trained model 2e+06 steps
Browse files- LunarLander-v2-ppo.zip +2 -2
- LunarLander-v2-ppo/data +19 -22
- LunarLander-v2-ppo/policy.optimizer.pth +1 -1
- LunarLander-v2-ppo/policy.pth +1 -1
- README.md +1 -1
- config.json +1 -1
- replay.mp4 +2 -2
- results.json +1 -1
LunarLander-v2-ppo.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2fb5d537ecb0e7abde3e9588f3ca6a4ef8f2b4ee4a2121b4d59119e82814125a
|
3 |
+
size 143576
|
LunarLander-v2-ppo/data
CHANGED
@@ -4,19 +4,19 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
14 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
15 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
16 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
17 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
18 |
"__abstractmethods__": "frozenset()",
|
19 |
-
"_abc_impl": "<_abc_data object at
|
20 |
},
|
21 |
"verbose": 1,
|
22 |
"policy_kwargs": {},
|
@@ -47,19 +47,16 @@
|
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
"seed": null,
|
49 |
"action_noise": null,
|
50 |
-
"start_time":
|
51 |
-
"learning_rate":
|
52 |
-
|
53 |
-
":serialized:": "gAWVTQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsDSxNDHGQBiAAbAGQBGABkAXwAGAAUAGQBFwCIARQAUwCUTksBhpQpjANwY3SUhZSMHzxpcHl0aG9uLWlucHV0LTMyLTM4MzMzNDUyMWQ3NT6UjAg8bGFtYmRhPpRLAkMAlIwGZmFjdG9ylIwBeJSGlCl0lFKUfZQojAtfX3BhY2thZ2VfX5ROjAhfX25hbWVfX5SMCF9fbWFpbl9flHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUaBopUpSGlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBdoDowMX19xdWFsbmFtZV9flIwkbGluZWFyX2RlY2F5X3NjaGVkLjxsb2NhbHM+LjxsYW1iZGE+lIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEsKhZRSlGgvRz9QYk3S8an8hZRSlIaUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
54 |
-
},
|
55 |
-
"tensorboard_log": "runs/3hyvnm8s",
|
56 |
"lr_schedule": {
|
57 |
":type:": "<class 'function'>",
|
58 |
-
":serialized:": "
|
59 |
},
|
60 |
"_last_obs": {
|
61 |
":type:": "<class 'numpy.ndarray'>",
|
62 |
-
":serialized:": "
|
63 |
},
|
64 |
"_last_episode_starts": {
|
65 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -72,7 +69,7 @@
|
|
72 |
"_current_progress_remaining": -0.007616000000000067,
|
73 |
"ep_info_buffer": {
|
74 |
":type:": "<class 'collections.deque'>",
|
75 |
-
":serialized:": "
|
76 |
},
|
77 |
"ep_success_buffer": {
|
78 |
":type:": "<class 'collections.deque'>",
|
@@ -89,7 +86,7 @@
|
|
89 |
"n_epochs": 10,
|
90 |
"clip_range": {
|
91 |
":type:": "<class 'function'>",
|
92 |
-
":serialized:": "
|
93 |
},
|
94 |
"clip_range_vf": null,
|
95 |
"target_kl": null
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fbcb39ed560>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fbcb39ed5f0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fbcb39ed680>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fbcb39ed710>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fbcb39ed7a0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fbcb39ed830>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fbcb39ed8c0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fbcb39ed950>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fbcb39ed9e0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fbcb39eda70>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fbcb39edb00>",
|
18 |
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7fbcb3a37930>"
|
20 |
},
|
21 |
"verbose": 1,
|
22 |
"policy_kwargs": {},
|
|
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
"seed": null,
|
49 |
"action_noise": null,
|
50 |
+
"start_time": 1652477470.7166739,
|
51 |
+
"learning_rate": 0.0004,
|
52 |
+
"tensorboard_log": "runs/21ru89dr",
|
|
|
|
|
|
|
53 |
"lr_schedule": {
|
54 |
