araffin commited on
Commit
68ab42e
1 Parent(s): 3fcce13

First commit

Browse files
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 111.57 +/- 98.19
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: LunarLander-v2
20
+ type: LunarLander-v2
21
+ ---
22
+
23
+ # **A2C** Agent playing **LunarLander-v2**
24
+ This is a trained model of a **A2C** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
25
+
26
+ ## Usage (with Stable-baselines3)
27
+ TODO: Add your code
28
+
a2c-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:984738ede1ad846034b6ec5502cb394aaf94fabe60f77b503a99cdeaf3f90fb3
3
+ size 100908
a2c-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
1
+ 1.5.1a5
a2c-LunarLander-v2/data ADDED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9d4c786d40>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9d4c786dd0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9d4c786e60>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9d4c786ef0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f9d4c786f80>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f9d4c78e050>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9d4c78e0e0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f9d4c78e170>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9d4c78e200>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9d4c78e290>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9d4c78e320>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f9d4c7cfba0>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {
23
+ ":type:": "<class 'dict'>",
24
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
25
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
26
+ "optimizer_kwargs": {
27
+ "alpha": 0.99,
28
+ "eps": 1e-05,
29
+ "weight_decay": 0
30
+ }
31
+ },
32
+ "observation_space": {
33
+ ":type:": "<class 'gym.spaces.box.Box'>",
34
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
35
+ "dtype": "float32",
36
+ "_shape": [
37
+ 8
38
+ ],
39
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
40
+ "high": "[inf inf inf inf inf inf inf inf]",
41
+ "bounded_below": "[False False False False False False False False]",
42
+ "bounded_above": "[False False False False False False False False]",
43
+ "_np_random": null
44
+ },
45
+ "action_space": {
46
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
47
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
48
+ "n": 4,
49
+ "_shape": [],
50
+ "dtype": "int64",
51
+ "_np_random": null
52
+ },
53
+ "n_envs": 8,
54
