araffin commited on
Commit
be091c8
1 Parent(s): e33f542

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - SpaceInvadersNoFrameskip-v4
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: SpaceInvadersNoFrameskip-v4
16
+ type: SpaceInvadersNoFrameskip-v4
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 780.00 +/- 273.77
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **SpaceInvadersNoFrameskip-v4**
25
+ This is a trained model of a **A2C** agent playing **SpaceInvadersNoFrameskip-v4**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
27
+ and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
28
+
29
+ The RL Zoo is a training framework for Stable Baselines3
30
+ reinforcement learning agents,
31
+ with hyperparameter optimization and pre-trained agents included.
32
+
33
+ ## Usage (with SB3 RL Zoo)
34
+
35
+ RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
36
+ SB3: https://github.com/DLR-RM/stable-baselines3<br/>
37
+ SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
38
+
39
+ Install the RL Zoo (with SB3 and SB3-Contrib):
40
+ ```bash
41
+ pip install rl_zoo3
42
+ ```
43
+
44
+ ```
45
+ # Download model and save it into the logs/ folder
46
+ python -m rl_zoo3.load_from_hub --algo a2c --env SpaceInvadersNoFrameskip-v4 -orga araffin -f logs/
47
+ python -m rl_zoo3.enjoy --algo a2c --env SpaceInvadersNoFrameskip-v4 -f logs/
48
+ ```
49
+
50
+ If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
51
+ ```
52
+ python -m rl_zoo3.load_from_hub --algo a2c --env SpaceInvadersNoFrameskip-v4 -orga araffin -f logs/
53
+ python -m rl_zoo3.enjoy --algo a2c --env SpaceInvadersNoFrameskip-v4 -f logs/
54
+ ```
55
+
56
+ ## Training (with the RL Zoo)
57
+ ```
58
+ python -m rl_zoo3.train --algo a2c --env SpaceInvadersNoFrameskip-v4 -f logs/
59
+ # Upload the model and generate video (when possible)
60
+ python -m rl_zoo3.push_to_hub --algo a2c --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga araffin
61
+ ```
62
+
63
+ ## Hyperparameters
64
+ ```python
65
+ OrderedDict([('ent_coef', 0.01),
66
+ ('env_wrapper',
67
+ ['stable_baselines3.common.atari_wrappers.AtariWrapper']),
68
+ ('frame_stack', 4),
69
+ ('n_envs', 16),
70
+ ('n_timesteps', 10000000.0),
71
+ ('policy', 'CnnPolicy'),
72
+ ('policy_kwargs',
73
+ 'dict(optimizer_class=RMSpropTFLike, '
74
+ 'optimizer_kwargs=dict(eps=1e-5))'),
75
+ ('vf_coef', 0.25),
76
+ ('normalize', False)])
77
+ ```
78
+
79
+ # Environment Arguments
80
+ ```python
81
+ {'render_mode': 'rgb_array'}
82
+ ```
a2c-SpaceInvadersNoFrameskip-v4.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b44485d1226a0c3f2f5a2f47abf8e123dd96d7b79c6dd4a73518d19cf93ccfa1
3
+ size 13678930
a2c-SpaceInvadersNoFrameskip-v4/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a10
a2c-SpaceInvadersNoFrameskip-v4/data ADDED
The diff for this file is too large to render. See raw diff
 
a2c-SpaceInvadersNoFrameskip-v4/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:95b28e2d6f968629988c4be0062eb2348d2752ad0800e505990c91bbcf638685
3
+ size 6754305
a2c-SpaceInvadersNoFrameskip-v4/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d5bad6d33794aba63c5f360592ae15f71f15dfcde5e0632a7217829469371d41
3
+ size 6757825
a2c-SpaceInvadersNoFrameskip-v4/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-SpaceInvadersNoFrameskip-v4/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.14.21-150400.24.46-default-x86_64-with-glibc2.31 # 1 SMP PREEMPT_DYNAMIC Thu Feb 9 08:38:18 UTC 2023 (2d95137)
2
+ - Python: 3.9.13
3
+ - Stable-Baselines3: 2.0.0a10
4
+ - PyTorch: 2.0.1
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.0
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.26.2
args.yml ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - algo
3
+ - a2c
4
+ - - env
5
+ - SpaceInvadersNoFrameskip-v4
6
+ - - env_kwargs
7
+ - null
8
+ - - eval_episodes
9
+ - 10
10
+ - - eval_freq
11
+ - 10000
12
+ - - gym_packages
13
+ - []
14
+ - - hyperparams
15
+ - null
16
+ - - log_folder
17
+ - rl-trained-agents/
18
+ - - log_interval
19
+ - -1
20
+ - - n_evaluations
21
+ - 20
22
+ - - n_jobs
23
+ - 1
24
+ - - n_startup_trials
25
+ - 10
26
+ - - n_timesteps
27
+ - -1
28
+ - - n_trials
29
+ - 10
30
+ - - num_threads
31
+ - -1
32
+ - - optimize_hyperparameters
33
+ - false
34
+ - - pruner
35
+ - median
36
+ - - sampler
37
+ - tpe
38
+ - - save_freq
39
+ - -1
40
+ - - save_replay_buffer
41
+ - false
42
+ - - seed
43
+ - 910364921
44
+ - - storage
45
+ - null
46
+ - - study_name
47
+ - null
48
+ - - tensorboard_log
49
+ - ''
50
+ - - trained_agent
51
+ - ''
52
+ - - truncate_last_trajectory
53
+ - true
54
+ - - uuid
55
+ - true
56
+ - - vec_env
57
+ - dummy
58
+ - - verbose
59
+ - 1
config.yml ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - ent_coef
3
+ - 0.01
4
+ - - env_wrapper
5
+ - - stable_baselines3.common.atari_wrappers.AtariWrapper
6
+ - - frame_stack
7
+ - 4
8
+ - - n_envs
9
+ - 16
10
+ - - n_timesteps
11
+ - 10000000.0
12
+ - - policy
13
+ - CnnPolicy
14
+ - - policy_kwargs
15
+ - dict(optimizer_class=RMSpropTFLike, optimizer_kwargs=dict(eps=1e-5))
16
+ - - vf_coef
17
+ - 0.25
env_kwargs.yml ADDED
@@ -0,0 +1 @@
 
 
1
+ render_mode: rgb_array
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:88e7fe0a7773c1d06f01bc151d98e36799ac4f28018646787ec64083e0e90875
3
+ size 225551
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 780.0, "std_reward": 273.76997644007645, "is_deterministic": false, "n_eval_episodes": 10, "eval_datetime": "2023-05-25T17:54:34.309170"}
train_eval_metrics.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:115a43e39f25722eef7418aae2e7b7c997c429f9c688d5583e1b563442602eef
3
+ size 493767