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz86NuLrHEMthZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
},
|
57 |
"_last_obs": {
|
58 |
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGa0iTwhgAc/3jLKPJB+W79F6BI95bP0OgAAAAAAAAAAZqTsPIzGfD43GZs9xioYv/MeHjwdh708AAAAAAAAAADNTGC5XHM1uor4bLxDUfGyotWlOmZfJjEAAIA/AACAP5rr/7zP24A/tDoOvTthbr82mz29ulORvQAAAAAAAAAATbR1vYjimD26aEQ+53zSvswlZryokXA9AAAAAAAAAACaY7u9YRgBPozJnz7jnP6+16cGvIJNjz4AAAAAAAAAAJoTaDxcj0m6wQEBNprGQDDNDqe7NrMitQAAgD8AAIA/gIJdPa8FuT+a/yM/82LJPfeW+7sx2gE+AAAAAAAAAABmUYK8tjkwPaaTcj7yDLu+a1RwPkq4zjwAAAAAAAAAAGYWWbz0qY0+yw6vvJqmGL/l7VW9alkBPAAAAAAAAAAAml23PAqBert934S+ib2uvVY5iz1r9Rk/AAAAAAAAgD9mW3u9MeB+P1Mhqr2rvE+/ev71vQ+ckb0AAAAAAAAAABPkL74wrwc/MOiOPXaYEL8fMoi+wmPfPQAAAAAAAAAAM/85POFomrqy+S04a2QlMxLy0TijYEi3AACAPwAAgD8AXCE80t/+u+77NzzbmYM81hdPvZAFXz0AAIA/AACAP81VvbwEBvQ9MLg1Pten277qzfw8mV0HPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
},
|
61 |
"_last_episode_starts": {
|
62 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
69 |
"_current_progress_remaining": -0.007616000000000067,
|
70 |
"ep_info_buffer": {
|
71 |
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIeLRxxBonckCUhpRSlIwBbJRLpowBdJRHQKEtQtNBWxR1fZQoaAZoCWgPQwg2A1yQLQZxQJSGlFKUaBVLu2gWR0ChLWxk3CKrdX2UKGgGaAloD0MIuti0UsiwckCUhpRSlGgVS89oFkdAoS2CWC2+f3V9lChoBmgJaA9DCE0wnGvYa3FAlIaUUpRoFUuwaBZHQKEtgdzXBgx1fZQoaAZoCWgPQwhM+nsp/NRyQJSGlFKUaBVLuGgWR0ChLanmA9V4dX2UKGgGaAloD0MIH6LRHcR/ckCUhpRSlGgVS6poFkdAoS26vs7dSHV9lChoBmgJaA9DCIWX4NSHgHBAlIaUUpRoFUunaBZHQKEtzusLfDV1fZQoaAZoCWgPQwgRx7q4jZFwQJSGlFKUaBVLo2gWR0ChLdXdbgTAdX2UKGgGaAloD0MInWaBdscFc0CUhpRSlGgVS6VoFkdAoS4tPHktE3V9lChoBmgJaA9DCLx6FRldOHJAlIaUUpRoFUu9aBZHQKEuhBrvb491fZQoaAZoCWgPQwgmGw+22IFwQJSGlFKUaBVLm2gWR0ChLo3Hq/ucdX2UKGgGaAloD0MIN6j91g6bckCUhpRSlGgVS51oFkdAoUNiBTXJ5nV9lChoBmgJaA9DCDi9i/cj6nBAlIaUUpRoFUueaBZHQKFDaI5YHPh1fZQoaAZoCWgPQwiemWA41/BxQJSGlFKUaBVLrWgWR0ChQ6EK/mDEdX2UKGgGaAloD0MIe/Xx0LcqckCUhpRSlGgVS6toFkdAoUPBmNBF/nV9lChoBmgJaA9DCLaEfNDzsnFAlIaUUpRoFUuraBZHQKFD7QP7N0N1fZQoaAZoCWgPQwhZFHZR9ApyQJSGlFKUaBVLv2gWR0ChQ+vQnhKldX2UKGgGaAloD0MI7fXuj7dVckCUhpRSlGgVS7toFkdAoUPzMcIZ63V9lChoBmgJaA9DCB1znrFvr3NAlIaUUpRoFUu2aBZHQKFEJM0xdpt1fZQoaAZoCWgPQwiHwfwVcm9yQJSGlFKUaBVLt2gWR0ChRClXq7iAdX2UKGgGaAloD0MIKNap8v2MckCUhpRSlGgVS6FoFkdAoUQx/9YOlXV9lChoBmgJaA9DCG2pg7wepEtAlIaUUpRoFUuEaBZHQKFEOtPHktF1fZQoaAZoCWgPQwjqtG6D2q1wQJSGlFKUaBVLrmgWR0ChRELx7RfGdX2UKGgGaAloD0MI4q5eRYb5cECUhpRSlGgVS7doFkdAoURLgflp5HV9lChoBmgJaA9DCF6+9WG9N3FAlIaUUpRoFUu2aBZHQKFEbTUAks11fZQoaAZoCWgPQwh1yqMb4TdxQJSGlFKUaBVLpGgWR0ChRMw9aEBbdX2UKGgGaAloD0MIqoB7nr8+cECUhpRSlGgVS6ZoFkdAoUTcknkT6HV9lChoBmgJaA9DCHqrrkN1xXBAlIaUUpRoFUuSaBZHQKFFbuTA31l1fZQoaAZoCWgPQwiMhSFy+ttvQJSGlFKUaBVLoWgWR0ChRZLqUu+RdX2UKGgGaAloD0MI/7EQHUKncUCUhpRSlGgVS6hoFkdAoUXnpbD/EXV9lChoBmgJaA9DCGQgzy4fE3JAlIaUUpRoFUupaBZHQKFGQmKqGUR1fZQoaAZoCWgPQwgtQUZABeRyQJSGlFKUaBVLvGgWR0ChRlGGucMFdX2UKGgGaAloD0MI393KEt2hckCUhpRSlGgVS6JoFkdAoUZnsmfGuXV9lChoBmgJaA9DCEW6n1NQg3JAlIaUUpRoFUu/aBZHQKFGivHtF8Z1fZQoaAZoCWgPQwjUuaKUEHFvQJSGlFKUaBVLr2gWR0ChRqtdJJ5FdX2UKGgGaAloD0MIlDDT9u+EckCUhpRSlGgVS8BoFkdAoUbQC+10DHV9lChoBmgJaA9DCNx/ZDr07nJAlIaUUpRoFUu4aBZHQKFG1Fy7wrl1fZQoaAZoCWgPQwiXOV0WE91zQJSGlFKUaBVLyGgWR0ChRvsxwhnrdX2UKGgGaAloD0MIG4Uks3rOc0CUhpRSlGgVS/doFkdAoUdXWpZOi3V9lChoBmgJaA9DCHNMFvdfWXNAlIaUUpRoFUvcaBZHQKFHYzfJmul1fZQoaAZoCWgPQwh5B3jSgohxQJSGlFKUaBVLsGgWR0ChR3mZmZmadX2UKGgGaAloD0MIPj22ZQCfc0CUhpRSlGgVS+9oFkdAoUfI/X5FgHV9lChoBmgJaA9DCPj6WpdaR3JAlIaUUpRoFUvJaBZHQKFH2MI/qxF1fZQoaAZoCWgPQwg/i6VIPl5zQJSGlFKUaBVLzGgWR0ChSAqTKT0QdX2UKGgGaAloD0MImus00tKHc0CUhpRSlGgVS9loFkdAoUhbTx5LRXV9lChoBmgJaA9DCHC2uTF9FHJAlIaUUpRoFUvBaBZHQKFIagwoLG91fZQoaAZoCWgPQwgYIxKFlmBzQJSGlFKUaBVLqmgWR0ChSHgBtDUmdX2UKGgGaAloD0MI5/9VR84AdECUhpRSlGgVS6RoFkdAoUiJY7q6