+ "num_timesteps": 500000,
55
+ "_total_timesteps": 1000000,
56
+ "_num_timesteps_at_start": 0,
57
+ "seed": null,
58
+ "action_noise": null,
59
+ "start_time": 1651785159.3266068,
60
+ "learning_rate": {
61
+ ":type:": "<class 'function'>",
62
+ ":serialized:": "gAWV0gEAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsCS0NDCHwAZAEUAFMAlE5HP0syi22G7BiGlCmMEnByb2dyZXNzX3JlbWFpbmluZ5SFlIwHdGVzdC5weZSMCDxsYW1iZGE+lEseQwCUKSl0lFKUfZQojAtfX3BhY2thZ2VfX5ROjAhfX25hbWVfX5SMCF9fbWFpbl9flIwIX19maWxlX1+UjAd0ZXN0LnB5lHVOTk50lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaBl9lH2UKGgUaA6MDF9fcXVhbG5hbWVfX5RoDowPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoFYwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5ROjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
63
+ },
64
+ "tensorboard_log": null,
65
+ "lr_schedule": {
66
+ ":type:": "<class 'function'>",
67
+ ":serialized:": "gAWV0gEAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsCS0NDCHwAZAEUAFMAlE5HP0syi22G7BiGlCmMEnByb2dyZXNzX3JlbWFpbmluZ5SFlIwHdGVzdC5weZSMCDxsYW1iZGE+lEseQwCUKSl0lFKUfZQojAtfX3BhY2thZ2VfX5ROjAhfX25hbWVfX5SMCF9fbWFpbl9flIwIX19maWxlX1+UjAd0ZXN0LnB5lHVOTk50lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaBl9lH2UKGgUaA6MDF9fcXVhbG5hbWVfX5RoDowPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoFYwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5ROjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
68
+ },
69
+ "_last_obs": {
70
+ ":type:": "<class 'numpy.ndarray'>",
71
+ ":serialized:": "gAWVdQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAQAAAAAAAGYYizzhuJW6w+GpuyBWkjxxMmQ6IGN+vQAAgD8AAIA/AJHyvHlUuj+vg6a9sxkzvu/VXL6ot4C+AAAAAAAAAADmW809R6lJP7YRqjya2IO9imOCPejjCb4AAAAAAAAAAM1zhT0KDxU/+koPPUzLDr1e61E9wIoevQAAAAAAAAAAAOSOPRq1XD4I9mM7bh1WvaPw0T3WCqU8AAAAAAAAAAAzPWg8nUqtPzmVhj5dIvW+xCC8vECt8r0AAAAAAAAAAGY45bzr/kk/Wyo1ve0Z2r32lIa9uHcyPAAAAAAAAAAAGmZfvehhpz3lrf+8BAIEvjgrO73wEYy9AAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwhLCIaUjAFDlHSUUpQu"
72
+ },
73
+ "_last_episode_starts": {
74
+ ":type:": "<class 'numpy.ndarray'>",
75
+ ":serialized:": "gAWVewAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYIAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlC4="
76
+ },
77
+ "_last_original_obs": null,
78
+ "_episode_num": 0,
79
+ "use_sde": false,
80
+ "sde_sample_freq": -1,
81
+ "_current_progress_remaining": 0.50004,
82
