIrwlpjUEVY0CUhpRSlGgVTegDaBZHQLJZN4hllK91fZQoaAZoCWgPQwhXs874Pg1uQJSGlFKUaBVLxGgWR0CyWVsRcu8LdX2UKGgGaAloD0MIUg5mE2BBbkCUhpRSlGgVS95oFkdAsllxERaouXV9lChoBmgJaA9DCBWpMLaQnG9AlIaUUpRoFUvaaBZHQLJZdk+X7ch1fZQoaAZoCWgPQwiq86j4/8ZwQJSGlFKUaBVLyGgWR0CyWavzSThYdX2UKGgGaAloD0MIHomXp7PzckCUhpRSlGgVS+1oFkdAslnwQPI4l3V9lChoBmgJaA9DCGzNVl5ynHBAlIaUUpRoFU0aAWgWR0CyWfiR0U48dX2UKGgGaAloD0MIyECeXT72ckCUhpRSlGgVS+5oFkdAsloHEGZ/kXV9lChoBmgJaA9DCA2K5gEsO3NAlIaUUpRoFUvgaBZHQLJaPpyIYWN1fZQoaAZoCWgPQwhF8wAWeRVyQJSGlFKUaBVL7mgWR0CyWmgxWT5gdX2UKGgGaAloD0MIbxKDwAqecECUhpRSlGgVTQ8BaBZHQLJag6UaAFx1fZQoaAZoCWgPQwipE9BEmFRzQJSGlFKUaBVL4mgWR0CyWsFr/KhddX2UKGgGaAloD0MITWVR2IX7ckCUhpRSlGgVTQMBaBZHQLJa1KjBVMp1fZQoaAZoCWgPQwh5A8x8hz9zQJSGlFKUaBVL5mgWR0CyWuFtO2y+dX2UKGgGaAloD0MIdNL7xtf9cUCUhpRSlGgVS95oFkdAslspUMoc73V9lChoBmgJaA9DCBlXXByVT29AlIaUUpRoFUveaBZHQLJbN4SHuZ11fZQoaAZoCWgPQwh4DI/97MRwQJSGlFKUaBVLx2gWR0CyW0EelsP8dX2UKGgGaAloD0MIuTR+4VXDcECUhpRSlGgVS+ZoFkdAslts+fRNRHV9lChoBmgJaA9DCAX52ci1p3JAlIaUUpRoFU0JAWgWR0CyW9ZSBK+SdX2UKGgGaAloD0MIi08BMF4Qc0CUhpRSlGgVS/NoFkdAslvgaAFxGXV9lChoBmgJaA9DCHU90XXhpXBAlIaUUpRoFUvXaBZHQLJb+C9h7Vt1fZQoaAZoCWgPQwhhjh6/Nw1vQJSGlFKUaBVL32gWR0CyW/wKKHfudX2UKGgGaAloD0MI0F59PHTSckCUhpRSlGgVS/hoFkdAslyu8e0XxnV9lChoBmgJaA9DCGIx6lq783FAlIaUUpRoFUv4aBZHQLJcz7ojfN11fZQoaAZoCWgPQwjDoEyjyZJvQJSGlFKUaBVL4mgWR0CyXP2OIZZTdX2UKGgGaAloD0MIGD4ipgQhcUCUhpRSlGgVS/hoFkdAsl0oALiMpHV9lChoBmgJaA9DCDvgumKGjXJAlIaUUpRoFU1WAWgWR0CyXXyPyTY/dX2UKGgGaAloD0MIfF9cqtJ5ckCUhpRSlGgVS+doFkdAsl18c7yQP3V9lChoBmgJaA9DCHNMFvefTm9AlIaUUpRoFUvZaBZHQLJdiS/0ulJ1fZQoaAZoCWgPQwg+l6lJ8M9xQJSGlFKUaBVLy2gWR0CyXeowdsBRdX2UKGgGaAloD0MIuFhRg+mJckCUhpRSlGgVS8hoFkdAsl4CqYJE6XV9lChoBmgJaA9DCD5A9+XMKXFAlIaUUpRoFUvmaBZHQLJeTOS4e911fZQoaAZoCWgPQwjCNAwfEYxyQJSGlFKUaBVNQAFoFkdAsl5PsC1Z1XV9lChoBmgJaA9DCOZXc4BgtW9AlIaUUpRoFUv5aBZHQLJeV0p3HJd1fZQoaAZoCWgPQwhhqMMKNxJzQJSGlFKUaBVL12gWR0CyX0OJ1q33dX2UKGgGaAloD0MI/P1itmQeckCUhpRSlGgVS/5oFkdAsl+E7HQyAXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0baa5d4955d63b0a97c44dec2d4f00127c6353a39af3e12f9444606dd218da3f
|
3 |
+
size 225382
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 246.98603169999996, "std_reward": 46.614889801497924, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-08T14:38:54.361550"}
|