fHV9lChoBmgJaA9DCKotdZBX2nJAlIaUUpRoFUuzaBZHQKFIodMj/uN1fZQoaAZoCWgPQwh1yThGMi1vQJSGlFKUaBVLmGgWR0ChSKH58BuGdX2UKGgGaAloD0MIMCqpExC1c0CUhpRSlGgVS6toFkdAoUi6i9IwunV9lChoBmgJaA9DCCVYHM585nJAlIaUUpRoFUutaBZHQKFJCVqveP91fZQoaAZoCWgPQwh9eJYg4/5zQJSGlFKUaBVLvGgWR0ChSVPN/vv0dX2UKGgGaAloD0MIMEYkCu2lcUCUhpRSlGgVS9BoFkdAoUlwxk/bCnV9lChoBmgJaA9DCDEG1nH8X3NAlIaUUpRoFUu6aBZHQKFJpRaX8fp1fZQoaAZoCWgPQwjWxAJf0QVxQJSGlFKUaBVLmGgWR0ChSb11wHZ9dX2UKGgGaAloD0MIHLKBdHF5cUCUhpRSlGgVS85oFkdAoUn5cE/0NHV9lChoBmgJaA9DCK+w4H4AMXJAlIaUUpRoFUvOaBZHQKFKEe18b711fZQoaAZoCWgPQwhuawvPy41wQJSGlFKUaBVLrGgWR0ChSjFyR0U5dX2UKGgGaAloD0MIOX09X3MHc0CUhpRSlGgVS81oFkdAoUpaziS7oXV9lChoBmgJaA9DCMpqup4oTXBAlIaUUpRoFUuvaBZHQKFKiogFHJ91fZQoaAZoCWgPQwiuga0S7HJwQJSGlFKUaBVLmWgWR0ChSo0sWfsedX2UKGgGaAloD0MINsgkIycTcUCUhpRSlGgVS6RoFkdAoUqVWCEpRXV9lChoBmgJaA9DCFORCmOLNnJAlIaUUpRoFUuyaBZHQKFKsRpUPxx1fZQoaAZoCWgPQwjvkGKABCpwQJSGlFKUaBVLpWgWR0ChSsy+Yc//dX2UKGgGaAloD0MI1qwzvq8jc0CUhpRSlGgVS8NoFkdAoUrWmixmkHV9lChoBmgJaA9DCIzyzMshM3NAlIaUUpRoFUvKaBZHQKFLKolUp/h1fZQoaAZoCWgPQwgDXfsCeq9xQJSGlFKUaBVLxGgWR0ChS4sunMt9dX2UKGgGaAloD0MIaFn3jwXUc0CUhpRSlGgVS6ZoFkdAoUuaTlkpZ3V9lChoBmgJaA9DCLMLBtccvHNAlIaUUpRoFUu6aBZHQKFLwP5pJwt1fZQoaAZoCWgPQwhcrKjBtH1wQJSGlFKUaBVLqmgWR0ChS9+qioKldX2UKGgGaAloD0MImyFVFC89c0CUhpRSlGgVS8loFkdAoUxs6mwaBXV9lChoBmgJaA9DCJdvfVgviHJAlIaUUpRoFUvGaBZHQKFMpCtRvWJ1fZQoaAZoCWgPQwicMjffiORxQJSGlFKUaBVLvGgWR0ChTMVyvLX+dX2UKGgGaAloD0MIYmh1csagcUCUhpRSlGgVS6VoFkdAoUzZYHPeHnV9lChoBmgJaA9DCCwN/KiGbXNAlIaUUpRoFUvWaBZHQKFM/FRYRul1fZQoaAZoCWgPQwii8UQQ54hyQJSGlFKUaBVLx2gWR0ChTR71ZkkKdX2UKGgGaAloD0MIAtnr3d/XckCUhpRSlGgVS7RoFkdAoU0fDtPYWnV9lChoBmgJaA9DCLKACdx66XJAlIaUUpRoFUu4aBZHQKFNJNsWO6x1fZQoaAZoCWgPQwgL73IRn71yQJSGlFKUaBVLqGgWR0ChTT08V58jdX2UKGgGaAloD0MIs/D1tW6ockCUhpRSlGgVS5toFkdAoU1j3yqdYnV9lChoBmgJaA9DCHOc24Q7BXRAlIaUUpRoFUvGaBZHQKFNdF3pwCN1fZQoaAZoCWgPQwgQ7PgvENFxQJSGlFKUaBVLvGgWR0ChTXRzzVc2dX2UKGgGaAloD0MI96sA363/ckCUhpRSlGgVS8JoFkdAoU5IubqhUXV9lChoBmgJaA9DCGgj100pg3JAlIaUUpRoFUu7aBZHQKFOVYnOSnt1fZQoaAZoCWgPQwhpAG+BREV0QJSGlFKUaBVL2GgWR0ChToplSS/1dX2UKGgGaAloD0MIaf8DrFXIcUCUhpRSlGgVS8VoFkdAoU6WkpI+XHV9lChoBmgJaA9DCPM9IxHaHXBAlIaUUpRoFUujaBZHQKFOoma6ST11fZQoaAZoCWgPQwjFWKZfYgBxQJSGlFKUaBVLq2gWR0ChTuT+vQnhdX2UKGgGaAloD0MIEmqGVJGdcUCUhpRSlGgVS5hoFkdAoU7zZSNwSHV9lChoBmgJaA9DCHH/kemQs3BAlIaUUpRoFUuwaBZHQKFPK7bL2Yh1fZQoaAZoCWgPQwhEF9S3jHVyQJSGlFKUaBVLomgWR0ChT1mYa5wwdX2UKGgGaAloD0MI6dK/JNV2c0CUhpRSlGgVS8RoFkdAoU9bxPO6d3V9lChoBmgJaA9DCBoXDoSkGnJAlIaUUpRoFUunaBZHQKFPkkLx7Rh1fZQoaAZoCWgPQwi70Fyn0ShxQJSGlFKUaBVLwGgWR0ChT59/SYw7dX2UKGgGaAloD0MI7rH0oUuzcUCUhpRSlGgVS6xoFkdAoU+z2L5yl3V9lChoBmgJaA9DCFOvWwTGxHBAlIaUUpRoFUuzaBZHQKFPzUMG5c11fZQoaAZoCWgPQwjiOsYVl/hzQJSGlFKUaBVL1WgWR0ChT+R2jfvXdX2UKGgGaAloD0MIP/7Sor46c0CUhpRSlGgVS9NoFkdAoU/i8an753V9lChoBmgJaA9DCGUBE7h1TnFAlIaUUpRoFUukaBZHQKFQaptJnQJ1ZS4="
|
73 |
},
|
74 |
"ep_success_buffer": {
|
75 |
":type:": "<class 'collections.deque'>",
|
|
|
86 |
"n_epochs": 10,
|
87 |
"clip_range": {
|
88 |
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
},
|
91 |
"clip_range_vf": null,
|
92 |
"target_kl": null
|
LunarLander-v2-ppo/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 84637
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1f8ba15d5c1edab3243ab0c0041458e83e9b8c926ab9adbf90cfc3805390f770
|
3 |
size 84637
|
LunarLander-v2-ppo/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43073
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8394f7a25a7e73594f363cba58c15b3d17edbca92b6479d0cd832c7c1309f6f7
|
3 |
size 43073
|
README.md
CHANGED
@@ -10,7 +10,7 @@ model-index:
|
|
10 |
results:
|
11 |
- metrics:
|
12 |
- type: mean_reward
|
13 |
-
value:
|
14 |
name: mean_reward
|
15 |
task:
|
16 |
type: reinforcement-learning
|
|
|