+ "ep_info_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gAWVahAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIZsHEH0UtLsCUhpRSlIwBbJRN6AOMAXSUR0BsVIBzV+ZxdX2UKGgGaAloD0MI3BK54AyHUsCUhpRSlGgVTegDaBZHQGyjVcdHUc51fZQoaAZoCWgPQwj0FaQZi89bwJSGlFKUaBVN6ANoFkdAbOHQSi/O+3V9lChoBmgJaA9DCOIi93R1C0vAlIaUUpRoFU3oA2gWR0Bs92mNzbN9dX2UKGgGaAloD0MI2Lj+XZ9oVMCUhpRSlGgVTegDaBZHQG0M/I0ZWJd1fZQoaAZoCWgPQwgPYJFfP+BLwJSGlFKUaBVN6ANoFkdAbRSY0l7dBXV9lChoBmgJaA9DCLka2ZWW4RPAlIaUUpRoFU3oA2gWR0BtIpeXzDoAdX2UKGgGaAloD0MIIT1FDhGjS8CUhpRSlGgVTegDaBZHQG1GYxtYSxt1fZQoaAZoCWgPQwigTnl0IyxXwJSGlFKUaBVN6ANoFkdAbUm2fkFOf3V9lChoBmgJaA9DCElm9Q63ymhAlIaUUpRoFU3aAWgWR0BtXTXpW3jNdX2UKGgGaAloD0MI+uyA6wotZkCUhpRSlGgVTU8DaBZHQG1rMsxwhnt1fZQoaAZoCWgPQwicb0T3rKVSwJSGlFKUaBVN6ANoFkdAbbiGcnVoYnV9lChoBmgJaA9DCNW0i2mmBzrAlIaUUpRoFU3oA2gWR0Bt2xI1+AmRdX2UKGgGaAloD0MIPDJWm/88U8CUhpRSlGgVTegDaBZHQG3ilkH2RJV1fZQoaAZoCWgPQwjyYfay7UBMwJSGlFKUaBVN6ANoFkdAbe/Gus90R3V9lChoBmgJaA9DCH0fDhKitk/AlIaUUpRoFU3oA2gWR0BuDbO/tY0VdX2UKGgGaAloD0MIQPm7d9SvWcCUhpRSlGgVTegDaBZHQG4Qn1nM+vB1fZQoaAZoCWgPQwgSoKaWrRUYQJSGlFKUaBVN6ANoFkdAbieF/x2B8XV9lChoBmgJaA9DCMPVARB3A1jAlIaUUpRoFU3oA2gWR0BuN0l9jPOZdX2UKGgGaAloD0MIK061Fma9cECUhpRSlGgVTQgCaBZHQG5GbzTWoWJ1fZQoaAZoCWgPQwjUt8zpMpNkQJSGlFKUaBVNNQNoFkdAbmJdPci4a3V9lChoBmgJaA9DCF9BmrFoXG1AlIaUUpRoFU3IAWgWR0Buj71EmY0EdX2UKGgGaAloD0MIk6espmutYkCUhpRSlGgVTQYDaBZHQG6Vj4593KV1fZQoaAZoCWgPQwjqswOuK+pRwJSGlFKUaBVN6ANoFkdAbrV5eqrBCXV9lChoBmgJaA9DCLLWUGovlE/AlIaUUpRoFUu4aBZHQG7i6HKwIMV1fZQoaAZoCWgPQwjwhjQqcCozwJSGlFKUaBVN6ANoFkdAbvqOy3Td+HV9lChoBmgJaA9DCIGWrmAbhTrAlIaUUpRoFU3oA2gWR0Bu/gyO7xusdX2UKGgGaAloD0MIYK3aNaHfZMCUhpRSlGgVS9toFkdAbxa3YL9deXV9lChoBmgJaA9DCCjU00fgM0XAlIaUUpRoFU3oA2gWR0BvJxEroW56dX2UKGgGaAloD0MIoWr0aoDUVMCUhpRSlGgVTegDaBZHQG82Y8lolD51fZQoaAZoCWgPQwhJSQ9Dq5tNwJSGlFKUaBVN6ANoFkdAb0+hf0Eov3V9lChoBmgJaA9DCJvJN9vcR2NAlIaUUpRoFU20A2gWR0BvarRtxdY5dX2UKGgGaAloD0MIO1W+Z6RsYMCUhpRSlGgVTegDaBZHQG95Ul7dBSl1fZQoaAZoCWgPQwh/Z3v0hvc/QJSGlFKUaBVL3mgWR0BvfTyYoiLVdX2UKGgGaAloD0MIryKjAxKmakCUhpRSlGgVTe8BaBZHQG99tPpIMBp1fZQoaAZoCWgPQwgfatswitZpQJSGlFKUaBVNbwJoFkdAb36FqSHM2XV9lChoBmgJaA9DCP2hmSfXGD3AlIaUUpRoFUunaBZHQG+XEDhcZ+B1fZQoaAZoCWgPQwhJRzmYTVpQwJSGlFKUaBVN6ANoFkdAb8FH6uW8iHV9lChoBmgJaA9DCCtM32uIm3FAlIaUUpRoFU1dAWgWR0Bv4brE9+w1dX2UKGgGaAloD0MIg9xFmKKcUsCUhpRSlGgVTegDaBZHQG/x47JW/8F1fZQoaAZoCWgPQwgJF/IIbnxoQJSGlFKUaBVNpwJoFkdAb/JbnoxHoXV9lChoBmgJaA9DCMXIkjmWV1PAlIaUUpRoFU3oA2gWR0BwAMF1SwW4dX2UKGgGaAloD0MIpz0l58SiNsCUhpRSlGgVTegDaBZHQHApDBdld1N1fZQoaAZoCWgPQwgIlE25wnFPwJSGlFKUaBVN6ANoFkdAcCvzLwF1S3V9lChoBmgJaA9DCA9iZwqdD0TAlIaUUpRoFU3oA2gWR0BwLHhybQTmdX2UKGgGaAloD0MImE9WDFcfSECUhpRSlGgVS7toFkdAcDrzVc2R73V9lChoBmgJaA9DCH3NctnofBlAlIaUUpRoFU1FAWgWR0BwTxs2vStvdX2UKGgGaAloD0MIzLipgearUcCUhpRSlGgVTegDaBZHQHBUBD5TIeZ1fZQoaAZoCWgPQwiaIyu/DFYpQJSGlFKUaBVL1mgWR0BwVUIVuaWpdX2UKGgGaAloD0MIJZaUu8+nRcCUhpRSlGgVTegDaBZHQHBnG4uscQ11fZQoaAZoCWgPQwhqMuNtpX8jwJSGlFKUaBVN6ANoFkdAcG9zI3irDXV9lChoBmgJaA9DCPwBDwwgPP6/lIaUUpRoFU3oA2gWR0Bwb6G34Kx+dX2UKGgGaAloD0MI/l915EhBb0CUhpRSlGgVTYQCaBZHQHBzJSzgMtt1fZQoaAZoCWgPQwg0vi8uVWnpP5SGlFKUaBVN6ANoFkdAcHPO3DvVmXV9lChoBmgJaA9DCPc+VYUG+jVAlIaUUpRoFUviaBZHQHB9cpgCwKV1fZQoaAZoCWgPQwgT0hqDTsJvQJSGlFKUaBVNQwFoFkdAcI1rwe/5+HV9lChoBmgJaA9DCGwGuCBb+WZAlIaUUpRoFU3YAmgWR0BwupfG+9J0dX2UKGgGaAloD0MIG4ANiBAvJ8CUhpRSlGgVTegDaBZHQHC93rMTviN1fZQoaAZoCWgPQwgmUprN42JGwJSGlFKUaBVN6ANoFkdAcMJfQrtmc3V9lChoBmgJaA9DCDBl4ICWkmNAlIaUUpRoFU3oA2gWR0Bww2H0se4kdX2UKGgGaAloD0MIzJpY4Ot8cECUhpRSlGgVTccBaBZHQHDIYYR/ViF1fZQoaAZoCWgPQwgxB0FHqxVWwJSGlFKUaBVN6ANoFkdAcM+d+5OJtXV9lChoBmgJaA9DCFwgQfFjcV/AlIaUUpRoFU3oA2gWR0Bw2j9m6GxmdX2UKGgGaAloD0MIstgmFY0nS8CUhpRSlGgVTegDaBZHQHDrbRjSXt11fZQoaAZoCWgPQwjaklURbpFuQJSGlFKUaBVNqAFoFkdAcRB5ZKWcBnV9lChoBmgJaA9DCCLfpdQlY29AlIaUUpRoFU1BAWgWR0BxGy2b5M11dX2UKGgGaAloD0MImfViKCcwTcCUhpRSlGgVTegDaBZHQHE/SGWUr091fZQoaAZoCWgPQwjUgEHSp8pWwJSGlFKUaBVN6ANoFkdAcUOthNM4+HV9lChoBmgJaA9DCPLtXYO+FDhAlIaUUpRoFUvjaBZHQHFHtUsFt9B1fZQoaAZoCWgPQwihaB7AIuhUwJSGlFKUaBVN6ANoFkdAcUmLgn+hoXV9lChoBmgJaA9DCKc7TzxngzHAlIaUUpRoFU3oA2gWR0BxSsaDPGADdX2UKGgGaAloD0MI2ZjXEYdGUsCUhpRSlGgVTegDaBZHQHFQhC+lCTl1fZQoaAZoCWgPQwi4kEdwIwk3QJSGlFKUaBVLqGgWR0BxVUkSmIj4dX2UKGgGaAloD0MI9OFZgkzzcECUhpRSlGgVTbwBaBZHQHFWXp0OmSB1fZQoaAZoCWgPQwgZNzXQfJdWwJSGlFKUaBVN6ANoFkdAcVaCZ4Oc2HV9lChoBmgJaA9DCBuBeF0/X2HAlIaUUpRoFUuYaBZHQHFWtIbwSap1fZQoaAZoCWgPQwiKq8q+KyIhQJSGlFKUaBVL2mgWR0BxVvWkJrtWdX2UKGgGaAloD0MIxjGSPUIhSkCUhpRSlGgVS65oFkdAcVezDXOGCnV9lChoBmgJaA9DCFRSJ6CJSlJAlIaUUpRoFUvZaBZHQHFbOmrKeTV1fZQoaAZoCWgPQwg0+PvFbKVDQJSGlFKUaBVL2GgWR0BxX0TIvJzUdX2UKGgGaAloD0MIsqGb/YH2Q0CUhpRSlGgVS6xoFkdAcWwN34bjtHV9lChoBmgJaA9DCOWAXU2ecmhAlIaUUpRoFU2LAWgWR0BxbBW2gFotdX2UKGgGaAloD0MIesISDyjPMECUhpRSlGgVS8xoFkdAcYIlRP420nV9lChoBmgJaA9DCGbZk8Dm6FHAlIaUUpRoFU1WAmgWR0Bxg9P+GXXzdX2UKGgGaAloD0MIQ/6ZQXzqYMCUhpRSlGgVS5ZoFkdAcZW2606YFHV9lChoBmgJaA9DCFZkdECSx2ZAlIaUUpRoFU0IA2gWR0Bxn54Y77sOdX2UKGgGaAloD0MIRG/x8J5POMCUhpRSlGgVTegDaBZHQHGjXzH0btJ1fZQoaAZoCWgPQwhiuhCrP+BLwJSGlFKUaBVN6ANoFkdAcbYxuKoAGXV9lChoBmgJaA9DCKJBCp5CxWhAlIaUUpRoFU1QAmgWR0BxtlYjjaPCdX2UKGgGaAloD0MIDD1i9NzCHcCUhpRSlGgVTegDaBZHQHG3wmZ3LV51fZQoaAZoCWgPQwjrHW6HBg5wQJSGlFKUaBVNDwFoFkdAcbkPOIInjXV9lChoBmgJaA9DCNkJL8EpV2BAlIaUUpRoFU3MA2gWR0Bxv+eg+QlsdX2UKGgGaAloD0MIzJvDtdoDSECUhpRSlGgVS6hoFkdAccK8ma6ST3V9lChoBmgJaA9DCNeEtMaglzFAlIaUUpRoFUufaBZHQHHDMRUWEbp1fZQoaAZoCWgPQwgOSS2UzL1mQJSGlFKUaBVNjQJoFkdAccrdKujh1nV9lChoBmgJaA9DCFVQUfUrPRVAlIaUUpRoFUvMaBZHQHHONALRa5h1fZQoaAZoCWgPQwjy0eKMYUo9QJSGlFKUaBVLpGgWR0BxzoQlKK51dX2UKGgGaAloD0MIgGH5821XTECUhpRSlGgVS6JoFkdAcdcT8YQ8OnV9lChoBmgJaA9DCBu9GqA0TDdAlIaUUpRoFUuJaBZHQHHk4oNNJvp1fZQoaAZoCWgPQwiC4VzDjERjQJSGlFKUaBVN/wJoFkdAcebwC8vmHXVlLg=="
