Add code
Browse files
README.md
CHANGED
@@ -24,6 +24,100 @@ model-index:
|
|
24 |
This is a trained model of a **A2C** agent playing **Pendulum-v1**
|
25 |
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
26 |
|
27 |
-
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
|
|
24 |
This is a trained model of a **A2C** agent playing **Pendulum-v1**
|
25 |
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
26 |
|
27 |
+
## Usage (with Stable-baselines3)
|
28 |
+
|
29 |
+
```python
|
30 |
+
from huggingface_sb3 import load_from_hub
|
31 |
+
from stable_baselines3 import A2C
|
32 |
+
from stable_baselines3.common.env_util import make_vec_env
|
33 |
+
from stable_baselines3.common.evaluation import evaluate_policy
|
34 |
+
from stable_baselines3.common.vec_env import VecNormalize
|
35 |
+
|
36 |
+
# Download checkpoint and stats
|
37 |
+
env_id = "Pendulum-v1"
|
38 |
+
checkpoint = load_from_hub(f"araffin/a2c-{env_id}", f"a2c-{env_id}.zip")
|
39 |
+
vec_normalize_stats = load_from_hub(f"araffin/a2c-{env_id}", f"vec_normalize.pkl")
|
40 |
+
|
41 |
+
# Load the model
|
42 |
+
model = A2C.load(checkpoint)
|
43 |
+
|
44 |
+
env = make_vec_env(env_id, n_envs=1)
|
45 |
+
env = VecNormalize.load(vec_normalize_stats, env)
|
46 |
+
# do not update them at test time
|
47 |
+
env.training = False
|
48 |
+
# reward normalization is not needed at test time
|
49 |
+
env.norm_reward = False
|
50 |
+
|
51 |
+
# Evaluate
|
52 |
+
print("Evaluating model")
|
53 |
+
mean_reward, std_reward = evaluate_policy(
|
54 |
+
model,
|
55 |
+
env,
|
56 |
+
n_eval_episodes=20,
|
57 |
+
deterministic=True,
|
58 |
+
)
|
59 |
+
print(f"Mean reward = {mean_reward:.2f} +/- {std_reward:.2f}")
|
60 |
+
|
61 |
+
# Start a new episode
|
62 |
+
obs = env.reset()
|
63 |
+
|
64 |
+
try:
|
65 |
+
while True:
|
66 |
+
action, _states = model.predict(obs, deterministic=True)
|
67 |
+
obs, rewards, dones, info = env.step(action)
|
68 |
+
env.render()
|
69 |
+
except KeyboardInterrupt:
|
70 |
+
pass
|
71 |
+
```
|
72 |
+
|
73 |
+
## Training Code
|
74 |
+
|
75 |
+
```python
|
76 |
+
from huggingface_sb3 import package_to_hub
|
77 |
+
from stable_baselines3 import A2C
|
78 |
+
from stable_baselines3.common.env_util import make_vec_env
|
79 |
+
from stable_baselines3.common.vec_env import VecNormalize, sync_envs_normalization
|
80 |
+
|
81 |
+
# Create the environment
|
82 |
+
env_id = "Pendulum-v1"
|
83 |
+
env = make_vec_env(env_id, n_envs=8)
|
84 |
+
# Normalize
|
85 |
+
env = VecNormalize(env, gamma=0.9)
|
86 |
+
|
87 |
+
# Create the evaluation env (could be used in `EvalCallback`)
|
88 |
+
eval_env = make_vec_env(env_id, n_envs=1)
|
89 |
+
eval_env = VecNormalize(eval_env, gamma=0.9, training=False, norm_reward=False)
|
90 |
+
|
91 |
+
# Instantiate the agent
|
92 |
+
model = A2C(
|
93 |
+
"MlpPolicy",
|
94 |
+
env,
|
95 |
+
n_steps=8,
|
96 |
+
gamma=0.9,
|
97 |
+
gae_lambda=0.9,
|
98 |
+
use_sde=True,
|
99 |
+
policy_kwargs=dict(log_std_init=-2),
|
100 |
+
verbose=1,
|
101 |
+
)
|
102 |
+
|
103 |
+
# Train the agent
|
104 |
+
try:
|
105 |
+
model.learn(total_timesteps=int(1e6))
|
106 |
+
except KeyboardInterrupt:
|
107 |
+
pass
|
108 |
+
|
109 |
+
|
110 |
+
# Synchronize stats (done automatically in `EvalCallback`)
|
111 |
+
sync_envs_normalization(env, eval_env)
|
112 |
+
|
113 |
+
package_to_hub(
|
114 |
+
model=model,
|
115 |
+
model_name=f"a2c-{env_id}",
|
116 |
+
model_architecture="A2C",
|
117 |
+
env_id=env_id,
|
118 |
+
eval_env=eval_env,
|
119 |
+
repo_id=f"araffin/a2c-{env_id}",
|
120 |
+
commit_message="Initial commit",
|
121 |
+
)
|
122 |
+
```
|
123 |
|