10 |
results:
|
11 |
- metrics:
|
12 |
- type: mean_reward
|
13 |
+
value: 297.26 +/- 14.96
|
14 |
name: mean_reward
|
15 |
task:
|
16 |
type: reinforcement-learning
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f2ecf22b710>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2ecf22b7a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2ecf22b830>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2ecf22b8c0>", "_build": "<function ActorCriticPolicy._build at 0x7f2ecf22b950>", "forward": "<function ActorCriticPolicy.forward at 0x7f2ecf22b9e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2ecf22ba70>", "_predict": "<function ActorCriticPolicy._predict at 0x7f2ecf22bb00>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2ecf22bb90>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2ecf22bc20>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2ecf22bcb0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f2ecf26cbd0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVngEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBXNoYXBllEsIhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSwiFlIwBQ5R0lFKUjARoaWdolGgSKJYgAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lGgKSwiFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWCAAAAAAAAAAAAAAAAAAAAJRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZRoFXSUUpSMDWJvdW5kZWRfYWJvdmWUaBIolggAAAAAAAAAAAAAAAAAAACUaCFLCIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVgQAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwFc2hhcGWUKYwFZHR5cGWUjAVudW1weZRoB5OUjAJpOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRijApfbnBfcmFuZG9tlE51Yi4=", "n": 4, "shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 2015232, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652475018.183312, "learning_rate": {":type:": "<class 'function'>", ":serialized:": "gAWVTQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsDSxNDHGQBiAAbAGQBGABkAXwAGAAUAGQBFwCIARQAUwCUTksBhpQpjANwY3SUhZSMHzxpcHl0aG9uLWlucHV0LTMyLTM4MzMzNDUyMWQ3NT6UjAg8bGFtYmRhPpRLAkMAlIwGZmFjdG9ylIwBeJSGlCl0lFKUfZQojAtfX3BhY2thZ2VfX5ROjAhfX25hbWVfX5SMCF9fbWFpbl9flHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUaBopUpSGlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBdoDowMX19xdWFsbmFtZV9flIwkbGluZWFyX2RlY2F5X3NjaGVkLjxsb2NhbHM+LjxsYW1iZGE+lIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEsKhZRSlGgvRz9QYk3S8an8hZRSlIaUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "tensorboard_log": "runs/3hyvnm8s", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVTQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsDSxNDHGQBiAAbAGQBGABkAXwAGAAUAGQBFwCIARQAUwCUTksBhpQpjANwY3SUhZSMHzxpcHl0aG9uLWlucHV0LTMyLTM4MzMzNDUyMWQ3NT6UjAg8bGFtYmRhPpRLAkMAlIwGZmFjdG9ylIwBeJSGlCl0lFKUfZQojAtfX3BhY2thZ2VfX5ROjAhfX25hbWVfX5SMCF9fbWFpbl9flHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUaBopUpSGlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBdoDowMX19xdWFsbmFtZV9flIwkbGluZWFyX2RlY2F5X3NjaGVkLjxsb2NhbHM+LjxsYW1iZGE+lIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEsKhZRSlGgvRz9QYk3S8an8hZRSlIaUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGYq57z9LVk+0tkjPWKFA7+hHm68o2uePQAAAAAAAAAAQOs/vowA3D4QmWE8wWFOv+Xn2b7eJjU+AAAAAAAAAACNpAI+EWkzPgF0p74gYgK/5ay8PRwKg74AAAAAAAAAAM0Inj3RKKw9DfGJvpNI5r7YcOm8mCXWvQAAAAAAAAAAs99gvTeCLz7IyRs+WZr3von3mbtVhDk+AAAAAAAAAAAzpX48tnVVvOzlg71c7zY9olayvf75Dz4AAIA/AACAP02SPD12Lg89WvqKvtTdor4moZ27WoEOvgAAAAAAAAAA87qUPfrxrT4TBNK8/H8Tv7ANCj6GAw+9AAAAAAAAAAANKBK+XACSPyO6FL+uuTC/7e5Kvt1U674AAAAAAAAAAJoPqDysIa4/OjR4Pi9pv76DiY881926PQAAAAAAAAAAZuKBvPbsJbr2WJ08AFUes30q97l+wimzAACAPwAAgD/a04c9BVmOPBYlV778eaW+Z70jvduClr0AAAAAAAAAAJr/3ryUULA7lJYoPl8HOr6iVq496MNKvwAAAAAAAIA/M52RPB/NhLsx7xi9lmEGPJUhzTwTF/C8AACAPwAAgD/Nljq8z3WwPxDPNL78hJy+Pxbyuw8slb0AAAAAAAAAAMBdlT30CqI9kkChvttAxL5+Z3C9sLsPvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI2UKQgxKrcECUhpRSlIwBbJRLr4wBdJRHQKFXDxwQ1791fZQoaAZoCWgPQwgH7kCdMt1xQJSGlFKUaBVLsGgWR0ChVynAAQxvdX2UKGgGaAloD0MIFJUNayq1c0CUhpRSlGgVS8doFkdAoVdIRkEs8XV9lChoBmgJaA9DCMNhaeDHSnBAlIaUUpRoFUuqaBZHQKFXc9t/Fzd1fZQoaAZoCWgPQwjmV3OAINdzQJSGlFKUaBVLuWgWR0ChV6I4dZJTdX2UKGgGaAloD0MIRkJbzuUqcECUhpRSlGgVS7ZoFkdAoWoJKFqSHXV9lChoBmgJaA9DCHKkMzByLXJAlIaUUpRoFUu6aBZHQKFqF91loUV1fZQoaAZoCWgPQwgXu31WGd1oQJSGlFKUaBVN6ANoFkdAoWpQD5j6N3V9lChoBmgJaA9DCHvdIjDWpHJAlIaUUpRoFUvPaBZHQKFqU3+dbxF1fZQoaAZoCWgPQwjf+xu0V990QJSGlFKUaBVLr2gWR0ChalfLkjoqdX2UKGgGaAloD0MIpaKx9nemcUCUhpRSlGgVS6toFkdAoWpe+oLofXV9lChoBmgJaA9DCIOhDiuc2XNAlIaUUpRoFUvLaBZHQKFqa+Ofdyl1fZQoaAZoCWgPQwiCPLt8qxxzQJSGlFKUaBVLwGgWR0ChaoES26TXdX2UKGgGaAloD0MIX0Av3Lneb0CUhpRSlGgVS5poFkdAoWrB0Qsf73V9lChoBmgJaA9DCDlegeiJMHBAlIaUUpRoFUuiaBZHQKFq2G+K0lZ1fZQoaAZoCWgPQwjFH0WdOaZzQJSGlFKUaBVLwWgWR0ChaxsZpBX0dX2UKGgGaAloD0MIp3Ub1L6+cUCUhpRSlGgVS7BoFkdAoWsbI/7iynV9lChoBmgJaA9DCKzGEtbGnXJAlIaUUpRoFUugaBZHQKFrLfb9If91fZQoaAZoCWgPQwicbAN3YLRwQJSGlFKUaBVLsWgWR0ChazsQ2/BWdX2UKGgGaAloD0MIWMUbmQd2c0CUhpRSlGgVS8doFkdAoWtArMC9y3V9lChoBmgJaA9DCPAYHvvZE3BAlIaUUpRoFUuhaBZHQKFrVb/wRXh1fZQoaAZoCWgPQwhYycfugr1xQJSGlFKUaBVLj2gWR0Cha7q9XcQAdX2UKGgGaAloD0MIO+RmuEEuckCUhpRSlGgVS7toFkdAoWxDs0HhTHV9lChoBmgJaA9DCBNGs7K9B3FAlIaUUpRoFUuwaBZHQKFscD7qIJt1fZQoaAZoCWgPQwjV52ordipyQJSGlFKUaBVLumgWR0ChbIXL/0dzdX2UKGgGaAloD0MIcCL6tTWzc0CUhpRSlGgVS79oFkdAoWydjslb/3V9lChoBmgJaA9DCB3nNuGeWXNAlIaUUpRoFUvFaBZHQKFsqzJp35h1fZQoaAZoCWgPQwiOeLKbGThyQJSGlFKUaBVLqWgWR0ChbM80cfeUdX2UKGgGaAloD0MIoz7JHXZ8cECUhpRSlGgVS7FoFkdAoWz6ohpxm3V9lChoBmgJaA9DCCAIkKFjTHRAlIaUUpRoFUvaaBZHQKFs/vVEuxt1fZQoaAZoCWgPQwg4oKUrGLBzQJSGlFKUaBVL1GgWR0ChbQUtI066dX2UKGgGaAloD0MIxFp8CkB2ckCUhpRSlGgVS6VoFkdAoW0qUX531XV9lChoBmgJaA9DCHb7rDLTrnBAlIaUUpRoFUukaBZHQKFtNBeHBUJ1fZQoaAZoCWgPQwiELuHQW/txQJSGlFKUaBVLpmgWR0ChbVYqwyIpdX2UKGgGaAloD0MImGn7V1YDc0CUhpRSlGgVS8hoFkdAoW160IC2dHV9lChoBmgJaA9DCEq3JXKBx3JAlIaUUpRoFUvKaBZHQKFtgdQwbl11fZQoaAZoCWgPQwiOBBpsaolyQJSGlFKUaBVLyGgWR0ChbZ3/5tWNdX2UKGgGaAloD0MIPKJCdXMLS0CUhpRSlGgVS19oFkdAoW2pSm65G3V9lChoBmgJaA9DCDT1ukXgIXNAlIaUUpRoFUumaBZHQKFtt4NZvDR1fZQoaAZoCWgPQwjD1mzlJY9xQJSGlFKUaBVLmmgWR0Chbj+gUUO/dX2UKGgGaAloD0MIJJf/kD7tckCUhpRSlGgVS8NoFkdAoW6CkAPuonV9lChoBmgJaA9DCAd6qG2DCnNAlIaUUpRoFUu1aBZHQKFufhjOLR91fZQoaAZoCWgPQwg7xD9s6SRyQJSGlFKUaBVLhmgWR0ChboI8p1A8dX2UKGgGaAloD0MIDeNuEK35cECUhpRSlGgVS5xoFkdAoW6Lg88s+XV9lChoBmgJaA9DCFWmmIOg9nJAlIaUUpRoFUu0aBZHQKFurkPMB6t1fZQoaAZoCWgPQwjuXu6TI4JxQJSGlFKUaBVLrGgWR0Chbychs67vdX2UKGgGaAloD0MIDhXj/I1Cc0CUhpRSlGgVS8doFkdAoW86lrM1THV9lChoBmgJaA9DCDxqTIg5MHFAlIaUUpRoFUu1aBZHQKFvN7v5P/J1fZQoaAZoCWgPQwh5spsZPeFzQJSGlFKUaBVL0WgWR0Chb10AT7EYdX2UKGgGaAloD0MIXBsqxnlkcUCUhpRSlGgVS59oFkdAoW9v0yxiX3V9lChoBmgJaA9DCIIBhA/l+nFAlIaUUpRoFUuYaBZHQKFve7nxJ/Z1fZQoaAZoCWgPQwipFhHFpLFzQJSGlFKUaBVLyGgWR0Chb6FfqoqDdX2UKGgGaAloD0MIx53SwXqEckCUhpRSlGgVS7xoFkdAoW+jtE5QxnV9lChoBmgJaA9DCD/G3LUE3nBAlIaUUpRoFUu9aBZHQKFvrWjGkvd1fZQoaAZoCWgPQwgbSYJwRRpzQJSGlFKUaBVLumgWR0Chb89xIatLdX2UKGgGaAloD0MIdQKaCBtlcUCUhpRSlGgVS59oFkdAoXBpT2nKn3V9lChoBmgJaA9DCEaWzLE8bnBAlIaUUpRoFUuqaBZHQKFwg99tuUF1fZQoaAZoCWgPQwjk3CbcqyZxQJSGlFKUaBVLzGgWR0ChcKrs0HhTdX2UKGgGaAloD0MIuAN1yuNkckCUhpRSlGgVS75oFkdAoXDGaQV9GHV9lChoBmgJaA9DCNy8cVLYmXNAlIaUUpRoFUuzaBZHQKFw0ma6ST11fZQoaAZoCWgPQwjnqKPjKlVzQJSGlFKUaBVLwGgWR0ChcMlfZ26kdX2UKGgGaAloD0MIbJih8QRucUCUhpRSlGgVS5NoFkdAoXEd/8VHnXV9lChoBmgJaA9DCD9uv3wydHFAlIaUUpRoFUuuaBZHQKFxSrKeTV51fZQoaAZoCWgPQwhZMVwdwCZzQJSGlFKUaBVLr2gWR0ChcVIUJv5ydX2UKGgGaAloD0MIL8A+OnX5cUCUhpRSlGgVS7VoFkdAoXFQ9cKPXHV9lChoBmgJaA9DCBJnRdRE3nBAlIaUUpRoFUuVaBZHQKFxaZCv5gx1fZQoaAZoCWgPQwhNLsbAun9yQJSGlFKUaBVLvGgWR0ChcayprDZUdX2UKGgGaAloD0MIrz+Jz91uckCUhpRSlGgVS8xoFkdAoXHj7ZWaMXV9lChoBmgJaA9DCDvgumKGPXNAlIaUUpRoFUvEaBZHQKFx9LyMDOl1fZQoaAZoCWgPQwiPpQ9dECByQJSGlFKUaBVLtmgWR0Chcfj59E1EdX2UKGgGaAloD0MImngHeJLnc0CUhpRSlGgVS9FoFkdAoXIkbiqABnV9lChoBmgJaA9DCB123zF863NAlIaUUpRoFUu3aBZHQKFyjaIN3GJ1fZQoaAZoCWgPQwgewY2ULT50QJSGlFKUaBVLsmgWR0Chcpe0PYnOdX2UKGgGaAloD0MICACOPXvDckCUhpRSlGgVS51oFkdAoXKTvd/KAHV9lChoBmgJaA9DCGeZRSj2F3JAlIaUUpRoFUuhaBZHQKFyoUA1ejV1fZQoaAZoCWgPQwjz5QXYxzJ0QJSGlFKUaBVLtGgWR0Chcr/8dgfEdX2UKGgGaAloD0MIj6flB+7BcUCUhpRSlGgVS45oFkdAoXLiXlbNbHV9lChoBmgJaA9DCAa4IFtWaHNAlIaUUpRoFUvAaBZHQKFy+6ij+Jh1fZQoaAZoCWgPQwiNfcnGg5VvQJSGlFKUaBVLpmgWR0ChcvvatcOcdX2UKGgGaAloD0MI9BjlmRcRcUCUhpRSlGgVS7BoFkdAoXNEZgogFHV9lChoBmgJaA9DCM/1fTiIXnFAlIaUUpRoFUu3aBZHQKFzc/UONHZ1fZQoaAZoCWgPQwg4SIjyxfdxQJSGlFKUaBVLymgWR0Chc5hcqvvCdX2UKGgGaAloD0MIIjfDDfiqcUCUhpRSlGgVS7toFkdAoXPKTr3TNXV9lChoBmgJaA9DCPVIg9taE3JAlIaUUpRoFUu5aBZHQKF0ABz3h4t1fZQoaAZoCWgPQwjFO8CTVtZyQJSGlFKUaBVLt2gWR0ChdA8QqZtvdX2UKGgGaAloD0MI+nq+ZrnXcUCUhpRSlGgVS8FoFkdAoXQuWt2cKHV9lChoBmgJaA9DCC4e3nPgs25AlIaUUpRoFUuWaBZHQKF0UKR+z+p1fZQoaAZoCWgPQwjIeJRKOEBzQJSGlFKUaBVLymgWR0ChdHdB8hLXdX2UKGgGaAloD0MI5zdMNAhhcUCUhpRSlGgVS6BoFkdAoXR7ZezD43V9lChoBmgJaA9DCCP5SiDlqnNAlIaUUpRoFUuyaBZHQKF0pPhybQV1fZQoaAZoCWgPQwgepRKeECVxQJSGlFKUaBVLk2gWR0ChdLfPgNwzdX2UKGgGaAloD0MI/g+wVi0rcUCUhpRSlGgVS6JoFkdAoXTGiHqNZXV9lChoBmgJaA9DCGDHf4Gg9nJAlIaUUpRoFUu0aBZHQKF00sSTQmh1fZQoaAZoCWgPQwgkY7X5f+k9QJSGlFKUaBVLXmgWR0ChdOP6be/IdX2UKGgGaAloD0MIpn1zf3U5dECUhpRSlGgVS8xoFkdAoXTlZgXuV3V9lChoBmgJaA9DCJWAmIQLQXBAlIaUUpRoFUunaBZHQKF08P6KtPp1fZQoaAZoCWgPQwheY5eoHlZxQJSGlFKUaBVLo2gWR0ChdSwmu1WsdX2UKGgGaAloD0MIlnfVA+aIc0CUhpRSlGgVS6xoFkdAoXWS2phnanV9lChoBmgJaA9DCM6MfjSca3NAlIaUUpRoFUvDaBZHQKF1vTCLuQZ1fZQoaAZoCWgPQwgniSXlrsJyQJSGlFKUaBVLmGgWR0ChdcIuoP07dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1230, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVTQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsDSxNDHGQBiAAbAGQBGABkAXwAGAAUAGQBFwCIARQAUwCUTksBhpQpjANwY3SUhZSMHzxpcHl0aG9uLWlucHV0LTMyLTM4MzMzNDUyMWQ3NT6UjAg8bGFtYmRhPpRLAkMAlIwGZmFjdG9ylIwBeJSGlCl0lFKUfZQojAtfX3BhY2thZ2VfX5ROjAhfX25hbWVfX5SMCF9fbWFpbl9flHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUaBopUpSGlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBdoDowMX19xdWFsbmFtZV9flIwkbGluZWFyX2RlY2F5X3NjaGVkLjxsb2NhbHM+LjxsYW1iZGE+lIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEsKhZRSlGgvRz/JmZmZmZmahZRSlIaUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.4.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "False", "Numpy": "1.21.6", "Gym": "0.17.3"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fbcb39ed560>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fbcb39ed5f0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fbcb39ed680>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fbcb39ed710>", "_build": "<function ActorCriticPolicy._build at 0x7fbcb39ed7a0>", "forward": "<function ActorCriticPolicy.forward at 0x7fbcb39ed830>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fbcb39ed8c0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fbcb39ed950>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fbcb39ed9e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fbcb39eda70>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fbcb39edb00>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fbcb3a37930>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVngEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBXNoYXBllEsIhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSwiFlIwBQ5R0lFKUjARoaWdolGgSKJYgAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lGgKSwiFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWCAAAAAAAAAAAAAAAAAAAAJRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZRoFXSUUpSMDWJvdW5kZWRfYWJvdmWUaBIolggAAAAAAAAAAAAAAAAAAACUaCFLCIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVgQAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwFc2hhcGWUKYwFZHR5cGWUjAVudW1weZRoB5OUjAJpOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRijApfbnBfcmFuZG9tlE51Yi4=", "n": 4, "shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 2015232, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652477470.7166739, "learning_rate": 0.0004, "tensorboard_log": "runs/21ru89dr", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz86NuLrHEMthZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGa0iTwhgAc/3jLKPJB+W79F6BI95bP0OgAAAAAAAAAAZqTsPIzGfD43GZs9xioYv/MeHjwdh708AAAAAAAAAADNTGC5XHM1uor4bLxDUfGyotWlOmZfJjEAAIA/AACAP5rr/7zP24A/tDoOvTthbr82mz29ulORvQAAAAAAAAAATbR1vYjimD26aEQ+53zSvswlZryokXA9AAAAAAAAAACaY7u9YRgBPozJnz7jnP6+16cGvIJNjz4AAAAAAAAAAJoTaDxcj0m6wQEBNprGQDDNDqe7NrMitQAAgD8AAIA/gIJdPa8FuT+a/yM/82LJPfeW+7sx2gE+AAAAAAAAAABmUYK8tjkwPaaTcj7yDLu+a1RwPkq4zjwAAAAAAAAAAGYWWbz0qY0+yw6vvJqmGL/l7VW9alkBPAAAAAAAAAAAml23PAqBert934S+ib2uvVY5iz1r9Rk/AAAAAAAAgD9mW3u9MeB+P1Mhqr2rvE+/ev71vQ+ckb0AAAAAAAAAABPkL74wrwc/MOiOPXaYEL8fMoi+wmPfPQAAAAAAAAAAM/85POFomrqy+S04a2QlMxLy0TijYEi3AACAPwAAgD8AXCE80t/+u+77NzzbmYM81hdPvZAFXz0AAIA/AACAP81VvbwEBvQ9MLg1Pten277qzfw8mV0HPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIeLRxxBonckCUhpRSlIwBbJRLpowBdJRHQKEtQtNBWxR1fZQoaAZoCWgPQwg2A1yQLQZxQJSGlFKUaBVLu2gWR0ChLWxk3CKrdX2UKGgGaAloD0MIuti0UsiwckCUhpRSlGgVS89oFkdAoS2CWC2+f3V9lChoBmgJaA9DCE0wnGvYa3FAlIaUUpRoFUuwaBZHQKEtgdzXBgx1fZQoaAZoCWgPQwhM+nsp/NRyQJSGlFKUaBVLuGgWR0ChLanmA9V4dX2UKGgGaAloD0MIH6LRHcR/ckCUhpRSlGgVS6poFkdAoS26vs7dSHV9lChoBmgJaA9DCIWX4NSHgHBAlIaUUpRoFUunaBZHQKEtzusLfDV1fZQoaAZoCWgPQwgRx7q4jZFwQJSGlFKUaBVLo2gWR0ChLdXdbgTAdX2UKGgGaAloD0MInWaBdscFc0CUhpRSlGgVS6VoFkdAoS4tPHktE3V9lChoBmgJaA9DCLx6FRldOHJAlIaUUpRoFUu9aBZHQKEuhBrvb491fZQoaAZoCWgPQwgmGw+22IFwQJSGlFKUaBVLm2gWR0ChLo3Hq/ucdX2UKGgGaAloD0MIN6j91g6bckCUhpRSlGgVS51oFkdAoUNiBTXJ5nV9lChoBmgJaA9DCDi9i/cj6nBAlIaUUpRoFUueaBZHQKFDaI5YHPh1fZQoaAZoCWgPQwiemWA41/BxQJSGlFKUaBVLrWgWR0ChQ6EK/mDEdX2UKGgGaAloD0MIe/Xx0LcqckCUhpRSlGgVS6toFkdAoUPBmNBF/nV9lChoBmgJaA9DCLaEfNDzsnFAlIaUUpRoFUuraBZHQKFD7QP7N0N1fZQoaAZoCWgPQwhZFHZR9ApyQJSGlFKUaBVLv2gWR0ChQ+vQnhKldX2UKGgGaAloD0MI7fXuj7dVckCUhpRSlGgVS7toFkdAoUPzMcIZ63V9lChoBmgJaA9DCB1znrFvr3NAlIaUUpRoFUu2aBZHQKFEJM0xdpt1fZQoaAZoCWgPQwiHwfwVcm9yQJSGlFKUaBVLt2gWR0ChRClXq7iAdX2UKGgGaAloD0MIKNap8v2MckCUhpRSlGgVS6FoFkdAoUQx/9YOlXV9lChoBmgJaA9DCG2pg7wepEtAlIaUUpRoFUuEaBZHQKFEOtPHktF1fZQoaAZoCWgPQwjqtG6D2q1wQJSGlFKUaBVLrmgWR0ChRELx7RfGdX2UKGgGaAloD0MI4q5eRYb5cECUhpRSlGgVS7doFkdAoURLgflp5HV9lChoBmgJaA9DCF6+9WG9N3FAlIaUUpRoFUu2aBZHQKFEbTUAks11fZQoaAZoCWgPQwh1yqMb4TdxQJSGlFKUaBVLpGgWR0ChRMw9aEBbdX2UKGgGaAloD0MIqoB7nr8+cECUhpRSlGgVS6ZoFkdAoUTcknkT6HV9lChoBmgJaA9DCHqrrkN1xXBAlIaUUpRoFUuSaBZHQKFFbuTA31l1fZQoaAZoCWgPQwiMhSFy+ttvQJSGlFKUaBVLoWgWR0ChRZLqUu+RdX2UKGgGaAloD0MI/7EQHUKncUCUhpRSlGgVS6hoFkdAoUXnpbD/EXV9lChoBmgJaA9DCGQgzy4fE3JAlIaUUpRoFUupaBZHQKFGQmKqGUR1fZQoaAZoCWgPQwgtQUZABeRyQJSGlFKUaBVLvGgWR0ChRlGGucMFdX2UKGgGaAloD0MI393KEt2hckCUhpRSlGgVS6JoFkdAoUZnsmfGuXV9lChoBmgJaA9DCEW6n1NQg3JAlIaUUpRoFUu/aBZHQKFGivHtF8Z1fZQoaAZoCWgPQwjUuaKUEHFvQJSGlFKUaBVLr2gWR0ChRqtdJJ5FdX2UKGgGaAloD0MIlDDT9u+EckCUhpRSlGgVS8BoFkdAoUbQC+10DHV9lChoBmgJaA9DCNx/ZDr07nJAlIaUUpRoFUu4aBZHQKFG1Fy7wrl1fZQoaAZoCWgPQwiXOV0WE91zQJSGlFKUaBVLyGgWR0ChRvsxwhnrdX2UKGgGaAloD0MIG4Uks3rOc0CUhpRSlGgVS/doFkdAoUdXWpZOi3V9lChoBmgJaA9DCHNMFvdfWXNAlIaUUpRoFUvcaBZHQKFHYzfJmul1fZQoaAZoCWgPQwh5B3jSgohxQJSGlFKUaBVLsGgWR0ChR3mZmZmadX2UKGgGaAloD0MIPj22ZQCfc0CUhpRSlGgVS+9oFkdAoUfI/X5FgHV9lChoBmgJaA9DCPj6WpdaR3JAlIaUUpRoFUvJaBZHQKFH2MI/qxF1fZQoaAZoCWgPQwg/i6VIPl5zQJSGlFKUaBVLzGgWR0ChSAqTKT0QdX2UKGgGaAloD0MImus00tKHc0CUhpRSlGgVS9loFkdAoUhbTx5LRXV9lChoBmgJaA9DCHC2uTF9FHJAlIaUUpRoFUvBaBZHQKFIagwoLG91fZQoaAZoCWgPQwgYIxKFlmBzQJSGlFKUaBVLqmgWR0ChSHgBtDUmdX2UKGgGaAloD0MI5/9VR84AdECUhpRSlGgVS6RoFkdAoUiJY7q6fHV9lChoBmgJaA9DCKotdZBX2nJAlIaUUpRoFUuzaBZHQKFIodMj/uN1fZQoaAZoCWgPQwh1yThGMi1vQJSGlFKUaBVLmGgWR0ChSKH58BuGdX2UKGgGaAloD0MIMCqpExC1c0CUhpRSlGgVS6toFkdAoUi6i9IwunV9lChoBmgJaA9DCCVYHM585nJAlIaUUpRoFUutaBZHQKFJCVqveP91fZQoaAZoCWgPQwh9eJYg4/5zQJSGlFKUaBVLvGgWR0ChSVPN/vv0dX2UKGgGaAloD0MIMEYkCu2lcUCUhpRSlGgVS9BoFkdAoUlwxk/bCnV9lChoBmgJaA9DCDEG1nH8X3NAlIaUUpRoFUu6aBZHQKFJpRaX8fp1fZQoaAZoCWgPQwjWxAJf0QVxQJSGlFKUaBVLmGgWR0ChSb11wHZ9dX2UKGgGaAloD0MIHLKBdHF5cUCUhpRSlGgVS85oFkdAoUn5cE/0NHV9lChoBmgJaA9DCK+w4H4AMXJAlIaUUpRoFUvOaBZHQKFKEe18b711fZQoaAZoCWgPQwhuawvPy41wQJSGlFKUaBVLrGgWR0ChSjFyR0U5dX2UKGgGaAloD0MIOX09X3MHc0CUhpRSlGgVS81oFkdAoUpaziS7oXV9lChoBmgJaA9DCMpqup4oTXBAlIaUUpRoFUuvaBZHQKFKiogFHJ91fZQoaAZoCWgPQwiuga0S7HJwQJSGlFKUaBVLmWgWR0ChSo0sWfsedX2UKGgGaAloD0MINsgkIycTcUCUhpRSlGgVS6RoFkdAoUqVWCEpRXV9lChoBmgJaA9DCFORCmOLNnJAlIaUUpRoFUuyaBZHQKFKsRpUPxx1fZQoaAZoCWgPQwjvkGKABCpwQJSGlFKUaBVLpWgWR0ChSsy+Yc//dX2UKGgGaAloD0MI1qwzvq8jc0CUhpRSlGgVS8NoFkdAoUrWmixmkHV9lChoBmgJaA9DCIzyzMshM3NAlIaUUpRoFUvKaBZHQKFLKolUp/h1fZQoaAZoCWgPQwgDXfsCeq9xQJSGlFKUaBVLxGgWR0ChS4sunMt9dX2UKGgGaAloD0MIaFn3jwXUc0CUhpRSlGgVS6ZoFkdAoUuaTlkpZ3V9lChoBmgJaA9DCLMLBtccvHNAlIaUUpRoFUu6aBZHQKFLwP5pJwt1fZQoaAZoCWgPQwhcrKjBtH1wQJSGlFKUaBVLqmgWR0ChS9+qioKldX2UKGgGaAloD0MImyFVFC89c0CUhpRSlGgVS8loFkdAoUxs6mwaBXV9lChoBmgJaA9DCJdvfVgviHJAlIaUUpRoFUvGaBZHQKFMpCtRvWJ1fZQoaAZoCWgPQwicMjffiORxQJSGlFKUaBVLvGgWR0ChTMVyvLX+dX2UKGgGaAloD0MIYmh1csagcUCUhpRSlGgVS6VoFkdAoUzZYHPeHnV9lChoBmgJaA9DCCwN/KiGbXNAlIaUUpRoFUvWaBZHQKFM/FRYRul1fZQoaAZoCWgPQwii8UQQ54hyQJSGlFKUaBVLx2gWR0ChTR71ZkkKdX2UKGgGaAloD0MIAtnr3d/XckCUhpRSlGgVS7RoFkdAoU0fDtPYWnV9lChoBmgJaA9DCLKACdx66XJAlIaUUpRoFUu4aBZHQKFNJNsWO6x1fZQoaAZoCWgPQwgL73IRn71yQJSGlFKUaBVLqGgWR0ChTT08V58jdX2UKGgGaAloD0MIs/D1tW6ockCUhpRSlGgVS5toFkdAoU1j3yqdYnV9lChoBmgJaA9DCHOc24Q7BXRAlIaUUpRoFUvGaBZHQKFNdF3pwCN1fZQoaAZoCWgPQwgQ7PgvENFxQJSGlFKUaBVLvGgWR0ChTXRzzVc2dX2UKGgGaAloD0MI96sA363/ckCUhpRSlGgVS8JoFkdAoU5IubqhUXV9lChoBmgJaA9DCGgj100pg3JAlIaUUpRoFUu7aBZHQKFOVYnOSnt1fZQoaAZoCWgPQwhpAG+BREV0QJSGlFKUaBVL2GgWR0ChToplSS/1dX2UKGgGaAloD0MIaf8DrFXIcUCUhpRSlGgVS8VoFkdAoU6WkpI+XHV9lChoBmgJaA9DCPM9IxHaHXBAlIaUUpRoFUujaBZHQKFOoma6ST11fZQoaAZoCWgPQwjFWKZfYgBxQJSGlFKUaBVLq2gWR0ChTuT+vQnhdX2UKGgGaAloD0MIEmqGVJGdcUCUhpRSlGgVS5hoFkdAoU7zZSNwSHV9lChoBmgJaA9DCHH/kemQs3BAlIaUUpRoFUuwaBZHQKFPK7bL2Yh1fZQoaAZoCWgPQwhEF9S3jHVyQJSGlFKUaBVLomgWR0ChT1mYa5wwdX2UKGgGaAloD0MI6dK/JNV2c0CUhpRSlGgVS8RoFkdAoU9bxPO6d3V9lChoBmgJaA9DCBoXDoSkGnJAlIaUUpRoFUunaBZHQKFPkkLx7Rh1fZQoaAZoCWgPQwi70Fyn0ShxQJSGlFKUaBVLwGgWR0ChT59/SYw7dX2UKGgGaAloD0MI7rH0oUuzcUCUhpRSlGgVS6xoFkdAoU+z2L5yl3V9lChoBmgJaA9DCFOvWwTGxHBAlIaUUpRoFUuzaBZHQKFPzUMG5c11fZQoaAZoCWgPQwjiOsYVl/hzQJSGlFKUaBVL1WgWR0ChT+R2jfvXdX2UKGgGaAloD0MIP/7Sor46c0CUhpRSlGgVS9NoFkdAoU/i8an753V9lChoBmgJaA9DCGUBE7h1TnFAlIaUUpRoFUukaBZHQKFQaptJnQJ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1230, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.4.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "False", "Numpy": "1.21.6", "Gym": "0.17.3"}}
|
replay.mp4
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5122e05d52fafb380090b92de148974302cd49d736d97a13dfc5aeadc69c149f
|
3 |
+
size 198792
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 297.2619696, "std_reward": 14.957522965526431, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-13T22:08:24.793890"}
|