85
+ },
86
+ "ep_success_buffer": {
87
+ ":type:": "<class 'collections.deque'>",
88
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
89
+ },
90
+ "_n_updates": 12499,
91
+ "n_steps": 5,
92
+ "gamma": 0.995,
93
+ "gae_lambda": 1.0,
94
+ "ent_coef": 1e-05,
95
+ "vf_coef": 0.5,
96
+ "max_grad_norm": 0.5,
97
+ "normalize_advantage": false
98
+ }
a2c-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c1f35405987853ea4cecf934ade9c3623c622434fff443bebbfaea406c9cb899
3
+ size 42433
a2c-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:be39b0da7e2dcf85933d89e9f0aa4ffc2e0d208cf0a2d7f9675d9c93be2c0052
3
+ size 43073
a2c-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
1
+ OS: Linux-5.13.0-40-generic-x86_64-with-debian-bullseye-sid #45~20.04.1-Ubuntu SMP Mon Apr 4 09:38:31 UTC 2022
2
+ Python: 3.7.10
3
+ Stable-Baselines3: 1.5.1a5
4
+ PyTorch: 1.11.0
5
+ GPU Enabled: False
6
+ Numpy: 1.21.2
7
+ Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9d4c786d40>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9d4c786dd0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9d4c786e60>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9d4c786ef0>", "_build": "<function ActorCriticPolicy._build at 0x7f9d4c786f80>", "forward": "<function ActorCriticPolicy.forward at 0x7f9d4c78e050>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9d4c78e0e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f9d4c78e170>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9d4c78e200>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9d4c78e290>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9d4c78e320>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f9d4c7cfba0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 8, "num_timesteps": 500000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651785159.3266068, "learning_rate": {":type:": "<class 'function'>", ":serialized:": "gAWV0gEAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsCS0NDCHwAZAEUAFMAlE5HP0syi22G7BiGlCmMEnByb2dyZXNzX3JlbWFpbmluZ5SFlIwHdGVzdC5weZSMCDxsYW1iZGE+lEseQwCUKSl0lFKUfZQojAtfX3BhY2thZ2VfX5ROjAhfX25hbWVfX5SMCF9fbWFpbl9flIwIX19maWxlX1+UjAd0ZXN0LnB5lHVOTk50lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaBl9lH2UKGgUaA6MDF9fcXVhbG5hbWVfX5RoDowPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoFYwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5ROjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV0gEAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsCS0NDCHwAZAEUAFMAlE5HP0syi22G7BiGlCmMEnByb2dyZXNzX3JlbWFpbmluZ5SFlIwHdGVzdC5weZSMCDxsYW1iZGE+lEseQwCUKSl0lFKUfZQojAtfX3BhY2thZ2VfX5ROjAhfX25hbWVfX5SMCF9fbWFpbl9flIwIX19maWxlX1+UjAd0ZXN0LnB5lHVOTk50lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaBl9lH2UKGgUaA6MDF9fcXVhbG5hbWVfX5RoDowPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoFYwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5ROjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAQAAAAAAAGYYizzhuJW6w+GpuyBWkjxxMmQ6IGN+vQAAgD8AAIA/AJHyvHlUuj+vg6a9sxkzvu/VXL6ot4C+AAAAAAAAAADmW809R6lJP7YRqjya2IO9imOCPejjCb4AAAAAAAAAAM1zhT0KDxU/+koPPUzLDr1e61E9wIoevQAAAAAAAAAAAOSOPRq1XD4I9mM7bh1WvaPw0T3WCqU8AAAAAAAAAAAzPWg8nUqtPzmVhj5dIvW+xCC8vECt8r0AAAAAAAAAAGY45bzr/kk/Wyo1ve0Z2r32lIa9uHcyPAAAAAAAAAAAGmZfvehhpz3lrf+8BAIEvjgrO73wEYy9AAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwhLCIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVewAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYIAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.50004, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVahAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIZsHEH0UtLsCUhpRSlIwBbJRN6AOMAXSUR0BsVIBzV+ZxdX2UKGgGaAloD0MI3BK54AyHUsCUhpRSlGgVTegDaBZHQGyjVcdHUc51fZQoaAZoCWgPQwj0FaQZi89bwJSGlFKUaBVN6ANoFkdAbOHQSi/O+3V9lChoBmgJaA9DCOIi93R1C0vAlIaUUpRoFU3oA2gWR0Bs92mNzbN9dX2UKGgGaAloD0MI2Lj+XZ9oVMCUhpRSlGgVTegDaBZHQG0M/I0ZWJd1fZQoaAZoCWgPQwgPYJFfP+BLwJSGlFKUaBVN6ANoFkdAbRSY0l7dBXV9lChoBmgJaA9DCLka2ZWW4RPAlIaUUpRoFU3oA2gWR0BtIpeXzDoAdX2UKGgGaAloD0MIIT1FDhGjS8CUhpRSlGgVTegDaBZHQG1GYxtYSxt1fZQoaAZoCWgPQwigTnl0IyxXwJSGlFKUaBVN6ANoFkdAbUm2fkFOf3V9lChoBmgJaA9DCElm9Q63ymhAlIaUUpRoFU3aAWgWR0BtXTXpW3jNdX2UKGgGaAloD0MI+uyA6wotZkCUhpRSlGgVTU8DaBZHQG1rMsxwhnt1fZQoaAZoCWgPQwicb0T3rKVSwJSGlFKUaBVN6ANoFkdAbbiGcnVoYnV9lChoBmgJaA9DCNW0i2mmBzrAlIaUUpRoFU3oA2gWR0Bt2xI1+AmRdX2UKGgGaAloD0MIPDJWm/88U8CUhpRSlGgVTegDaBZHQG3ilkH2RJV1fZQoaAZoCWgPQwjyYfay7UBMwJSGlFKUaBVN6ANoFkdAbe/Gus90R3V9lChoBmgJaA9DCH0fDhKitk/AlIaUUpRoFU3oA2gWR0BuDbO/tY0VdX2UKGgGaAloD0MIQPm7d9SvWcCUhpRSlGgVTegDaBZHQG4Qn1nM+vB1fZQoaAZoCWgPQwgSoKaWrRUYQJSGlFKUaBVN6ANoFkdAbieF/x2B8XV9lChoBmgJaA9DCMPVARB3A1jAlIaUUpRoFU3oA2gWR0BuN0l9jPOZdX2UKGgGaAloD0MIK061Fma9cECUhpRSlGgVTQgCaBZHQG5GbzTWoWJ1fZQoaAZoCWgPQwjUt8zpMpNkQJSGlFKUaBVNNQNoFkdAbmJdPci4a3V9lChoBmgJaA9DCF9BmrFoXG1AlIaUUpRoFU3IAWgWR0Buj71EmY0EdX2UKGgGaAloD0MIk6espmutYkCUhpRSlGgVTQYDaBZHQG6Vj4593KV1fZQoaAZoCWgPQwjqswOuK+pRwJSGlFKUaBVN6ANoFkdAbrV5eqrBCXV9lChoBmgJaA9DCLLWUGovlE/AlIaUUpRoFUu4aBZHQG7i6HKwIMV1fZQoaAZoCWgPQwjwhjQqcCozwJSGlFKUaBVN6ANoFkdAbvqOy3Td+HV9lChoBmgJaA9DCIGWrmAbhTrAlIaUUpRoFU3oA2gWR0Bu/gyO7xusdX2UKGgGaAloD0MIYK3aNaHfZMCUhpRSlGgVS9toFkdAbxa3YL9deXV9lChoBmgJaA9DCCjU00fgM0XAlIaUUpRoFU3oA2gWR0BvJxEroW56dX2UKGgGaAloD0MIoWr0aoDUVMCUhpRSlGgVTegDaBZHQG82Y8lolD51fZQoaAZoCWgPQwhJSQ9Dq5tNwJSGlFKUaBVN6ANoFkdAb0+hf0Eov3V9lChoBmgJaA9DCJvJN9vcR2NAlIaUUpRoFU20A2gWR0BvarRtxdY5dX2UKGgGaAloD0MIO1W+Z6RsYMCUhpRSlGgVTegDaBZHQG95Ul7dBSl1fZQoaAZoCWgPQwh/Z3v0hvc/QJSGlFKUaBVL3mgWR0BvfTyYoiLVdX2UKGgGaAloD0MIryKjAxKmakCUhpRSlGgVTe8BaBZHQG99tPpIMBp1fZQoaAZoCWgPQwgfatswitZpQJSGlFKUaBVNbwJoFkdAb36FqSHM2XV9lChoBmgJaA9DCP2hmSfXGD3AlIaUUpRoFUunaBZHQG+XEDhcZ+B1fZQoaAZoCWgPQwhJRzmYTVpQwJSGlFKUaBVN6ANoFkdAb8FH6uW8iHV9lChoBmgJaA9DCCtM32uIm3FAlIaUUpRoFU1dAWgWR0Bv4brE9+w1dX2UKGgGaAloD0MIg9xFmKKcUsCUhpRSlGgVTegDaBZHQG/x47JW/8F1fZQoaAZoCWgPQwgJF/IIbnxoQJSGlFKUaBVNpwJoFkdAb/JbnoxHoXV9lChoBmgJaA9DCMXIkjmWV1PAlIaUUpRoFU3oA2gWR0BwAMF1SwW4dX2UKGgGaAloD0MIpz0l58SiNsCUhpRSlGgVTegDaBZHQHApDBdld1N1fZQoaAZoCWgPQwgIlE25wnFPwJSGlFKUaBVN6ANoFkdAcCvzLwF1S3V9lChoBmgJaA9DCA9iZwqdD0TAlIaUUpRoFU3oA2gWR0BwLHhybQTmdX2UKGgGaAloD0MImE9WDFcfSECUhpRSlGgVS7toFkdAcDrzVc2R73V9lChoBmgJaA9DCH3NctnofBlAlIaUUpRoFU1FAWgWR0BwTxs2vStvdX2UKGgGaAloD0MIzLipgearUcCUhpRSlGgVTegDaBZHQHBUBD5TIeZ1fZQoaAZoCWgPQwiaIyu/DFYpQJSGlFKUaBVL1mgWR0BwVUIVuaWpdX2UKGgGaAloD0MIJZaUu8+nRcCUhpRSlGgVTegDaBZHQHBnG4uscQ11fZQoaAZoCWgPQwhqMuNtpX8jwJSGlFKUaBVN6ANoFkdAcG9zI3irDXV9lChoBmgJaA9DCPwBDwwgPP6/lIaUUpRoFU3oA2gWR0Bwb6G34Kx+dX2UKGgGaAloD0MI/l915EhBb0CUhpRSlGgVTYQCaBZHQHBzJSzgMtt1fZQoaAZoCWgPQwg0vi8uVWnpP5SGlFKUaBVN6ANoFkdAcHPO3DvVmXV9lChoBmgJaA9DCPc+VYUG+jVAlIaUUpRoFUviaBZHQHB9cpgCwKV1fZQoaAZoCWgPQwgT0hqDTsJvQJSGlFKUaBVNQwFoFkdAcI1rwe/5+HV9lChoBmgJaA9DCGwGuCBb+WZAlIaUUpRoFU3YAmgWR0BwupfG+9J0dX2UKGgGaAloD0MIG4ANiBAvJ8CUhpRSlGgVTegDaBZHQHC93rMTviN1fZQoaAZoCWgPQwgmUprN42JGwJSGlFKUaBVN6ANoFkdAcMJfQrtmc3V9lChoBmgJaA9DCDBl4ICWkmNAlIaUUpRoFU3oA2gWR0Bww2H0se4kdX2UKGgGaAloD0MIzJpY4Ot8cECUhpRSlGgVTccBaBZHQHDIYYR/ViF1fZQoaAZoCWgPQwgxB0FHqxVWwJSGlFKUaBVN6ANoFkdAcM+d+5OJtXV9lChoBmgJaA9DCFwgQfFjcV/AlIaUUpRoFU3oA2gWR0Bw2j9m6GxmdX2UKGgGaAloD0MIstgmFY0nS8CUhpRSlGgVTegDaBZHQHDrbRjSXt11fZQoaAZoCWgPQwjaklURbpFuQJSGlFKUaBVNqAFoFkdAcRB5ZKWcBnV9lChoBmgJaA9DCCLfpdQlY29AlIaUUpRoFU1BAWgWR0BxGy2b5M11dX2UKGgGaAloD0MImfViKCcwTcCUhpRSlGgVTegDaBZHQHE/SGWUr091fZQoaAZoCWgPQwjUgEHSp8pWwJSGlFKUaBVN6ANoFkdAcUOthNM4+HV9lChoBmgJaA9DCPLtXYO+FDhAlIaUUpRoFUvjaBZHQHFHtUsFt9B1fZQoaAZoCWgPQwihaB7AIuhUwJSGlFKUaBVN6ANoFkdAcUmLgn+hoXV9lChoBmgJaA9DCKc7TzxngzHAlIaUUpRoFU3oA2gWR0BxSsaDPGADdX2UKGgGaAloD0MI2ZjXEYdGUsCUhpRSlGgVTegDaBZHQHFQhC+lCTl1fZQoaAZoCWgPQwi4kEdwIwk3QJSGlFKUaBVLqGgWR0BxVUkSmIj4dX2UKGgGaAloD0MI9OFZgkzzcECUhpRSlGgVTbwBaBZHQHFWXp0OmSB1fZQoaAZoCWgPQwgZNzXQfJdWwJSGlFKUaBVN6ANoFkdAcVaCZ4Oc2HV9lChoBmgJaA9DCBuBeF0/X2HAlIaUUpRoFUuYaBZHQHFWtIbwSap1fZQoaAZoCWgPQwiKq8q+KyIhQJSGlFKUaBVL2mgWR0BxVvWkJrtWdX2UKGgGaAloD0MIxjGSPUIhSkCUhpRSlGgVS65oFkdAcVezDXOGCnV9lChoBmgJaA9DCFRSJ6CJSlJAlIaUUpRoFUvZaBZHQHFbOmrKeTV1fZQoaAZoCWgPQwg0+PvFbKVDQJSGlFKUaBVL2GgWR0BxX0TIvJzUdX2UKGgGaAloD0MIsqGb/YH2Q0CUhpRSlGgVS6xoFkdAcWwN34bjtHV9lChoBmgJaA9DCOWAXU2ecmhAlIaUUpRoFU2LAWgWR0BxbBW2gFotdX2UKGgGaAloD0MIesISDyjPMECUhpRSlGgVS8xoFkdAcYIlRP420nV9lChoBmgJaA9DCGbZk8Dm6FHAlIaUUpRoFU1WAmgWR0Bxg9P+GXXzdX2UKGgGaAloD0MIQ/6ZQXzqYMCUhpRSlGgVS5ZoFkdAcZW2606YFHV9lChoBmgJaA9DCFZkdECSx2ZAlIaUUpRoFU0IA2gWR0Bxn54Y77sOdX2UKGgGaAloD0MIRG/x8J5POMCUhpRSlGgVTegDaBZHQHGjXzH0btJ1fZQoaAZoCWgPQwhiuhCrP+BLwJSGlFKUaBVN6ANoFkdAcbYxuKoAGXV9lChoBmgJaA9DCKJBCp5CxWhAlIaUUpRoFU1QAmgWR0BxtlYjjaPCdX2UKGgGaAloD0MIDD1i9NzCHcCUhpRSlGgVTegDaBZHQHG3wmZ3LV51fZQoaAZoCWgPQwjrHW6HBg5wQJSGlFKUaBVNDwFoFkdAcbkPOIInjXV9lChoBmgJaA9DCNkJL8EpV2BAlIaUUpRoFU3MA2gWR0Bxv+eg+QlsdX2UKGgGaAloD0MIzJvDtdoDSECUhpRSlGgVS6hoFkdAccK8ma6ST3V9lChoBmgJaA9DCNeEtMaglzFAlIaUUpRoFUufaBZHQHHDMRUWEbp1fZQoaAZoCWgPQwgOSS2UzL1mQJSGlFKUaBVNjQJoFkdAccrdKujh1nV9lChoBmgJaA9DCFVQUfUrPRVAlIaUUpRoFUvMaBZHQHHONALRa5h1fZQoaAZoCWgPQwjy0eKMYUo9QJSGlFKUaBVLpGgWR0BxzoQlKK51dX2UKGgGaAloD0MIgGH5821XTECUhpRSlGgVS6JoFkdAcdcT8YQ8OnV9lChoBmgJaA9DCBu9GqA0TDdAlIaUUpRoFUuJaBZHQHHk4oNNJvp1fZQoaAZoCWgPQwiC4VzDjERjQJSGlFKUaBVN/wJoFkdAcebwC8vmHXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 12499, "n_steps": 5, "gamma": 0.995, "gae_lambda": 1.0, "ent_coef": 1e-05, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.13.0-40-generic-x86_64-with-debian-bullseye-sid #45~20.04.1-Ubuntu SMP Mon Apr 4 09:38:31 UTC 2022", "Python": "3.7.10", "Stable-Baselines3": "1.5.1a5", "PyTorch": "1.11.0", "GPU Enabled": "False", "Numpy": "1.21.2", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6fd988443f362d6de127be0e085d050653aa437dcfdd65739a07dc785b7f2c8a
3
+ size 258636
results.json ADDED
@@ -0,0 +1 @@
 
1
+ {"mean_reward": 111.57129189999998, "std_reward": 98.18886065587273, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-05T23:20:36.963723"}